Algorithms for Fast Linear System Solving and Rank Profile Computation

Shiyun (Sophia) Yang

Symbolic Computation Group
David R. Cheriton School of Computer Science
University of Waterloo

June 27, 2014

Rank profile

Given $A \in K^{n \times m}$ over a finite field K.

▶ RANKPROFILE: Compute the rank r and the lexicographically minimal lists $[i_1, i_2, \ldots, i_r]$ of row indices of A such that these rows of A are linearly independent.

Pivot locations in the column echelon form:

Row rank profile: [1, 3, 4, 5, 6]

Applications: Gröbner basis computations, computational number theory, etc.

Linear system

LINSYS: Given $b \in K^{n \times 1}$, compute a particular solution $x \in K^{m \times 1}$ to Ax = b,

Consistent: x can be read off from the last column in the reduced row echelon form.

Solution vector $x^T = \begin{bmatrix} x_1 & 0 & x_3 & x_4 & 0 & 0 & x_7 & 0 & x_9 \end{bmatrix}$

Linear system

▶ LINSYS: Given $b \in K^{n \times 1}$, compute a particular solution $x \in K^{m \times 1}$ to Ax = b, or a certificate of inconsistency¹: a row vector $u \in K^{1 \times n}$ such that uA = 0 and $ub \neq 0$.

Inconsistent: u can be read off from the last row of the transformation matrix.

Transform
$$\begin{bmatrix} A \parallel b \mid I \end{bmatrix} \Rightarrow \begin{bmatrix} R \parallel * \mid U \end{bmatrix}$$

¹Giesbrecht, Lobo & Saunders (1998)

Notation

- K: a finite field.
- ► **Cost model:** counting scalar field operations of type $\{+,-,\times,/\}$ from K.
- n: row dimension of A.
- **m**: column dimension of A.
- ightharpoonup r: rank of A.
- $\triangleright \omega$: exponent of matrix multiplication, $2 < \omega \le 3$. Multiply two $n \times n$ matrices

in time $O(n^{\omega})$.

o(1): hides log factors in the cost estimates.

$$O(n\log n\log\log n) = (n)^{1+o(1)}$$

4□ → 4回 → 4 = → 4 = → 9 へ ○

5/45

Notation

 \triangleright |A|: number of nonzero entries of A.

Dense matrices: $|A| \in \Theta(nm)$

Sparse matrices: $|A| \in o(nm)$

In this talk, we assume $|A| \ge \max(n, m)$.

Notation

▶ $\mu(A)$: time required to multiply a vector by A in black box approach². It follows a different cost model, in this talk, we have $\mu(A) \in O(|A|)$.

²Kaltofen & Saunders (1991)

Previous results for RANK and RANKPROFILE

Deterministic algorithm

- Dumas, Gautier & Pernet (2013); Jeannerod, Pernet & Storjohann (2013)
 - ▶ $O(nmr^{\omega-2}) \leftarrow RANKPROFILE$

Monte Carlo randomized algorithms

- Kaltofen & Saunders (1991); Chen, Eberly, Kaltofen, Saunders, Turner & Villard (2002)
 - $(r^{\omega} + nm)^{1+o(1)} \leftarrow \text{RANK}$
- ▶ Wiedemann (1986); Kaltofen & Saunders (1991); Eberly (2003)
 - $(\mu(A) r)^{1+o(1)}$ or $(|A| r)^{1+o(1)} \leftarrow \text{RANK}$
- Cheung, Kwok & Lau (2013)
 - $(r^{\omega} + |A|)^{1+o(1)} \leftarrow \text{RANK}$
 - computes a list of r linearly independent columns

This talk

▶ a Monte Carlo algorithm: $(r^{\omega} + |A|)^{1+o(1)} \leftarrow \text{RankProfile}$

Previous results for LINSYS

Deterministic algorithms

- Dumas, Gautier & Pernet (2013); Jeannerod, Pernet & Storjohann (2013)
 - \triangleright $O(nmr^{\omega-2})$
- Mulders & Storjohann (2000)
 - $ightharpoonup O((n+m)r^2)$

Las Vegas randomized algorithms

- ► Giesbrecht, Lobo & Saunders (1999); Eberly (2003)
 - $(\mu(A) r)^{1+o(1)}$ or $(|A| r)^{1+o(1)}$
- Cheung, Kwok & Lau (2013)
 - $(r^{\omega} + |A|)^{1+o(1)}$

This talk

- a Las Vegas algorithm: $2r^3 + (r^2 + n + m + |R| + |C|)^{1+o(1)}$
- examines at most r + 1 rows and r columns of A:

Comparison with previous results for LinSys

For a class of input matrices $A \in K^{n \times n}$ that have

- ▶ at most $O(n^{2/3})$ nonzero entries per row and column, and
- ▶ $r \in O(n^{1/3})$.

Black box approach:

- ▶ O(n) additional space
- $(n^2)^{1+o(1)}$ time

Cheung, Kwok & Lau (2013):

- $ightharpoonup O(n^{5/3})$ additional space
- $(n^{5/3})^{1+o(1)}$ time

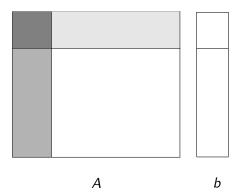
Our approach:

- ▶ O(n) additional space
- $(n)^{1+o(1)}$ time

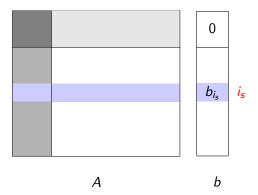
Outline

- ► Oracle linear solving [Mulders & Storjohann (2000)]
 - ▶ application to RANKPROFILE
- Linear independence oracles
 - ► application to LINSYS
 - ▶ application to RANKPROFILE
- A relaxed algorithm for online matrix inversion
 - ▶ application to RANKPROFILE

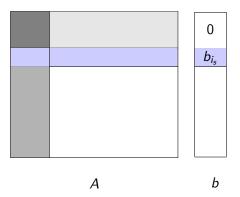
Mulders & Storjohann (2000)



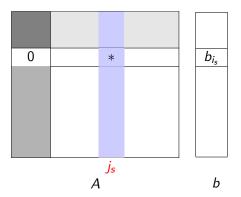
Mulders & Storjohann (2000)



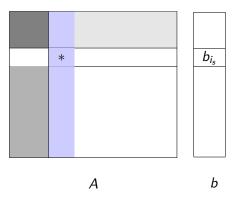
Mulders & Storjohann (2000)



Mulders & Storjohann (2000)

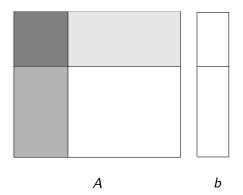


Mulders & Storjohann (2000)



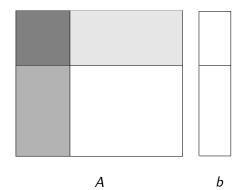
Mulders & Storjohann (2000)

Repeat for stage s + 1



Mulders & Storjohann (2000)

Repeat for stage s + 1



Terminates with $s \le r$, overall cost $O((n+m)r^2)$ for LinSys.

Contribution 1: Randomized rank profiles

- ▶ If *b* is chosen uniformly and randomly sampled from the column space of *A*, that is,
 - ▶ choose a $w \in K^{m \times 1}$ uniformly and randomly, and compute b = Aw,

then $[i_1, i_2, ..., i_s]$ is the row rank profile of A with probability at least $(1 - 1/\#K)^r$.

- ▶ This gives a Monte Carlo algorithm for RANKPROFILE in time $O((n+m)r^2)$.
- ► The ideas of our improved algorithms for LINSYS and RANKPROFILE are the same, except that b is given explicitly for LINSYS.
- ▶ We focus on algorithms for RANKPROFILE in this presentation.

Goals

Starting complexity: $O((n+m)r^2)$

Goals

1. Decouple the cubic part of the time complexity:

$$2r^3 + (r^2 + nm)^{1+o(1)}$$

2. Exploit possible sparsity of *A*:

$$2r^3 + (r^2 + |A|)^{1+o(1)}$$

3. Incorporate fast matrix multiplication:

$$(r^{\omega} + |A|)^{1+o(1)}$$

Goals

Starting complexity: $O((n+m)r^2)$

Goals

1. Decouple the cubic part of the time complexity:

$$2r^3 + (r^2 + nm)^{1+o(1)}$$

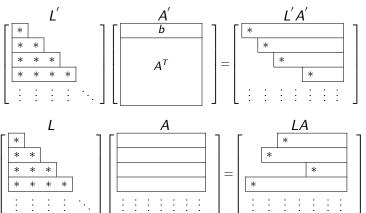
2. Exploit possible sparsity of *A*:

$$2r^3 + (r^2 + |A|)^{1+o(1)}$$

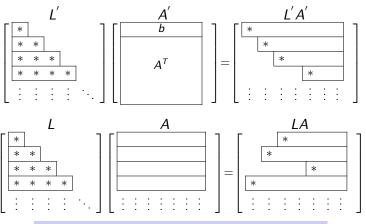
3. Incorporate fast matrix multiplication:

$$(r^{\omega} + |A|)^{1+o(1)}$$

After some simplifications, the steps in the oracle solver algorithm to find i_s and j_s "boil down" to the problem of finding the pivot locations in L'A' and LA. L' and L are coming from Gaussian elimination.

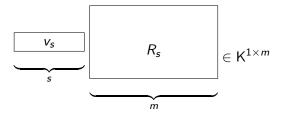


After some simplifications, the steps in the oracle solver algorithm to find i_s and j_s "boil down" to the problem of finding the pivot locations in $L^{'}A^{'}$ and LA. $L^{'}$ and L are coming from Gaussian elimination.



Computing L'A' and LA directly are expensive.

At each stage s, finding j_s is equivalent to finding the first nonzero entry of

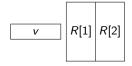


Computing $v_s R_s$ explicitly: O(sm) field operations.

Use *linear independence oracle*: $O(s \log m)$ field operations.

Example. $v \in K^{1 \times s}$, $R \in K^{s \times 2}$.

▶ Require 2 dot products to determine if vR = 0.



▶ Idea: take random linear combination of columns of R. Choose $\alpha \in K$ uniformly and randomly and compute

$$R_{1\sim 2} = \boxed{R[1] + \alpha} \boxed{R[2]}$$

Require 1 dot product to determine if vR = 0 with high probability.

- $VR_{1\sim 2}\neq 0 \Longrightarrow vR\neq 0.$
- If α well chosen, $vR_{1\sim 2}=0 \Longrightarrow vR=0$.
- α is good with probability (1-1/#K).

T is a linear independence oracle for R based on $\alpha_1, \ldots, \alpha_{m-1}$.

 $\alpha_1,\ldots,\alpha_{m-1}\in\mathsf{K}$ be chosen uniformly and randomly.

 $R_{a \sim b}$: a vector that is a linear combination of $R[a], R[a+1], \dots, R[b]$.

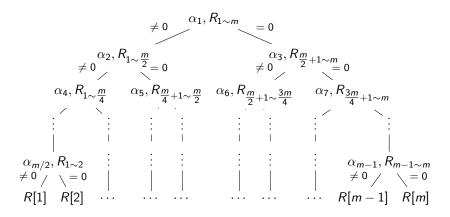


Figure : Oracle tree T for columns of R

T is a linear independence oracle for R based on $\alpha_1, \ldots, \alpha_{m-1}$.

 $\alpha_1, \dots, \alpha_{m-1} \in K$ be chosen uniformly and randomly.

 $R_{a \sim b}$: a vector that is a linear combination of $R[a], R[a+1], \ldots, R[b]$.

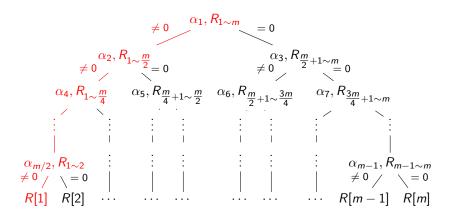


Figure : Oracle tree T for columns of R

T is a linear independence oracle for R based on $\alpha_1, \ldots, \alpha_{m-1}$.

 $\alpha_1, \dots, \alpha_{m-1} \in K$ be chosen uniformly and randomly.

 $R_{a \sim b}$: a vector that is a linear combination of $R[a], R[a+1], \ldots, R[b]$.

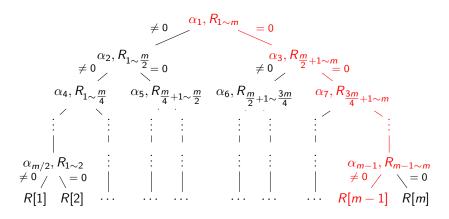


Figure : Oracle tree T for columns of R

Cost

▶ The first nonzero entry in $v_s R_s$ can be found in $O(s \log m)$ field operations from K.

Probability of correctness

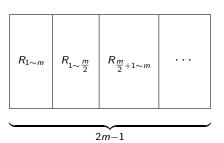
 $ightharpoonup T_s$ is correct with respect to v_s with probability at least

$$(1-1/\#K)^{\log_2 m}$$
.

▶ $(T_s)_{1 \leq s \leq r}$, all based on the same $\alpha_1, \alpha_2, \ldots, \alpha_{m-1}$, are correct with respect to $(v_s)_{1 \leq s \leq r}$ with probability at least

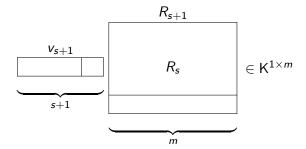
$$(1 - r/\#K)^{\log_2 m}$$
.

Data structure for T



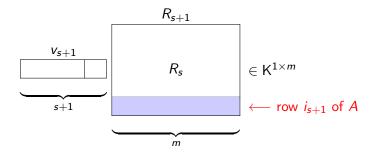
Online construction

Construct T_s for s = 0, 1, ..., r in succession.



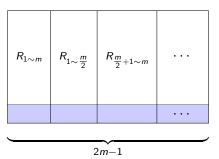
Online construction

Construct T_s for s = 0, 1, ..., r in succession.



Online construction

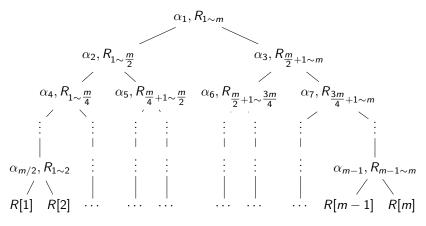
Data structure for T_{s+1}



Online construction

 $\alpha_1, \ldots, \alpha_{m-1} \in K$ be chosen uniformly and randomly.

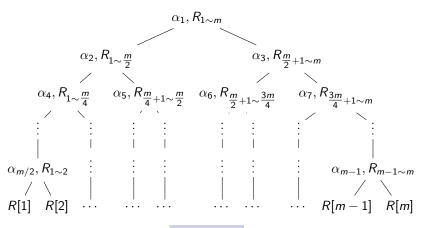
 T_{s+1} : Append the $(s+1)^{th}$ row to T_s in a bottom up fashion.



Online construction

 $\alpha_1, \ldots, \alpha_{m-1} \in K$ be chosen uniformly and randomly.

 T_{s+1} : Append the $(s+1)^{th}$ row to T_s in a bottom up fashion.



Cost: O(m)

Rank Profile

Theorem

There exists a randomized algorithm for RankProfile that has:

- 1. n + 2m 2 random choices from K are required.
- 2. Probability of correctness at least

$$\left(1 - \frac{1}{\#\mathsf{K}}\right)^r \left(1 - \frac{r}{\#\mathsf{K}}\right)^{\lceil \log_2 n \rceil + \lceil \log_2 m \rceil}$$

3. The running time is bounded by

$$\underbrace{2r^3}_{Inverse} + O\left(\underbrace{nm}_{b=Aw} + \underbrace{r^2(\log n + \log m)}_{Use\ LIOs} + \underbrace{(n+m)r}_{Build\ LIOs}\right)$$

field operations in K.

Goals

Starting complexity: $O((n+m)r^2)$

Goals

1. Decouple the cubic part of the time complexity:

$$2r^3 + (r^2 + nm)^{1+o(1)}$$

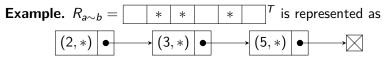
2. Exploit possible sparsity of *A*:

$$2r^3 + (r^2 + |A|)^{1+o(1)}$$

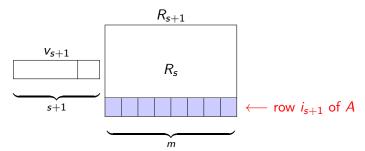
3. Incorporate fast matrix multiplication:

$$(r^{\omega} + |A|)^{1+o(1)}$$

Use a sparse representation for T.



Recall the construction of T_{s+1}



Only nonzero elements of row i_{s+1} of A modifies the associated vectors in T_{s+1} .

Example. r = 3 and m = 8 Stage 0

$$R_0 = \emptyset$$

Cost: O(m)

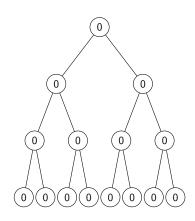
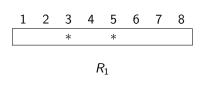


Figure : T_0

Example. r = 3 and m = 8 Stage 1



Cost: $O(2 \log m)$

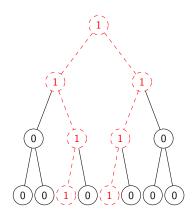
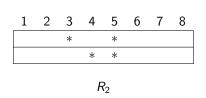


Figure : T_1

Example. r = 3 and m = 8 Stage 2



Cost: $O(2 \log m)$

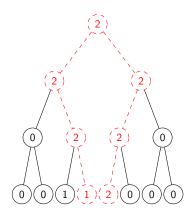
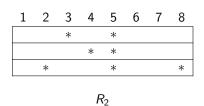


Figure : T_2

Example. r = 3 and m = 8 Stage 3



Cost: $O(3 \log m)$

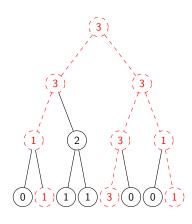
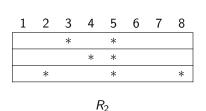


Figure : T_3

Example. r = 3 and m = 8 Stage 3



Cost: $O(3 \log m)$

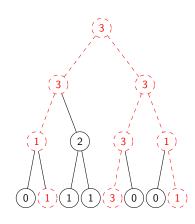


Figure : T_3

Overall cost: $O(m + |R| \log m)$

Theorem

There exists a randomized algorithm for RANKPROFILE that has:

- 1. n + 2m 2 random choices from K are required.
- 2. Probability of correctness at least

$$\left(1 - \frac{1}{\#\mathsf{K}}\right)^r \left(1 - \frac{r}{\#\mathsf{K}}\right)^{\lceil \log_2 n \rceil + \lceil \log_2 m \rceil}$$

3. The running time is bounded by

$$\underbrace{2r^3}_{Inverse} + O\left(\underbrace{\frac{|A|}{b=Aw}} + \underbrace{r^2(\log n + \log m)}_{Use\ LIOs} + \underbrace{n + |C|\log n + m + |R|\log m}_{Build\ LIOs}\right)$$

field operations in K.

Goals

Starting complexity: $O((n+m)r^2)$

Goals

1. Decouple the cubic part of the time complexity:

$$2r^3 + (r^2 + nm)^{1+o(1)}$$

2. Exploit possible sparsity of *A*:

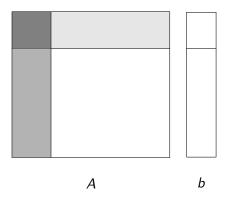
$$2r^3 + (r^2 + |A|)^{1+o(1)}$$

3. Incorporate fast matrix multiplication:

$$(r^{\omega} + |A|)^{1+o(1)}$$

Incorporate fast matrix multiplication

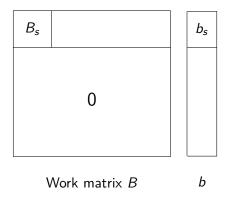
The leading term $2r^3$ arises from computing the inverse of the leading $s \times s$ submatrix for s = 1, 2, ..., r.



ロト 4回 ト 4 重 ト 4 重 ト 9 9 0 0

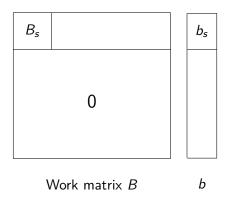
Incorporate fast matrix multiplication

The leading term $2r^3$ arises from computing the inverse of the leading $s \times s$ submatrix for s = 1, 2, ..., r.



Incorporate fast matrix multiplication

The leading term $2r^3$ arises from computing the inverse of the leading $s \times s$ submatrix for s = 1, 2, ..., r.



These inverses are used to compute a sequence of subsystem solutions $B_s^{-1}b_s$ for $s=1,2,\ldots,r$.

Full inverse decomposition

We give a unique decomposition for the inverse

$$B_s^{-1} = (R_s L_s) \cdots (R_2 L_2) (R_1 L_1)$$

To compute a sequence of subsystem solutions $B_s^{-1}b_s$ for $s=1,2,\ldots,r$, it is sufficient to solve the following problem.

▶ ONLINEINVERSE: Suppose the rows of $B \in K^{r \times r}$ with generic rank profile are given one at a time, from first to last. As soon as rows 1, 2, ..., r of B are given, the pair of matrices (R_s, L_s) should be produced, for s = 1, 2, ..., r.

Iterative algorithm for OnlineInverse: $2r^3 + O(r^2)$

Full inverse decomposition

We give a unique decomposition for the inverse

$$B_s^{-1} = (R_s L_s) \cdots (R_2 L_2) (R_1 L_1)$$

To compute a sequence of subsystem solutions $B_s^{-1}b_s$ for $s=1,2,\ldots,r$, it is sufficient to solve the following problem.

▶ ONLINEINVERSE: Suppose the rows of $B \in K^{r \times r}$ with generic rank profile are given one at a time, from first to last. As soon as rows 1, 2, ..., r of B are given, the pair of matrices (R_s, L_s) should be produced, for s = 1, 2, ..., r.

Iterative algorithm for OnlineInverse: $2r^3 + O(r^2)$

How to incorporate matrix multiplication?

We adopt two ideas used in relaxed and online algorithms.

1. Use a *relaxed* representation for B_s^{-1} .

Key observation: $(R_jL_j)(R_{j-1}L_{j-1})\cdots(R_iL_i)$ can be expressed as

Represent B_s^{-1} as the product of $\operatorname{HammingWeight}(s) \leq \lceil \log s \rceil$ pair of structured matrices.

Example. The relaxed representation of B_s^{-1} for $1 \le s \le 8$.

s	Relaxed representation of B_s^{-1}
$1 = (1)_2$	$(R_{1\sim 1}L_{1\sim 1})$
$2 = (10)_2$	$(R_{2\sim 1}L_{2\sim 1})$
$3 = (11)_2$	$(R_{3\sim3}L_{3\sim3})(R_{2\sim1}L_{2\sim1})$
$4 = (100)_2$	$(R_{4\sim 1}L_{4\sim 1})$
$5 = (101)_2$	$(R_{5\sim 5}L_{5\sim 5})(R_{4\sim 1}L_{4\sim 1})$
$6 = (110)_2$	$(R_{6\sim 5}L_{6\sim 5})(R_{4\sim 1}L_{4\sim 1})$
$7 = (111)_2$	$(R_{7\sim7}L_{7\sim7})(R_{6\sim5}L_{6\sim5})(R_{4\sim1}L_{4\sim1})$
$8 = (1000)_2$	$(R_{8\sim 1}L_{8\sim 1})$

Example.

$$B_{6}^{-1} = \begin{bmatrix} R_{6 \sim 5} & L_{6 \sim 5} & R_{4 \sim 1} & L_{4 \sim 1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{bmatrix} \begin{bmatrix} 1_{1} & 1_{1} \\ 1_{1} & 1_{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{bmatrix} \begin{bmatrix} 1_{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{bmatrix} \begin{bmatrix} 1_{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{bmatrix} \begin{bmatrix} 1_{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{bmatrix} \begin{bmatrix} 1_{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{bmatrix} \begin{bmatrix} 1_{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{bmatrix}$$

The relaxed representation is constructed in an incremental fashion.

Example.

$$B_8^{-1} = (R_8 L_8) B_7^{-1}$$

$$= (R_8 L_8) (R_7 L_7) (R_{6\sim 5} L_{6\sim 5}) (R_{4\sim 1} L_{4\sim 1})$$

$$= (R_{8\sim 7} L_{8\sim 7}) (R_{6\sim 5} L_{6\sim 5}) (R_{4\sim 1} L_{4\sim 1})$$

$$= (R_{8\sim 5} L_{8\sim 5}) (R_{4\sim 1} L_{4\sim 1})$$

$$= (R_{8\sim 1} L_{8\sim 1})$$

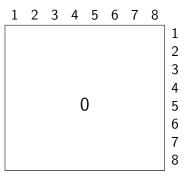
2. Anticipate computations.

To compute the pair (R_s, L_s) , we need to apply the inverse B_{s-1}^{-1} to column s of B.

At stage s-1, apply parts of our representation for B_{s-1}^{-1} to multiple columns of B such that column s of B have been premultiplied with B_{s-1}^{-1} at the beginning of stage s.

Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

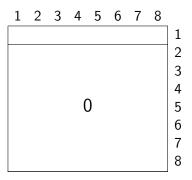
Stage 1



Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 1

▶ The first row of *B* is given.

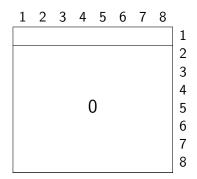


Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 1

- ► The first row of *B* is given.
- ▶ Compute (R_1L_1) of shape:

[*][1]

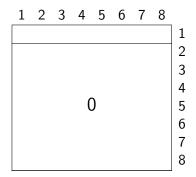


Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 1

- ► The first row of *B* is given.
- ▶ Compute (R_1L_1) of shape:

 $\triangleright B_1^{-1} = (R_1L_1).$

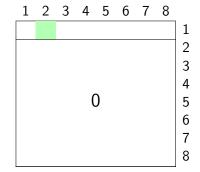


Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 1

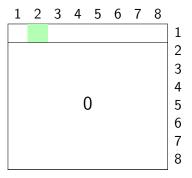
- ► The first row of *B* is given.
- ▶ Compute (R_1L_1) of shape:

- $\triangleright B_1^{-1} = (R_1L_1).$
- ▶ Apply R_1L_1 to column 2 of B.



Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

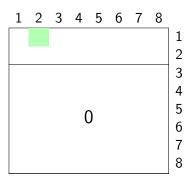
Stage 2



Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 2

▶ The 2^{nd} row of B is given.



Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 2

- ▶ The 2^{nd} row of B is given.
- ▶ Compute (R_2L_2) of shape:

$$\begin{bmatrix} 1 * \\ * \end{bmatrix} \begin{bmatrix} 1 \\ * 1 \end{bmatrix}$$



Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

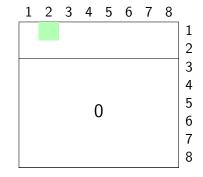
Stage 2

- ▶ The 2^{nd} row of B is given.
- ▶ Compute (R_2L_2) of shape:

$$\begin{bmatrix} 1 * \\ * \end{bmatrix} \begin{bmatrix} 1 \\ * 1 \end{bmatrix}$$

• Compress $(R_2L_2)(R_1L_1) = (R_{2\sim 1}L_{2\sim 1})$

$$\begin{bmatrix}1**\end{bmatrix}\begin{bmatrix}1*1\end{bmatrix}\begin{bmatrix}*\\1\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}****\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}$$



Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 2

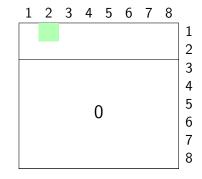
- ▶ The 2^{nd} row of B is given.
- ▶ Compute (R_2L_2) of shape:

$$\begin{bmatrix} 1 * \\ * \end{bmatrix} \begin{bmatrix} 1 \\ * 1 \end{bmatrix}$$

► Compress $(R_2L_2)(R_1L_1) = (R_{2\sim 1}L_{2\sim 1})$

$$\begin{bmatrix}1 * \\ * \end{bmatrix} \begin{bmatrix}1 \\ * \end{bmatrix} \begin{bmatrix}* \\ 1\end{bmatrix} \begin{bmatrix}1 \\ 1\end{bmatrix} = \begin{bmatrix}* * \\ * *\end{bmatrix} \begin{bmatrix}1 \\ 1\end{bmatrix}$$

 $B_2^{-1} = (R_{2\sim 1}L_{2\sim 1}).$



Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 2

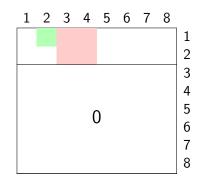
- ▶ The 2^{nd} row of B is given.
- ▶ Compute (R_2L_2) of shape:

$$\begin{bmatrix} 1 * \\ * \end{bmatrix} \begin{bmatrix} 1 \\ * 1 \end{bmatrix}$$

Compress $(R_2L_2)(R_1L_1) = (R_{2\sim 1}L_{2\sim 1})$ $\begin{bmatrix} 1 & 1 \\ * \end{bmatrix} \begin{bmatrix} 1 & 1 \\ * \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ * \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix}$

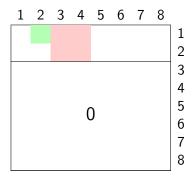
$$B_2^{-1} = (R_{2\sim 1}L_{2\sim 1}).$$

Apply $(R_{2\sim 1}L_{2\sim 1})$ to columns 3,4 of B.



Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

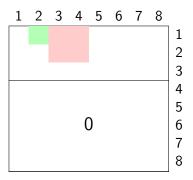
Stage 3



Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 3

▶ The 3^{rd} row of B is given.

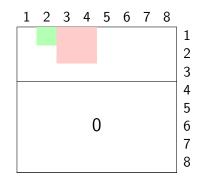


Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 3

- ▶ The 3^{rd} row of B is given.
- ▶ Compute (R_3L_3) of shape:

$$\begin{bmatrix} 1 & * \\ 1 & * \\ * & \end{bmatrix} \begin{bmatrix} 1 & \\ 1 & \\ * & 1 \end{bmatrix}$$



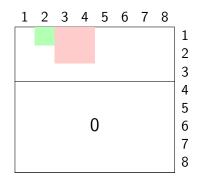
Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 3

- ▶ The 3^{rd} row of B is given.
- ▶ Compute (R_3L_3) of shape:

$$\begin{bmatrix} 1 & * \\ 1 & * \\ * \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ * & 1 \end{bmatrix}$$

 $B_3^{-1} = (R_3L_3)(R_{2\sim 1}L_{2\sim 1}).$



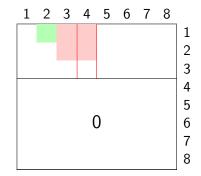
Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 3

- ▶ The 3^{rd} row of B is given.
- ▶ Compute (R_3L_3) of shape:

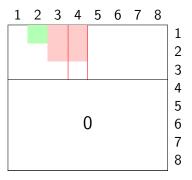
$$\begin{bmatrix} 1 & * \\ 1 & * \\ * \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ * & 1 \end{bmatrix}$$

- $B_3^{-1} = (R_3L_3)(R_{2\sim 1}L_{2\sim 1}).$
- ▶ Apply (R_3L_3) to column 4 of B.



Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

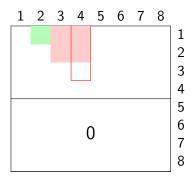
Stage 4



Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 4

▶ The 4^{th} row of B is given.

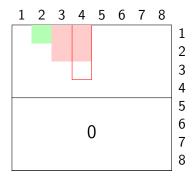


Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 4

- ▶ The 4^{th} row of B is given.
- ▶ Compute (R_4L_4) of shape:

$$\begin{bmatrix} 1 & * \\ 1 & * \\ 1 & * \\ * & * \end{bmatrix} \begin{bmatrix} 1 & \\ 1 & \\ * & * \end{bmatrix}$$



Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 4

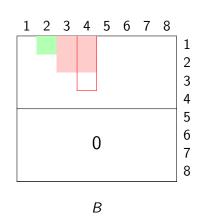
- ▶ The 4^{th} row of B is given.
- ▶ Compute (R_4L_4) of shape:

$$\begin{bmatrix}1&*\\1&*\\1*&\\&*\end{bmatrix}\begin{bmatrix}1\\1\\1&****1\end{bmatrix}$$

• Compress $(R_4L_4)(R_3L_3) = (R_{4\sim 3}L_{4\sim 3})$

$$\begin{bmatrix} 1 & * \\ 1 & * \\ * & * \end{bmatrix} \begin{bmatrix} 1 & 1 & * \\ 1 & 1 & * \\ * & * & * \end{bmatrix} \begin{bmatrix} 1 & * \\ 1 & * \\ * & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & * \\ 1 & * & * \\ * & * & * \end{bmatrix}$$

$$= \begin{bmatrix} 1 & * & * \\ 1 & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} 1 & 1 & * \\ 1 & * & * \\ * & * & * \end{bmatrix}$$



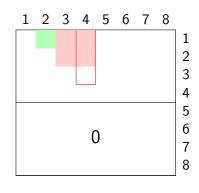
Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 4

- ▶ The 4^{th} row of B is given.
- ▶ Compute (R_4L_4) of shape:

$$\begin{bmatrix}1&*\\1&*\\&*\\&*\end{bmatrix}\begin{bmatrix}1&\\1&\\&**&1\end{bmatrix}$$

Compress $(R_{4\sim3}L_{4\sim3})(R_{2\sim1}L_{2\sim1}) = (R_{4\sim1}L_{4\sim1})$ $\begin{bmatrix} 1 & ** \\ 1 & ** \\ ** \end{bmatrix} \begin{bmatrix} 1 \\ 1 & ** \\ ** \end{bmatrix} \begin{bmatrix} ** \\ ** & 1 \end{bmatrix} \begin{bmatrix} ** \\ ** & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $= \begin{bmatrix} ** & ** \\ ** & ** \\ ** & ** \\ ** & ** \\ ** & ** \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$



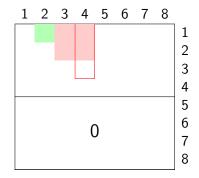
Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 4

- ▶ The 4^{th} row of B is given.
- ▶ Compute (R_4L_4) of shape:

$$\begin{bmatrix}1&*\\1&*\\1*&\\&*\end{bmatrix}\begin{bmatrix}1\\1\\1&****1\end{bmatrix}$$

 $B_4^{-1} = (R_{4\sim 1}L_{4\sim 1}).$



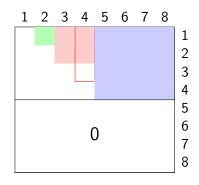
Example. The computations of the first four stages for $B \in K^{8 \times 8}$.

Stage 4

- ▶ The 4^{th} row of B is given.
- ▶ Compute (R_4L_4) of shape:

$$\begin{bmatrix}1&*\\1&*\\&*\\&&&\end{bmatrix}\begin{bmatrix}1&\\1&\\&**&1\end{bmatrix}$$

- $B_4^{-1} = (R_{4\sim 1}L_{4\sim 1}).$
- Apply R_{4~1}L_{4~1} to columns 5,6,7,8 of B.



- At stages $2^k = 1, 2, 4, ...$ the explicit inverse has been computed.
- ▶ The number of compressions done at stage s is equal to the maximal $c \in \mathbb{Z}$ such that $2^c \mid s$, thus some stages are more costly than others.
- ▶ By taking into account the special structure of the $(R_{j\sim i}L_{j\sim i})$ matrices, an amortized analysis of the above approach yields an algorithm for OnlineInverse with overall running time bounded by $O(r^{\omega})$ field operations from K.

Rank profile algorithm

Steps:

- Use Cheung, Kwok & Lau's (2013) algorithm to find a subset of r linearly independent columns of A (with high probability).
- ▶ Use a Toeplitz preconditioner L such that the leading $s \times s$ submatrix of BL, $1 \le s \le r$, are nonsingular.
- ▶ Incorporate the relaxed approach for ONLINEINVERSE into the oracle rank profile algorithm.

Overall running time: $(r^{\omega} + n + m + |A|)^{1+o(1)}$

Future work

Our algorithm for LINSYS has overall running time

$$2r^3 + (r^2 + n + m + |R| + |C|)^{1+o(1)}$$

an open problem is to reduce the leading term $2r^3$ to $O(r^{\omega})$ by incorporating fast matrix multiplication.

► Find other applications for our relaxed algorithm for online matrix inversion.