
Complex questions: Let me Google it for you

Alexandra Vtyurina
School of Computer Science

University of Waterloo, Canada
avtyurin@uwaterloo.ca

Charles L. A. Clarke
School of Computer Science

University of Waterloo, Canada
claclark@plg.uwaterloo.ca

ABSTRACT
Many questions submitted to community question answer-
ing (CQA) sites such as Yahoo!Answers can be reasonably
answered by a simple query to a standard Web search en-
gine. However, the user may not know how to reduce their
question, which may be several paragraphs in length, down
to the 2-4 terms that will return an answer. The work in this
short paper is directed towards the creation of a system that
can do this reduction for them. More specifically, in this pa-
per we focus on automatically generating training data for
this purpose. Given existing question-answer pairs, we de-
termine the combination of terms appearing in the question
that best returns the answer. Given the large collection of
question-answer pairs that already exist on CQA sites, we
hope to generate large numbers of training examples. Using
this training data, we hope to learn to extract short queries
from long questions that have no existing answers. Although
the results in this workshop paper are preliminary in nature,
they demonstrate the potential of this approach.

1. INTRODUCTION
Most personal assistant systems, such as Apple’s Siri and

Microsoft’s Cortana are equipped with a mechanism that
will quickly give answers to questions like, “Where was Abra-
ham Lincoln born?” or “How tall is Beyoncé?”. Similarly,
Google’s knowledge graph provides a convenient interface
that answers factual questions, so that a user does not have
to browse through multiple web pages searching for the an-
swer. Such factoid questions are usually quite short and
have a single correct answer, making it reasonably straight-
forward for these systems to return this answer. However,
not every question has a simple answer, and people often
want to obtain an answer to more complex questions. While
the advances in factoid question answering are significant,
research in answering more complex questions is still at its
early stages.

The exact definition of a “complex question” is somewhat
vague and largely depends on the source of the questions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Nonetheless, there are some features of the complex ques-
tions that are frequently encountered. They are usually ver-
bose, have multiple correct answers, and a complex syn-
tactic structure. They might include opinion seeking ques-
tions, questions that can be answered based on someone
else’s prior experience, questions that require speculation
and logical conclusions, or questions that include a variety
of small details that a person sees as meaningful. They are
usually open domain, i.e., they are not restricted to a par-
ticular topic. Another important feature of such questions
is their free form, which entails syntactic and grammatical
errors and ambiguity. Questions that contain some of the
above features are not yet reliably answered by automated
systems, and researchers in the field of CQA are targeting
the problem of finding answers to them automatically.

Websites like Yahoo!Answers, Quora and StackExchange
provide a forum-like interface for question answering. Indi-
viduals post questions on these sites, and the community of
users attempts to answer them. Questions posted on these
websites are often non-factoid, and may be quite long, some-
times several paragraphs in length, with separate fields for
a title and a body. When the answers are posted, the best
one can be chosen by the asker, and any given answer can be
upvoted or downvoted, providing a natural ranking system.

While this approach may provide a convenient way to an-
swer complex questions, many questions go unanswered. For
example, according to Li and King[6] only 17.6% of ques-
tions posted on Yahoo!Answers receive a satisfactory answer
within 48 hours, while 16% end up with no answers at all.
Having a system that would be capable of answering com-
plex questions automatically would mitigate this problem
and provide a higher level of user experience.

Current research is putting forward ways to answer such
questions automatically with little waiting time. At TREC
2015, for the first time, a LiveQA track was conducted,
where participating QA systems were required to answer
free-form, real-world questions from Yahoo!Answers. At the
end of the track, the best performing system demonstrated
that it could produce sensible answers to more than half of
the questions [1].

The modern Web covers the majority of topics of interest
and keeps evolving day by day. We believe that for many
complex questions an answer can be found on the Web,
which can be reached through a regular commercial search
by a single query. In other words, the answer to many com-
plex questions is already out there, if only the user knew the
query to reach it.

Modern search engines do a good job in retrieving docu-

ments based on short queries. Bailey et al.[2] report that the
most popular queries for a search engines are those of lengths
2 and 3 words. Unsurprisingly, submitting a full complex
question to a standard web search engine returns poor re-
sults, since an average question length is 14.5 meaningful
words (based on the questions from the Yahoo!Answers data-
set available on Webscope1). However, for many of these
questions human reader can construct a 2-4 words query
that returns a set of relevant documents, which are likely to
contain an answer to the given question.

Let us consider an example. Figure 1 shows a question
that was posted on Yahoo!Answers, and the answer that was
chosen by the asker as the best. While supplying the entire
question text to a search engine does not yield the desired
results, a short query “shy timid gathering”, constructed ex-
clusively from the words appearing in the question, retrieves
a set of relevant documents, from which an answer to the
question could be further selected. Alternatively, these web
results could be presented to the asker directly, and she could
discover the answer herself. If we could automatically shrink
a long question to a 2-4 words query describing the issue,
we would be half-way towards answering complex questions.
However this task is not trivial.

In order to learn to extract descriptive words from arbi-
trary questions, we would need a large amount of training
data – a set of question-query pairs, that have already been
reliably labeled. Labeling questions by hand is a costly and
time consuming problem, and ideally we would like to come
up with a way to do so automatically with little or no hu-
man involvement. Although it is expensive to manually cre-
ate queries for complex questions, the big advantage is that
there is an abundance of questions that have already been
answered by human users, which have been evaluated for
quality by the ranking/voting process.

Therefore, we possess a large dataset of questions and
their answers that we would like to use to automatically
produce a training set of question-query pairs. Our plan is:
first, to learn to identify question keywords based on the
question and its answers, second, to automatically create
a large training set of question-query pairs, and finally, to
use this training set to learn to extract keywords from new
questions, that have not yet been answered.

In this paper, we describe work in progress on a method
for automatically creating a short 2-4 words query for a given
question and its existing answers. In our method, we first
rank question words by their pointwise K-L divergence score,
then we use top words from the list to create a pool of possi-
ble queries. For each of the constructed queries we retrieve
top 10 snippets from a search engine, that we afterwards
use to evaluate the “goodness” of the query for the given
question. In our work we assume that the answers given by
humans are exemplary.

2. PRELIMINARY EXPERIMENTS
Our goal is to devise a method of automatically creating

a query, describing question’s intent, given the question and
its answers. To evaluate the proposed approach, one of the
authors manually labeled a small set of questions with short
queries, describing each question’s topic perfectly.

The proposed approach is as follows:

1L6 dataset
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l

Title i think i have a problem. i feel shy when i arrive
at a gathering and say hello to people or guests.?
Body i also feel the same when i leave. i feel like just
leaving without saying goodbye cause i feel timid.? what
should i do to overcome this?
Best answer HI friend! Dont feel like that. U can over-
come this simple problem. Do one thing that go and
stand infront of the mirror and practice before talking
with others. Do this u can overcome this problem. bye

Figure 1: Example question from Yahoo!Answers

1. create a pool of probe queries;

2. retrieve a set of 10 snippets for each of the probe
queries, and for the manually created query;

3. calculate a similarity score between retrieved snippets
and the question and its answers;

4. rank queries based on the similarity score of the corre-
sponding snippets. It is our goal to have high quality
queries ranked in the top.

Since we know that the manually created queries are near
perfect, we expect them to be ranked high. We evaluate the
described approach by examining the rank of the manually
created queries, and show that it is beneficial compared to
the baseline.

2.1 Dataset
We ran our experiment on a small subset of Yahoo!Answers

dataset, that contains a number of questions with human
generated answers, as well as their attributes, such as lan-
guage, category, etc. In our work we will only be using
questions and their answers. Each question consists of two
fields – title and body. The contents of both fields have no
restrictions. We extracted 82 questions from the WebScope
dataset to run our experiment. The questions we chose had
to be in English, with the body length not less than 150
characters. We applied no restrictions to the answers.

2.2 Labeling and preprocessing
We first labeled each question, assigning it a query, man-

ually created by one of the authors. The requirement for a
query was that it should return relevant results (as judged
by the query creator), submitted to one of the search en-
gines. Each query could only contain words that appeared
in the initial question with no limitation to the length or
order of the words. We will further deem such queries as
the perfect ones for their corresponding questions.

Due to a noisy nature of human created content, we had
to put questions and their answers through a preprocessing
step first. To begin with, we shrank all characters repeating
more than 3 times in a row with a single instance to elim-
inate possible emotional occurrences like “heeeeelp!!!!”. We
also removed stop words and words that were less than 3
characters long. Finally, we applied s-stemmer[5] to discard
any plurals from the text, and substituted all URL links with
their main domain names. After this procedure, questions
and answers turned into sets of tokens.

2.3 Constructing probe queries

Our goal is to learn to identify question words that will
create a good (producing relevant results given to a search
engine) query. We would like to construct a pool of all possi-
ble queries created of question words, and rank them accord-
ing to the results they retrieve. But due to a big length of
the questions, the number of all possible combinations would
grow exponentially and the experiment would become very
expensive. Hence we decided to only consider 10 keywords
for every question and use them for query construction.

For keywords selection we calculate pointwise K-L diver-
gence[8] for each question word, using the ClueWeb90b cor-
pus2 for our background language model:

scoret = pt · log(pt/qt), (1)

where pt is a relative frequency of term t in the question text,
and qt is a relative frequency of term t in the background
collection – ClueWeb09b. We then selected 10 words with
the highest score. We have noted that oftentimes question
title would contain many of the words descriptive to the
question topic. We wanted to put an emphasis on these
words and therefore doubled the number of title words in
the question text. This heuristic was partially inspired by
a work submitted on LiveQA 2015 track, where only title
words were used as a query[3]. After the selection process,
we arranged the resulting keywords in the same order they
appeared in the initial question.

Out of the 10 keywords we constructed combinations of 3
words without repetitions, that constituted our probe pool
for this question. There could be up to 120 queries for each
question (less, if the question length after preprocessing was
less than 10 words). To this pool we also added previously
created ground truth queries.

2.4 Probe query ranking
To evaluate the goodness of each of the probes, we have

submitted each of them to Bing and, using Bing search API3,
collected 10 snippets and their corresponding URLs that
were returned in response. Sometimes a page where the
question was initially posted, or pages with the question du-
plicate would be returned. We ran the snippets through a
filter to remove such occurrences. We discarded a snippet
if its URL contained a string “answers.yahoo” and the ques-
tion’s yahoo qid – a question’s unique identifier. We also
would remove a snippet, if it looked too similar to the ques-
tion – more than half of the snippet’s words appear in the
question. We will further use the collected snippets to eval-
uate queries. The reason we chose not to use full documents
for our task is additional noise that comes in from processing
full web pages. Also, we will be comparing the snippets with
answers and questions, that are more alike in their nature
with the snippets rather than with full web pages.

Our goal is to find a query that would return a list of
relevant snippets for a given question. Therefore, we would
like to use a few question words that retrieve snippets simi-
lar to the answers. However, oftentimes, similarity with the
answer alone may not be enough. For example, in figure 2
similarity of snippets with the answers will not at all guaran-
tee that the snippets will be relevant to the question topic.
Therefore, we also included similarity with the initial ques-
tion in our metric. Overall, we would like our top ranked

2http://lemurproject.org/clueweb09/
3https://datamarket.azure.com/dataset/bing/search

Title: How can you ?
Body: who will approve the names of the newest el-
ements? Wil it be A) the scientist that discover each
element B) a committee scientist C) the chemist’s from
a research insitution
Answer 1: A
Answer 2: I agree, A

Figure 2: Question and answers do not intersect

query to return snippets that look both like question and
their answers.

At this point we have a set of questions, their answers,
manually created ground truth queries, a list of probes con-
structed of question words and snippets retrieved with the
probes as will as with the ground truth query. Now we will
rank the probes based on their corresponding snippets and
their similarity with the question and the answers.

To eliminate possible noise we represent question as 20
top terms ranked by pointwise K-L divergence same way as
shown in (1). We will denote this set as Q. We would also
like to shorten answers text to a set of 20 terms. We decided
to take advantage of having multiple answers for every ques-
tion and make use of possible redundancy. Following Clarke
et al.[4] we substituted pt in formula (1) with a relative term
frequency between answers, i.e. pt = ft/numans, where ft
is the number of distinct answers the term appears in, and
numans is the total number of answers given to this question.
We will denote a set of terms extracted from the answers as
A.

The similarity metric that we chose was proposed by Tan
and Clarke [7] and is based on the number of terms overlap-
ping between snippets and keywords extracted from ques-
tion/answer. For every probe query Pr we calculate the
following:

- average fraction of snippet words, probe query terms
excluded, overlapping with question keywords:

AvgQ =
1

|S|Σ|(Si \ Pr) ∩Q|; (2)

- average fraction of snippet words, probe query terms
excluded, overlapping with answers keywords:

AvgA =
1

|S|Σ|(Si \ Pr) ∩A|; (3)

- fraction of all words of all snippets, probe query terms
excluded, overlapping with question keywords:

TotalQ =
1

| ∪ Si|
|(∪Si \ Pr) ∩Q|; (4)

- fraction of all words of all snippets, probe query terms
excluded, overlapping with question keywords:

TotalA =
1

| ∪ Si|
|(∪Si \ Pr) ∩A|, (5)

where Q is a set of keywords extracted from the question,
A is a set of keywords extracted from answers, Si is a set of
words from a single snippet, |S| is a total number of snippets
for this probe query, Pr is a set of probe query terms.

KLD EqualWeights BestWeights
R@3 0.407 0.356 0.407
R@5 0.535 0.544 0.614
R@7 0.633 0.689 0.761

Table 1: Results of the experiment show slight im-
provements compared to the baseline.

We calculated the final score of the probe query using a
linear combination of the above terms:

ScorePr = αAvgQ+ βAvgA+ γTotalQ+ δTotalA, (6)

where we varied parameters α, β, γ, δ for our experiments.
We ran the ranking with all parameters being equal to 0.25,
and denoted this run as EqualWeights.

We have also noted that due to a variety of questions and
answers and their quality, choosing different weights may be
beneficial. We ran parameter sweep for α, β, γ, δ, varying
each of them in the range [0..1] with a step of 0.1, so that
they add up to 1.0. The best weights for each question were
the ones that gave the ground truth query the highest score.

We found that for different questions the best weights
turned out to be very different and we couldn’t find a pat-
tern, according to which they changed. Learning a depen-
dency between question-answers features and the weights
that suit them the most is one of the future directions for
this research. We also performed ranking using best weights
for every question-answers tuple and called it BestWeights.

We evaluated the results of each run using Recall@M ,
where we looked at the number of ground truth query words
returned using different ranking methods. We used question
terms ranked with pointwise K-L divergence as our baseline.
We denoted the baseline run as KLD.

Table 1 shows that although the baseline performs well,
reranking the terms using snippets is superior.

3. DISCUSSION AND FUTURE WORK
We have conducted an experiment on identifying question

keywords, that well describe the question topic. We have en-
countered a significant variety in the questions and their an-
swers. The differences included question types – looking for
specific information, or seeking advice, as well as text quality
– usage of slang words, typos, abbreviations. All of it made
it difficult to find a general solution that would work well,
however, the results of parameter sweep showed that there
could be found a solution suitable for a particular question.
As a future work for this topic we would like to add more
manual labeling to the questions, that would include text
quality and asker’s intent. We are hoping to find clusters of
questions that require particular weights distribution.

We would also like to improve ground truth query com-
posing, by asking several people to compose queries for the
same questions, thus, eliminating bias that a single person’s
judgment may bring. Another direction of the future work
may include filtering out answers with low text quality. As
using all answers in this work may have introduces addi-
tional difficulty in ranking the probes. Finally we plan to use
crowdsourcing to collect a large dataset of question-query
pairs and compare them with the results we will get from
automatic labeling.

4. CONCLUSION
Many questions posted on community question answer-

ing websites, such as Yahoo!Answers and StackExcahnge,
require a long wait time to receive answers, or remain unan-
swered altogether. Such questions are usually verbose and
have a complex intent and existing methods are not always
applicable to them. We would like to tackle this problem
and design an approach that would allow to answer such
questions automatically with no human involvement. We
believe that to nearly any question asked there is an answer
somewhere on the Web, and we only need to retrieve it.
This paper describes work in progress on identifying ques-
tion words that describe the question intent and can be used
as a search query to retrieve relevant documents. We use a
small manually labeled dataset of questions and their ex-
isting answers proposed by human users to find out which
question words make up the best query for a given question.
We then plan to extend this work and to automatically cre-
ate a large set of questions and their queries that can be
used in further research.

5. REFERENCES
[1] E. Agichtein, D. Carmel, D. Harman, D. Pelleg, and

Y. Pinter. Overview of the trec 2015 liveqa track. In
Proceedings of TREC, 2015.

[2] P. Bailey, R. W. White, H. Liu, and G. Kumaran.
Mining historic query trails to label long and rare
search engine queries. ACM Transactions on the Web
(TWEB), 4(4):15, 2010.

[3] D. Bogdanova, D. Ganguly, J. Foster, and A. H. Vahid.
Adapt. dcu at trec liveqa: A sentence retrieval based
approach to live question answering.

[4] C. L. Clarke, G. V. Cormack, and T. R. Lynam.
Exploiting redundancy in question answering. In
Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 358–365. ACM, 2001.

[5] D. Harman. How effective is suffixing? Journal of the
American Society for Information Science, 42(1):7,
1991.

[6] B. Li and I. King. Routing questions to appropriate
answerers in community question answering services. In
Proceedings of the 19th ACM international conference
on Information and knowledge management, pages
1585–1588. ACM, 2010.

[7] L. Tan and C. L. Clarke. Succinct queries for linking
and tracking news in social media. In Proceedings of the
23rd ACM International Conference on Conference on
Information and Knowledge Management, pages
1883–1886. ACM, 2014.

[8] T. Tomokiyo and M. Hurst. A language model
approach to keyphrase extraction. In Proceedings of the
ACL 2003 workshop on Multiword expressions:
analysis, acquisition and treatment-Volume 18, pages
33–40. Association for Computational Linguistics, 2003.

