Computing the invariant structure of integer matrices

Colton Pauderis Arne Storjohann

David R. Cheriton School of Computer Science University of Waterloo

June 28, 2013

Matrix normal forms: Hermite form

Triangular basis H for row lattice of input matrix $A \in \mathbb{Z}^{n \times n}$

- ▶ Obtained using unimodular row operations: H = UA
- ▶ Non-negative diagonal entries.
- ▶ Reduced off-diagonal entries: $0 \le H_{ij} < H_{jj}$ for i < j.

$$\begin{bmatrix}
-13 & 10 & -20 & 27 \\
27 & 30 & 15 & 30 \\
0 & 15 & 15 & 6 \\
-21 & 0 & -15 & 9
\end{bmatrix} \longrightarrow \begin{bmatrix}
1 & 5 & 5 & 0 \\
15 & 0 & 15 \\
15 & 12 \\
21
\end{bmatrix}$$

▶ Fact: $\prod_{j=1}^{i} H_{jj} = \gcd \ \text{of} \ i \times i \ \text{minors in first} \ i \ \text{columns of} \ A$

Computing the Hermite form: Some previous results

Asymptotically fast algorithms

Given a nonsingular $n \times n$ input matrix. Counting bit operations.

- ► Kannan and Bachem (1979)
 - polynomial
- ► Hafner and McCurley (1991)

$$O^{\sim}(n^4)$$

- Storjohann and Labahn (1996)
 - \triangleright $O^{\sim}(n^{\omega+1})$

Our goal:

 $ightharpoonup O^{\sim}(n^3)$ bit operations using standard integer arithmetic

Matrix normal forms: Smith form

Diagonal form $S \in \mathbb{Z}^{n \times n}$ Smith Normal Form: $S \in \mathbb{Z}^{n \times n}$

- ► Obtained using unimodular row and column operations: S = UAV
- $\{s_i\}$ are invariant factors of A: $s_{i-1} \mid s_i$

$$\begin{bmatrix}
A & & & & S \\
-13 & 10 & -20 & 27 \\
27 & 30 & 15 & 30 \\
0 & 15 & 15 & 6 \\
-21 & 0 & -15 & 9
\end{bmatrix} \longrightarrow \begin{bmatrix}
1 & & & & \\
3 & & & \\
& & 15 & \\
& & & 105
\end{bmatrix}$$

▶ Fact: $\prod_{j=1}^{i} s_i = \gcd$ of all $i \times i$ minors of A

Invariant factor through system solving

Idea: use nonsingular system solving to find s_n .

- ▶ Pick random vector $v \in \mathbb{Z}^{n \times 1}$.
- Find $x = A^{-1}v \in \mathbb{Q}^{n \times 1}$.
- ▶ lcm(denom(x)) is likely a large factor of s_n .

Previous appearances of this idea:

- ▶ Pan (1988)
- ► Abbott, Bronstein, Mulders (1999)
- ► Eberly, Giesbrecht, Villard (2000)
- ► Saunders, Wan (2004)

Triangular lattice decomposition

Write Hermite form H as product of triangular matrices:

$$H = U(T_1T_2T_3...T_n)$$

Each T_i corresponds to a projection $A^{-1}v$ (and roughly to s_i).

For
$$H = \begin{bmatrix} 1 & 5 & 5 & 0 \\ & 15 & 0 & 15 \\ & & 15 & 12 \\ & & & 21 \end{bmatrix}$$
 and $S = diag(1, 3, 15, 105)$

$$H = U \left(\begin{array}{c|cccc} & T_2 & & T_3 & & T_4 \\ \hline 1 & 1 & & \\ & & 1 & \\ & & & 1 \end{array} \right) \left[\begin{array}{cccccc} 1 & 0 & 2 \\ & 5 & 1 \\ & & 1 & 1 \\ & & & 3 \end{array} \right] \left[\begin{array}{cccccc} 1 & 10 & 6 \\ & 1 & 8 & 6 \\ & & 15 & 5 \\ & & & 7 \end{array} \right]$$

Definition:

- ▶ Given $x = A^{-1}v \in \mathbb{Q}^{n \times 1}$, find triangular $T \in \mathbb{Z}^{n \times n}$ of minimal determinant with Tx integral.
- ▶ T is a minimal triangular denominator.

Idea:

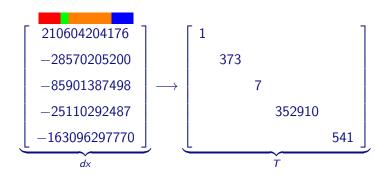
- ▶ Let w := dx, with $d \in \mathbb{Z}_{>0}$ such that w is integral.
- ▶ Hermite form of $\begin{bmatrix} d \\ \hline w & I_n \end{bmatrix}$ ∈ $\mathbb{Z}^{n+1 \times n+1}$ is $\begin{bmatrix} * & * \\ \hline & T \end{bmatrix}$.

Combine two approaches to find Hermite form of $\begin{bmatrix} d \\ \hline w & I_n \end{bmatrix}$.

- 1. Use unimodular row operations to find diagonal entries of T.
 - Computing all of T this way is prohibitively costly.
- 2. Appeal to definition of *T* as minimal denominator for off-diagonal entries.

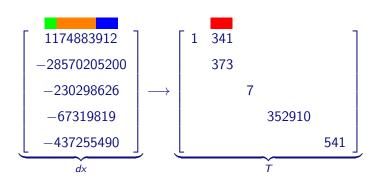
Off diagonal-entries:

- ▶ Fill one column at a time (i.e., no row operations)
- ► Total size of diagonal entries bounded by d



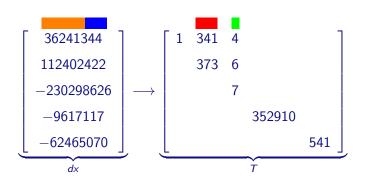
Off diagonal-entries:

- ▶ Fill one column at a time (i.e., no row operations)
- ► Total size of diagonal entries bounded by d



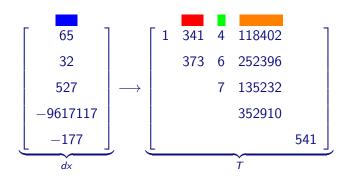
Off diagonal-entries:

- ▶ Fill one column at a time (i.e., no row operations)
- ► Total size of diagonal entries bounded by d



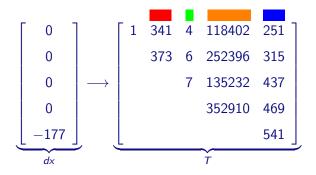
Off diagonal-entries:

- ▶ Fill one column at a time (i.e., no row operations)
- ► Total size of diagonal entries bounded by d



Off diagonal-entries:

- ▶ Fill one column at a time (i.e., no row operations)
- ► Total size of diagonal entries bounded by *d*



Extracting triangular denominators

First projection captures T_n , the portion of H corresponding to s_n .

After i projections...

- ▶ Hermite form captured this far $\overline{H} \cong T_{n-i+1} \cdots T_{n-1} T_n$.
- ► "Pull out" \overline{H} from initial matrix: $B := A(T_{n-i+1} \cdots T_{n-1} T_n)^{-1}.$
- ▶ Subsequent projections operate on *B*.
- ▶ Non-trivial invariant factors of $B: s_1, s_2, \ldots, s_{n-i}$.

Repeat process (project, find T_i , pull out) for rest of Hermite form.

Efficient nonsingular system solving is based on p-adic lifting.

Given $A \in \mathbb{Z}^{n \times n}$ and $v \in \mathbb{Z}^{n \times m}$, find $x = A^{-1}v \in \mathbb{Q}^{n \times m}$. Compute:

- ▶ Low precision inverse: $O^{\sim}(n^3)$.
 - \triangleright $A^{-1} \mod p$
- ▶ Truncated *p*-adic expansion of solution: $O^{\sim}(n^2m\ell)$
 - $A^{-1}v = c_0 + c_1p + \cdots + c_{i-1}p^{\ell-1} \mod p^{\ell}$

Cost depends on size m, precision ℓ ; want $m\ell \in O(n)$.

Problems with repeated system solving

Consider a matrix with $k \in \Omega(n)$ nontrivial invariant factors.

- ▶ Requires solving $\Omega(n)$ systems at full precision.
- As costly as computing exact inverse.
- $ightharpoonup A^{-1}v$ may have numerator much larger than its denominator.

$$A^{-1}v = \begin{bmatrix} \frac{-2826334476994}{15} \\ \frac{-5485776224414}{15} \\ \vdots \\ \frac{-9437737474004}{15} \end{bmatrix}$$

Ideally, leverage decreasing size of remaining invariant factor.

High-order residue

Use *high-order residue* $R \in \mathbb{Z}^{n \times n}$ to compress further projections.

$$A^{-1} = (A^{-1} \mod p^{\ell}) + A^{-1} \mathbf{R} p^{\ell}$$

- $ightharpoonup A^{-1}v$ may have numerator much larger than its denominator.
- $ightharpoonup A^{-1}Rv$ is a nearly proper matrix fraction.

E.g., for $A \in \mathbb{Z}^{10 \times 10}$, $v \in \mathbb{Z}^{10 \times 1}$,

$$A^{-1}v = \begin{bmatrix} \frac{-2826334476994}{15} \\ \frac{-5485776224414}{15} \\ \vdots \\ \frac{-9437737474004}{15} \end{bmatrix} \quad A^{-1}Rv = \begin{bmatrix} \frac{46}{15} \\ \frac{11}{15} \\ \vdots \\ \frac{26}{15} \end{bmatrix}$$

 $A^{-1}Rv$

As largest remaining invariant factor s_n decreases...

- ▶ Required solve precision ℓ decreases proportionally.
- ▶ Projection size *m* can be increased.

$$\ell = 4$$
 $m = 1$ $s_i = 6545$

$$\begin{bmatrix} \frac{4307}{6545} \\ \frac{5815}{6545} \\ \frac{3360}{6545} \\ \frac{2768}{6545} \\ \frac{2768}{6545} \\ \frac{5928}{6545} \\ \frac{5928}{6545} \\ \frac{5928}{6545} \\ \end{bmatrix} \equiv \begin{bmatrix} 95 \\ 8 \\ 12 \\ 96 \\ 37 \end{bmatrix} 97^0 + \begin{bmatrix} 66 \\ 25 \\ 58 \\ 76 \\ 44 \end{bmatrix} 97^1 + \begin{bmatrix} 66 \\ 76 \\ 57 \\ 72 \\ 58 \end{bmatrix} 97^2 + \begin{bmatrix} 88 \\ 42 \\ 65 \\ 39 \\ 96 \end{bmatrix} 97^3 \bmod 97^4$$

 $A^{-1}Rv$

As largest remaining invariant factor s_n decreases...

- ▶ Required solve precision ℓ decreases proportionally.
- ▶ Projection size *m* can be increased.

$$\ell=2$$
 $m=2$ $s_i=55$

$$\begin{bmatrix}
\frac{49}{55} & \frac{6}{11} \\
\frac{46}{55} & \frac{3}{11} \\
\frac{2}{55} & 0 \\
\frac{2}{5} & \frac{41}{55} \\
\frac{15}{11} & \frac{4}{55}
\end{bmatrix} \equiv \begin{bmatrix} 39 & 46 \\ 96 & 23 \\ 59 & 0 \\ 33 & 94 \\ 18 & 21 \end{bmatrix} 97^0 + \begin{bmatrix} 89 & 68 \\ 77 & 34 \\ 7 & 0 \\ 32 & 58 \\ 74 & 15 \end{bmatrix} 97^1 \mod 97^2$$

As largest remaining invariant factor s_n decreases...

- ▶ Required solve precision ℓ decreases proportionally.
- Projection size m can be increased.

$$\ell=1 \quad m=4 \quad s_i=5$$

$$\begin{bmatrix}
\frac{3}{5} & \frac{4}{5} & \frac{2}{5} & 1 \\
0 & \frac{3}{5} & \frac{2}{5} & \frac{4}{5} \\
0 & \frac{3}{5} & 0 & \frac{1}{5} \\
\frac{1}{5} & \frac{3}{5} & 1 & \frac{4}{5} \\
\frac{1}{5} & \frac{1}{5} & 1 & \frac{4}{5}
\end{bmatrix} \equiv \begin{bmatrix}
20 & 59 & 78 & 1 \\
0 & 20 & 78 & 59 \\
0 & 20 & 0 & 39 \\
39 & 20 & 1 & 59 \\
39 & 39 & 1 & 59
\end{bmatrix} 97^{0} \mod 97$$

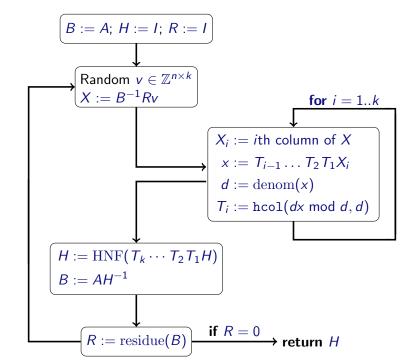
Verification

How many iterations of the process are required? How can we know when we are done?

- ▶ If $B = AH^{-1}$ is unimodular, H is the entire Hermite form of A.
- ▶ High-order residue *R* of *B* can detect this:

$$B^{-1} = (B^{-1} \bmod p^{\ell}) + B^{-1} \mathbf{R} p^{\ell}$$
 $R = 0 \Longleftrightarrow \det B = \pm 1$

Algorithm is Las Vegas randomized.



Experimental results

Random matrices

Random matrices are well-suited to this method.

- Matrices with i.i.d. entries of a specified size.
- ► HNF has few non-trivial diagonal entries, one large entry:

			time ¹ (s)	
entry size	n	this	Magma 2.19	Sage 5.2^2
	500	7.57	6.00	21.19
8 bits	1000	51.73	48.23	139.98
	2000	398.40	370.73	1013.93
	500	21.71	28.68	33.02
32 bits	1000	148.72	238.39	226.57
	2000	1144.75	1739.44	

¹AMD Opteron 8356 @ 1.15 GHz

²Pernet and Stein (2010)

Experimental results

Matrices with non-trivial Hermite form (smooth)

Matrices with highly non-trivial Hermite forms are challenging.

- ▶ Build from diagonal matrix via random row/column ops.
 - ▶ as per Allan Steel's "Hermite Normal Form Timings Page" ³
- ▶ HNF has about n/2 non-trivial diagonal entries:
 - ▶ n = 20: 1,..., 1,2,6,2,12,18,12,252,33264, 395134740,80844878615971251141360

n	this	Magma 2.19	Sage 5.2
100	0.150	0.330	2.01
200	3.67	2.12	31.39
400	19.05	14.03	480.9
800	124.77	97.69	
1000	229.93	196.72	

³http://magma.maths.usyd.edu.au/users/allan/mat/hermite.html

Experimental results

Matrices with non-trivial Hermite form

A still more difficult class of matrices:

- ► $A_{ij} = (i-1)^{(j-1)} \mod n$, for prime n
 - ▶ as per Jaeger, Wagner (2009)⁴
- ▶ HNF has about n/2 non-trivial, non-smooth diagonal entries:
 - ► *n* = 29: 1,...,1,2,4,4,4,4,540,4,16,4333140,1008,472312260,12907349441280,11772

n	this	Magma 2.19	Sage 5.2
101	0.52	1.98	2.29
211	2.98	44.17	38.06
401	20.54	1528	912.9
809	123.6		
1009	232.1		

 $^{^{\}rm 4}$ "Efficient parallelizations of Hermite and Smith normal form algorithms", J. of Parallel Comp.

Comparision against determinant

n	this	Magma 2.19	Sage 5.2
100	(0.30)	0.070	0.23
200	(1.82)	0.480	0.90
400	(11.42)	4.150	5.45
800	(78.56)	38.960	35.55
1000	(148.72)	73.330	67.77
Random, 32 bit entries			

n	this	Magma 2.19	Sage 5.2
100	(0.150)	0.180	0.66
200	(3.67)	0.960	2.67
400	(19.05)	6.590	17.15
800	(124.77)	40.350	137.78
Nontrivial Hermite diagonal (Steel)			