High-Order Lifting

[Extended Abstract]

Arne Storjohann
Ontario Research Centre for Computer Algebra
Department of Computer Science
University of Waterloo, Canada

astorjoh@scg.math.uwaterloo.ca

ABSTRACT

The well-known technique of adic-lifting for linear-system
solution is studied. Some new methods are developed and
applied to get algorithms for the following problems over
the ring of univariate polynomials with coefficients from a
field: rational system-solving, integrality certification and
determinant/Smith-form computation. All algorithms are
Las Vegas probabilistic.

1. INTRODUCTION
Let K be a field and A € K[z]"*™ and B € K[z]"*™. Sup-
pose A is nonsingular and, moreover, that det A is relatively
prime to a given X, X € K[z]. Then A™'B € K(z)™*™
admits a unique X-adic series expansion
HX"

AT'B=Co+ X+ + Op X"+ 4 OMFF X 4

(1)
where each C. € K[z]"*™ has deg C. < deg X. This paper
presents fast algorithms for computing only parts of the ex-
pansion. We call this high-order lifting. There are different
variations of high-order lifting. One variation calls for com-
puting a single contiguous-segment H for a given h and k
as shown in (1). Another variation computes a collection of
such segments for a given expansion. The main contribution
of this paper is to demonstrate applications for high-order
lifting. We get deterministic or Las Vegas solutions of many
other computational problems. Let B € K[z]"*™ as above
and b € K[z]"*! be given. The three main problems are:

Rational system solving Compute A~ 1b.
Integrality certification Assay if A™'B is integral.
Determinant Compute the determinant/Smith-form of A.

Assuming degb/ deg A and m(1 + deg B/ deg A) are O(n),
the problems listed above are solved in an expected number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSAC 2002, July 7-10,2002, Lille, France

©2000 ACM~ 1-58113-484-3/ 02/ 0007 $5.00

246

of O"(n? deg A) field operations from K. Here, 6 is the ex-
ponent for matrix multiplication (see below for cost model).
These complexity results improve on previous results.

Previous results

Consider first rational system solving. The currently best
deterministic algorithm [10] has running time O™ (n® deg A).
Restricting degb = O(deg A) and allowing randomization,
the technique in [8] improves the exponent of n, but not
down to 6. Our algorithm is based on adic-lifting [2, 6]
and is probabilistic because a small-degree polynomial not
dividing the determinant of A is chosen randomly.

Consider the integrality certification problem when B = I,,.
A is unimodular precisely when A~! is over K[z]. Uni-
modularity can be tested by computing det A mod X for a
randomly-chosen small-degree X; this gives a nearly-optimal
O™ (n? +n? deg A) Monte Carlo probabilistic algorithm. The
O (n? deg A) algorithm we give here is deterministic and
nearly matches this running time.

The Hermite-form of A (and hence also the determinant) can
be computed deterministically [9] in time O(n?(deg A)?).
The Smith-form can be computed in the same time (Las
Vegas) using the preconditioning of [4]. The computation
of the determinant has been well studied, especially also in
the case of integer matrices. We refer to [5] for a survey; the
currently best result for integers extends to polynomials,
giving an O (n*%% deg A) Las Vegas algorithm.

Model of computation

By time we mean the number of required field operations
from K on an algebraic RAM; the operations 4+, —, x and
“divide by a nonzero” are considered as unit step operations.
Let O(d**¢) be the time to multiply degree d polynomials.
Let O(n?) be the time to multiply two n X n matrices over
a commutative ring with identity. We are going to assume
that 2 < 8 <3 and 0 < € < 1. Sometimes we will make the
(eminently reasonable) assumption that € < 6 — 2.

2. OUTLINE

Many of the results in this paper build upon previous re-
sults. Although peppered with examples, the rest of this
paper necessarily adopts a more concise and technical style.
Here we give a global outline and indicate the relationships
between the sections. We also give abstract, intuitive de-
scriptions of the key ideas and algorithms.

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

Adic-lifting for system solving

Sections 3 and 4 define notation and recall some basic facts
about X-adic expansions of rational functions, including the
recovery of such expansions using X-adic lifting. Consider
(1) where B is a single column vector, say b, and both
deg A,degb < deg X. Suppose our goal is to compute the
expansion of A71b up to order X*. We can divide the prob-
lem into two similar subproblems. The first is to compute
the expansion of A~ b up to order X*/2.

AT =co+ e X+ 4 epp 1 X2 mod XF2 (2)

The key idea of X-adic lifting is to replace of the “mod” in
the last equivalence by introducing a “residue” ry /.

A= cot+e X+ + C]c/2,1Xk/271 + AilT'k/2Xk/2.
It may easily be verified by substitution that
e = (b= Alco+ 1 X + -+ XN /X (3)

and, moreover, that 4/, lives in K[z]"*" and has degry /s <
deg X. Thus, the second subproblem — compute the ex-
pansion of A_l'rk/g up to order X*/2 — has the same form
as the first subproblem. The salient point is that we need
to solve the first subproblem before we can begin the second
subproblem. High-order lifting will be used to get around
this problem.

High-order components of matrix inverse

Section 5 gives our first high-order lifting algorithm. Con-
sider (1) when B = I,, and deg A < deg X. Let o denote the
coefficients of the X-adic expansion of A~ !, ordered from
left to right. Let e denote a coefficient that is currently
been computed. Normally, all coefficients of the expansion
are computed up to order X®™ — this costs O(n x n’) us-
ing O(log n) steps of quadratic X-adic lifting, see Figure 1.
After the fourth step of lifting (which dominates the cost)

OOOOOOOOOOOOOOOOO
llo @0 o ooo0oo0oo0o000OGOOO
20 0 @ 00000000O0COGOO
30000....00000000
4o o 000000 ®GEOGEEEEE®EE®EE®

Figure 1: Quadratic lifting for n =4

all initial sixteen coeflicients have been computed. The algo-
rithm we give here computes a critical subset of size ©(log n)
from the first ©(n) coefficients by using quadratic X-adic
lifting combined with short-products, see Figure 2. The re-

Ole ooooo0oo0oo0oo0oo0o00000o0
llo@eooooo0oo0oo0o0o00000O0
2000 00000000000 O0 (4)
3loooooooeo0o000000o0
3lcoooooo0oo0oo0oo0o0o0o0o000 e

Figure 2: High-order component lifting for n =4

sult is that a ©(n) factor in the running time is replaced by
O(logn). Although most of the coefficients of the inverse
expansion are not recovered, the computation of the critical

247

subset of high-order components has many applications (it’s
what this paper is about). The algorithm described in this
section is used in almost all subsequent sections.

Series solution — small right hand side

Section 6 gives an algorithm for rational system solving in
the case where degb < deg A. The main idea is to reduce
the problem of solving one system up to order X* to that of
solving two systems up to order X*/2. We have described
such a reduction above. The key difference here is that we
compute the residue ry /> shown in (3) without first solving
the initial subproblem shown in (2). This is accomplished
using ©(1) matrixxvector products involving A and a par-
ticular high-order component of the inverse (and exploit-
ing the observation that ry,» can be computed from A and
Cry2—1 alone). We now have

A= (A" [b rie]) {?12—}

where the right hand side [b | Tk/2] has column dimen-
sion two. This idea is applied recursively O(logk) times,
each time doubling the column dimension of the right hand
side. This allows matrix multiplication to be introduced into
the rational system-solving problem, effectively reducing the
overall complexity in terms of n from O(n®) to O((log n)n?).

Series solution

Section 7 extends the result of the previous section to allow
degb = O(ndeg A) without increasing the asymptotic cost.
Let d = deg X, and consider the case when the right hand
side b has degrees bounded by nd, say b = bo +0 X+ X%+
oo+ bpg—1 X1 The algorithm encodes the “fat” vector
b as an n x n matrix B with ¢’th column equal to b;—;. The
i-th column of B may be thought to be implicitly multiplied
by X?~L. For an n x n matrix C, a matrixxvector product
Cb, degb < nd, can be now accomplished more efficiently
as a matrixxmatrix product CB, deg B < d. Suppose our
goal is to produce A™'B up to order X™. Using O(1) ma-
trix products, the algorithm produces a second matrix B
such that the expansion of A™'B up to order X™ is equal
to the expansion of A~ 'B up to order X"/? added to the
expansion of A™'B up to order X"/?; the key observation is
now to compute the desired result as the single expansion of
A™Y(B + B). Thus, the single matrix addition B + B allows
us to recurse on only one instead of two problems. This tech-
nique is applied for order X™/2, X"/ x"/8 ... yielding a
series of O(log n) transformations on B using the high-order
components of the expansion of A~'. The overall cost in
terms of n is O((log n)n?).

High-order lifting

Section 8 gives a general algorithm for solving the high-order
lifting problem: the recovery of H as shown in (1). By gen-
eral we mean that the column dimension as well as degrees
of entries in B are not restricted. The algorithm here is a
straightforward combination of the algorithms of previous
sections. The key point is the analysis. Let deg A < d,
d = deg X. A running time of O((log n)n?) is achieved for a
wide range of the input paramaters m, k and degb. All that
is required is that the paramaters m and {(degb)/d, k/d} be
balanced: both m x (degb)/d and m x k/d should be O(n).

Further ideas

The discussion so far focused on techniques for rapidly com-
puting adic-expansions. The primary contribution of this
paper is to demonstrates applications to solving a variety of
other problems.

Section 9 computes a high-order lift H as in (1) in order to
solve a generalization of the integrality certification prob-
lem. Sections 10, 11 and 12 deal with determinant/Smith-
form computation. Section 10 uses rational system-solving
to transform A to an almost identical matrix but with po-
tentially much smaller determinant — this is imperative to
obtain the complexity result. Section 11 computes a high-
order lift H as in (1) where B is chosen to be the trailing m
columns of the identity matrix; this is then used to compute
the trailing m diagonal entries of the Hermite-form. Sec-
tion 12 puts all the pieces together and gives the complete
algorithm for determinant/Smith-form.

Many results here extend directly to the more difficult case
of integer matrices. For space reasons, it will be conve-
nient to sometimes use illustrative examples with decimal
expansions of integers instead of X-adic expansions of poly-
nomials. Section 13 concludes and mentions something more
about the integer case.

3. ADIC REPRESENTATION

Let [be nonnegative integer and X € Klz] have degree
greater than zero. By X-adic expansion of a € K[z] we mean
to write a = ag + a1 X +axX>+ - +a; X!, dega. < deg X.
“Degree” will always mean degree in z. In other words, if
deg X = d and a; is nonzero, then dl < dega < d(I + 1).
The a. are called coefficients of the X-adic expansion of a.

The ring K[z] has the usual arithmetic operations {+, —, x }.
Here we define three additional operations Left, Trunc and
Inverse and gives some of their properties. These functions
will implicitly be defined in terms of a proscribed X. Let
a € K[z] and k be nonnegative. Suppose the X-adic expan-
sion of a is @ = ap + a1 X + a2X? + --- . Then Left(a, k) =
ar + a1 X + ak+2X2 + --- and Trunc(a, k) = ao + a1 X +
a2 X%+ - 4+ ar_ 1 X1 If a L X, then Inverse(a,k) de-
notes the unique b € K[z] such that b = Trunc(b, k) and
Trunc(ab, k) = Trunc(ba, k) = 1.

All the above definitions above extend naturally to matrix
polynomials. Just replace a,q € K[z] with 4,Q € K[z]"*™.
The operation Inverse takes as input a square matrix A
which has det A 1 X.

Let a,y € K[z] and k be positive. A key property of the

Left(*, k) operation is linearity: Left(a+, k) = Left(a, k) +
Left(v, k).

LemMMmA 1. If deg(y) < deg(X*) then
Left(a + v, k) = Left(a, k).

The next lemma observes that Left and Trunc commute.

LEmMA 2. Ifl < k then
Left(Trunc(a, k), 1) = Trunc(Left(a,l), k —).

248

Computation with x-adic polynomials

We are working over K[z] with the operations {+, —, x, Left,
Trunc, Inverse}. The cost of these operations will depend
essentially on our choice of representation.

For a € K[z] let k be minimal such that a = Trunc(a, k).
Then a can be stored as a list comprised of the first k coef-
ficients of the X-adic expansion. Let a,b € K[z] be nonzero
with dega > degb. Then the X-adic expansion of a + b or
a—>b can be computed in O(1+min(deg a, deg b)) field opera-
tions, that of ab in O((1+deg a)(1+degb)°) field operations,
and that of Inverse(a, k) in O((k deg X)'7¢) field operations.
Operations Left, Trunc and multiplication by a power of X
are free. For Y € K[z], conversion from X-adic to Y-adic
representation can be accomplished in O((14dega)***) field
operations.

4. ADIC-LIFTING

The inverse of a nonsingular polynomial-matrix usually has
rational function entries. For example, if

11
A_[ml

It is well known that denominators of reduced entries in A™*
are divisors of the determinant of A. In the above example
det A = 1 —z which has degree bounded by one. In general,
for a nonsingular A € K[z]"*™ we have:

L1
} then A™' = {17 w;l] € K(z)**%. ()

z—1 1—-=2

Fact 3. deg(det A) < ndeg(A).

For a given B € K[z]"*™, the matrix A~' B usually also has
rational function entries as opposed to polynomials. But
(det AYA™!B is a polynomial matrix and

Fact 4. deg((det A)A™'B) < deg(B) + (n — 1) deg(A).

Consider again A from (5). Since det A L x, we can express
each entry of A™! as an infinite z-adic expansion.

. 1+m+x2+x3+---|—1—x—m2—m3+---
a -z’ -+ | 1+z+a”+a’+---

1 -1 1 -1 2
}4—{_1 1}1:4—{_1 l}x +e
More generally, let A € K[z]"*" be nonsingular, det A 1 X.

Let the X-adic expansion of A~ be
C

A

A = s X 42X e XX

A—l

1 -1
01

Note that each * lives in K[z]"*™ and has degrees of entries
strictly less than deg X. Thus, the indicated C has polyno-
mial entries with degrees < Id. For a given B € K[z]"*™,
let the X-adic expansion of A"!B be

D EX*

f X 4o A X T e X e X

Suppose we have C' and D. Then we can recover E using
X-adic lifting:

THEOREM 5. E = Trunc(C Left(B — AD, k), 1).

5. HIGH-ORDER COMPONENTS

Let A € K[z]"*™ be nonsingular, det A L X. In what fol-
lows, let Z(") = Inverse(A,2). In this section we show how
to recover the high order components of the inverse of A:
E® = Left(Z(i),T —2) for ¢ = 1,2,...,k. To see more
clearly what we are computing, write the X-adic expansion
of A7 as Co+ C1 X + CoX? + .-+ . Then

ED
—f—
Z(l) = Co+C1 X
E®X?
——~
Z® = Co+CiX +CoX? +CsX?
E® X
——~
Z® = Co+CiX + - +CsX° + CeX® + Or X"
Starting with Z© we can recover Z(l), Z(Z), . AR using k

steps of quadratic X-adic lifting in time O(2*n?d'**), d =
deg X. Algorithm HighOrderComp recovers only the high
order components E®) as shown above. The cost estimate
of O(kn?d'*<) field operations for the algorithm is easy to
derive.

Algorithm HighOrderComp[X](A, k)

Input: A € K[z]"*™ and k > 2

Output: (E(l), E® .., E(k)) as shown above
Condition: X | det A and d = deg X > deg A

1. L :=Inverse(A,1);
H := Trunc(L Left(I — AL,1),1);
EW .= L+ XH;

2. for ¢ from 2 to k do
L := Trunc(Left (B¢~ Left(— AL, 1), 1
H := Trunc(Left(E¢ Y Left(—AH, 1)
EW.:=L+XH
od;
return (E®W, E® E®)

), 1);
1),1);

)

We now prove that the algorithm is correct. Let [X](A, k)
be a valid input tuple. Let (L®, H®) be equal to (L, H)
as computed during the loop in phase 2 with index ¢. Phase
1 computes (LY, HM) = (Cy, C1) and ED = Cp + XC.
Using induction on j we now prove that

LYV = Cai_s (6)
H(j) = Chy (7)
EY) = C, ,+XCy , (8)

for j = 1,2,...,k. The base case j = 1 has already been
established. That (8) follows from (6) and (7) is clear.

For i > s, quadratic X-adic lifting (a special case of Theo-
rem 5) gives

Left(Z¥,271) = Trunc(Z Y Left(1-AZ~Y 2071 271

249

while the loop computes

R
HY = Trunc(Left(E" Y Left(—AH" Y 1),1),1).

~~

S

Our goal is to show (6) and (7) hold for j = . It will be
sufficient to show that (7) holds since the proof of (6) is
analogous. In the proof we will use the following degree
estimates, which follow from (7) and (8).

deg(ZzY) — X7 THY) < deg(X¥)
deg(ZV) — X¥ 2EW)) < deg(X? 72

(9)
(10)

The next lemma assumes (by induction) that (9) holds for
j=i—1.

LEMMA 6. R= (I — AZG=D)/x2 "

PROOF. Let a = (I — AZG~D)/X*™" and choose v =
—ALeft(EGY 1)—Xa so that —A Left(EC~Y, 1) = Xa+~.
Using (9) for j =4 — 1 we may derive that degy < deg A <
deg X. Now use Lemma 1 to conclude that Left(Xa+~,1) =
a. O

At this point we have shown that S = Left(E¢"VR,1)
where R is as in Lemma 6. For any nonnegative y we have
S = Left(XYEC VR y +1). Let y = 2"! — 2. The next
lemma assumes (by induction) that (10) holds for j =i — 1.

LEMMA 7. S = Left(Z(ifl)R,y +1).

PROOF. Let ¢ = ZU"YR and v = XYEU"Y)R —a so
that @ +v = XYEU"YR. Using deg(R) < d and (9) for
j=1i—1 gives degy < deg(X¥™"). Now use Lemma 1. [J

Lemmas 6, 7 and 2 now give (7) or j = 4. The proof that (6)
holds for j =i is analogous. This ends the inductive proof
of correctness of the algorithm. We have shown:

PrROPOSITION 8. Algorithm HighOrderComp is correct.
The cost of the algorithm is O(kn®d**¢) field operations.

Typical applications of the algorithm have k = O(logn).

6. SERIES SOLUTION — SMALL RHS

Let A € K[z]"*" be nonsingular, detA 1 X. Let b €
Klz]"*'. We present an algorithm for computing the X-
adic expansion of A~'b up to a given order. The algorithm
requires both degb as well as deg A to be bounded by d,
d =deg X.

Algorithm SeriesSolutionSmallRHS[X](A, b, k)

Input: A € K[z]"™™, b€ Kz]"*!, k > 2

Output: Trunc(Inverse(A4, 2¥) b, 2%)

Condition: X 1 det A and d = deg X > max(deg A, degb)

1. E® E® E*-Y .= HighOrderComp[X](A4, k —1);

2. B:=[b| O] where 0 is the n x (2¥ —1) zero matrix;
for i from k —1by —1to 1 do
B := the first 2% — 2° columns of B;

B :=Left(—A Trunc(Left(E® B, 1), 1),1);
B .= [0] | B] where O is the n x 2' zero matrix;
B := B+ B;

od;

B := Trunc(E"Y B, 2);

3.#Let B=[do|0|da|0]---|dpr_yp]|0].
Bi=do+ds X2+ +dp_, X7 2
return B

We now prove that the algorithm is correct. Let [X](A, b, k)
be valid input tuple. Let Z® = Inverse(A, 2°) for i > 0.

Phase 1 computes the high order components of Z®=1) at
a cost of O(kn?d**¢) field operations.

Now consider phase 2. The purpose of this phase is to
compute all the coefficients of Trunc(Z®*b,2%). We be-
gin by giving an example when & = 4. A formal proof
will follow. Let r; = (b — A Trunc(Inverse(A4, j)b, j))/ X7,
j€{0,2,4,...,14}. Then ro = b and we claim that

16/2¢]
Trunc(Z2“b,16) = Y Trunc(Z2Vryg;)0, 27) X'/
j=0
for i = 4,3,2,1. Our initial problem is to compute the

solution to a single linear system up to order 16. At the
start of the loop we have

B:[TOOOOOOOOOOOOOOOO].

The #’th column of B may be thought to be implicitly mul-
tiplied by X!, After the loop completes with index i the
matrix B looks like:

7= 3 To rs -|
1 =210 T4 rs r12 .
t=1|ro T2 T4 TE T8 Ti0 Ti2 Ti4 J

Thus, each pass through the loop doubles the number of
systems we need to solve, but halves the order of precision
to which we need the solutions. After the loop completes
we need to solve 8 systems up to order X2. The last line of
phase 2 does this to compute

B:[Co+ch 0 c2+c3X 0 cia +c15X 0]

where co + c1 X + 2 X2 + ---
Trunc(Z™“b, 16).

is the X-adic expansion of

Now we give a formal proof of the above. At the same
time we estimate the complexity in terms of n, k and d.
Let f(i,m) be the cost of computing Trunc(Z*) B, 2%) for a
given B € K[z]"*™, deg B < d. For ¢ > 1, quadratic X-adic
lifting gives the identity

.)) _ . 1
Trunc(Z” B, 2") = Trunc(Z0 [B|B],2 " |:X2i—1:|

where

B = Left(B — ATrunc(Zz~YB,271), 271, (11)

250

It is easy to derive that deg B < deg A < d. Thus we get
f@i,m) < f(i —1,2m) + cost of computing B.

Consider equation (11) for B. We may consider X2 2p0
to be an approximation of ZW | If we expand formula (11)
for B we get the new formula

LEMMA 9. B = Left(—A Trunc(Left(E¢~" B, 1),1),1)

When i = 1 we may compute B = Trunc(ZY B, 2) directly
since EY = ZM_ Since the number of nonzero column
in B is doubling each time, the last iteration of the loop
dominates. The cost is O((2¥ /n)n?d'*¢) field operations if
2% > n. If 2¥ < n the cost is is dominated by that of phase
1.

Finally, phase 3 multiplies each column of B by the appro-
priate power of X and adds all the columns together. Under
our cost model this is free. We have shown:

ProposITION 10. Algorithm SeriesSolutionSmallRHS
is correct. The cost of the algorithm is O((k 4 2* /n)n®d'*<)
field operations.

7. SERIES SOLUTION

Let A € K[z]"*™ be nonsingular, detA L X. Let b €
K[z]**™. We present an algorithm for computing the X-
adic expansion of A™'b up to a given order. The algorithm
here extends the algorithm given in the previous section.
The algorithm here makes no assumption on the degree of b
and allows b to have column dimension m, m > 1.

Algorithm SeriesSolution[X](A4,b,k)
Input: A € K[z]"*"™, b€ K[z]"*™, k > 2
Output: Trunc(Inverse(A4, 2¥) b, 2%)
Condition: X | det A and d = deg X > deg A
1. EV E® E%*~Y .= HighOrderComp[X](A, k — 1);

2. # Let X-adic expansion of b be bg +b1 X +b2 X2+ -.
Bi=[bo|bu| - |byoy];
for i from k—1 by —1 to 1 do
B := the first m2* — m2’ columns of B;
B := Left(—A Trunc(Left(E™ B), 1), 1), 1);
B:= [O | B] where O is the n x m2' zero matrix;
B:= B+ B;
od;
B := Trunc(EV B, 2);

3. #LetBZ[d0|d1|~~~ |d2k,1]
Bi=do+di X +do X2+ +dye_p X2 2
+Trunc(d2k_1,1)X2k71;

return B

We now prove that the algorithm is correct. At the same
time we estimate the complexity in terms of n, m, k and
d. Recall that in Algorithm SeriesSolutionSmallRHS we
assumed m = 1 so that m did not appear in the costs es-
timates there. Let [X](A,b, k) be a valid input tuple. Let
Z® = Inverse(A4, 2) for ¢ > 0. Phase 1 computes the high

order components of Z*~1 at a cost of O(kn®d'**) field
operations.

Phase 2 is identical to the corresponding phase in Algo-
rithm SeriesSolutionSmallRHS except that here we solve
m2" systems in parallel. We need only observe that

2k 1 _
> Trunc(Z™b; X', k)

=0

Trunc(Z¥b, k)

2k 1 _
> X' Trunc(Z2Wbi, k — i)

=0

In other words, we use the identity A™'B+A~'B = A~ (B+
B). The cost of phase 2 bounded by O((km2* /n)n®d**<)
field operations if m2*¥ > n. If m2* < n the cost is is domi-
nated by that of phase 1.

Phase 3 multiplies each column of B by the appropriate
power of X and adds all the columns together. The cost of
this phase is dominated by that of phase 2. We have shown:

PROPOSITION 11. Algorithm SeriesSolution is correct.
The cost of the algorithm is O((k(1 + m2* /n))n’d'*<) field
operations.

If we choose k such that 28d > 2(n — 1)deg A + deg B,
then we can recover A™'b € K(x)"*! using rational recon-
struction. The rational reconstruction costs O(n(nd)'*€).
If & — 2 > € (a reasonable assumption) then the rational re-
construction does not dominate. Noting that we can choose
k = O(logn) if degb = O(nd), we get

COROLLARY 12. Let [X](A,b,*) be a valid input tuple to
Algorithm SeriesSolution, with b € K[z]"*'. Assuming
€ < 0—2 and (degb)/d = O(n), the rational system solution
A7 € K(x)™™! can be computed in O((logn)n?d'*<) field
operations.

8. HIGH-ORDER LIFTING

Let A € K[z]"*™ be nonsingular, detA L X. Let B €
K[z]"*™. We present an algorithm to recover a contiguous
segment H = Left(Trunc(Inverse(A,h + k)b, h + k), h) of
coefficients from the X-adic expansion of A™'B, see (1).
If h = 0 we can use Algorithm SeriesSolution. In high
order lifting, what is important is that h be larger than
some specified bound, say h > [for a given [. The particular
value of h is not important, only that A > [. The point of
the algorithm here is that the complexity depends on k and
deg B but not (essentially) on h. This is important because
in typical applications h > k.

Algorithm HighOrderLift[X](A, B,l, k)

Input: A € K[z]"*", B € K[z]**™, [> 2, k a power of two
Output: Left(Trunc(Inverse(A, h+k) B, h+k), h) for h > .
Condition: X | det A and d = deg X > deg A

1. k := the smallest integer > 2 such that 2*d > deg B;
H := SeriesSolution[X](A4, B, k);
H := Left(—ALeft(H,2F — 1),1);

251

. [:= the smallest integer > 2 such that 2l > l;
(%,%,...,%, ED) = HighOrderComp[X](A,I);

H := Left(— A Trunc(Left(EV H,1),1),1);

2

3. H := SeriesSolution[X](A, H,log, k);
return H

We omit the proof of correctness here. Since the cost esti-
mate depends on many parameters, we only give a special
case that interests us.

ProposITION 13. Algorithm HighOrderLift s correct.
If logl = O(logn) and all of m, mk/d and m(deg B)/d
are O(n), then the cost of the algorithm is O((logn)n®d* <)
field operations.

9. INTEGRALITY CERTIFICATION

Let A € K[z]**™ be nonsingular, det A L X. Let B €
K[z]**™ and T € K[z]™*™. We present an algorithm to
assay if A™'BT is over K[z]. The algorithm works by com-
puting a high order lift H of A™'B as shown in (1). Recall
that H = Left(Trunc(Inverse(A, h + k)B,h + k), h). Let

C = Trunc(HT, k).

PROPOSITION 14. If h and k are chosen to satisfy hd >
(n —1)d + deg B + degT and kd > d + degT, then C as
computed above has deg C' < (k — 1)d if and only if A~ BT
is integral.

PrOOF. Let S = Trunc(A™*BT,h + k). Write S as
degree < hd + degT
—

S = Trunc(A 'B,hW)T +CX".

By choice of k we have hd +degT < hd + (k —1)d. Now we
will use the fact that Trunc(AS, h+k) = BT. If deg CX" <
hd + (k — 1)d also, then AS = Trunc(AS,h + k), whence
S = A™!'BT. This shows the “only if”. Now for the “if”.
The parameter h is chosen so that hd is strictly larger than
an a priori bound on the degrees of numerators in A™!BT.
Thus, if A™'BT is integral, then it follows from (12) that
degC < degT. I

(12)

The next two corollaries will be useful later on. Note that
both corollaries assume h and k satisfy the constraints of
Proposition 14. The first corollary follows from the proof
above.

COROLLARY 15. If A™'BT is integral, then degC <
degT.

The next lemma. is obvious. For a fixed h we have:

COROLLARY 16. If A"'BT is integral, then C is invari-
ant of the choice of k.

In case of integrality, the algorithm returns also C, the in-
tegrality certificate.

Algorithm IntegralityCertificate[X](A, B,T)

Input: A € K[z]"*", B € K[z]"*™, T € K[z]"*™
Output: An integrality certificate if A7 BT is over K[z],
false otherwise.

Condition: X | det A and d = deg X > deg A

1. [:= the smallest integer such that 2'd > (n — 1)d +
degb + deg T';
k := the smallest integer such that 2%d > d + deg T’;
H :=HighOrderLift[X](A, B, [, k);

2. C := Trunc(HT,2");
if degC' < degT then
return (true, C)
else

return false
fi

We get:

PROPOSITION 17. Algorithm IntegralityCertificate
is correct. If all of m, m(degB)/d and m(degT)/d are
O(n), and assuming € < 0 — 2, then the cost of the algo-
rithm is O((log n)n”d***) field operations.

Worked example
The integrality certification technique described above can
be adapted for integer matrices. Let
—-28 —-11 —-56 -39
A= -5 42 -10 37
22 —44 -25 44
-32 3 38 46

Let B to be the last two columns of I». Let T = sI> where
s = 3969. For convenience, we will work with the usual
base-10 decimal expansions. For h = 90 (overkill) and k£ = 8
we can use Maple(TM) to compute the H shown in (1) as
follows:

H := evalm((map(mods,evalm(inverse(A)&+*B),10798) -
map (mods,evalm(inverse (A)&*B),10790))/10790) :
C := map(mods,evalm(H*3969),107k) :
We get
H C
—12194507 —23935500 1717 500
—24086672 42529604 —1168 —1724
and . (13)
—5946082 33232552 542 —1112
24086672 —42529604 1168 1724

We conclude that A~!BT is integral since entries in C' have
substantially fewer than 8 decimal digits. Indeed, the ana-
logue of Corollary 15 guarantees that ||C||ee < m||T||oo-

252

10. DETERMINANT REDUCTION

We omit this section except for an example on integer ma-
trices. Consider the matrix A and it’s Hermite-form H.

A H
15 17 18 -9 | 14 1 0 0 010172267
-14 10 -9 -3 37 1 0 0]13994003
5 =35 7 7 | 35 , 1 138505091
-14 5 29 —37|-16 3126289760
31 —15 —25 —19| 25 42348292

Using rational system solving and extended gcd computa-
tion, we can produce a new matrix B, identical to A except
for the last column, such that the Hermite form of B is iden-
tical to H except for the last column which has pivot entry
one. The point is, the determinant is reduced by a factor
of 42348292. The analogous construction can be done for
polynomial matrices.

PRroOPOSITION 18. Let A € K[z]"*™ and X € K]z] satisfy
det A L X and deg X > degA. Ife < 60— 2, then a B as
described above can be computed in O((logn)n’d" <) field
operations.

11. PARTIAL DETERMINANT

Let A € K[z]"*™ be nonsingular. Let X € K[z] with X L
det A and d = deg X > deg A be given. Let 1 < m < n be
given. Throughout this section let H, S, 5, and L be defined
as follows:

e H is the trailing m x m submatrix of the Hermite basis
of A.

e S is the Smith-form of H.
e 5 is the largest invariant factor in S.

e L is the last m rows of A7

The next two lemmas follow from the uniqueness of A and
3. For sundry such facts about lattices, see [12, Chapter 5].

LemMa 19. Let s € Klz] be a multiple of 5. Then sL is
integral.

LEMMA 20. Let T € K[z]™™™ be such that TL is integral.
Then T = TH for some T € K[z]™*™.

We now describe a novel algorithm to compute S from A
and a given s as in Lemma 19. Let B be the last m rows of
I, so that BA™' = L. Lemma 19 attests that sBA™! is in-
tegral. We want to use algorithm IntegralityCertificate
to produce a certificate to this effect. The fact that our
situation here is “transposed” is no problem: note that
((ANY™'B(sI,,)")" = sBA™". Let

C" := IntegralityCertificate[X](A", B, sI,.).

Then deg C' < degs (Lemma 15) and C can be produced in
time O"(n’d) if m(degs)/d is O(n) (Proposition 17).

PROPOSITION 21. S is the Smith-form of sD™', where

D is the principal m x m submatriz of the Smith form of
[C | sl]

PROOF. Let H' be the high order lift computed in the
algorithm. The algorithm computes C' = Trunc(sH, k) for
some choice of k, kd > d + degs. We have sI,, = TH for
some T over K[z] (Lemma 20), so

C

7/_,7_
C = Trunc(T Trunc(HH, k), k). (14)

Recall that BA™" = L. Since HL is integral deg C' < deg H
(Corollary 15). Since T and C' are over K[z], we may con-
clude from (14) that C = T'C (Corollary 16).

We have established that
[C|sI,]=T[C|H].

Let G be the column Hermite-form of [c | H] IfG=1I,
then the D in the statement of the proposition is equal to
the Smith-form of T. Using sT~' = H it is easy to derive
that sD~! is equivalent to H. Thus, we will be finished if
we can show that G = I,,.

To arrive at a contradiction, suppose G # I,. Both G~'C
and G™'H are necessarily integral with degrees bounded
by degC and deg H respectively. But then the degree of
Trunc((G~ H)H, k) is < deg C, implying that (G"'H)L is
integral (Proposition 14). Lemma 20 now gives a contradic-
tion. [

The Smith-form in Proposition 21 can be computed in time
O(nmP~" (deg s)' *¢) using [12, Lemma 7.14].

PROPOSITION 22. Let A, X and m as described above
be given. Let a nonzero multiple s of § also be given. If
m(degs)/d = O(n), and assuming ¢ < 6 — 2, then S as
described above can be computed in O((log n)n®d**¢) field
operations.

Worked example
The ideas described above carry over to the case of integer
matrices. The matrix

—28 =5 22 -32
Ao | 142 a3
| —-56 —-10 —-25 38
-39 37 44 46
has Hermite-form
1 220 ‘ 0 379
1231 |2 670
H= 3 3792
3969
and
3 3792

— . 5 3
H = { 0 3969 } has Smith form S = [3969 } .

253

Let s = 3969 and C be the integrality certificate shown in
(13), except transposed. Then the principal 2 X 2 submatrix
of the Smith form of

1717 —1168 542 1168 | 3969
500 —1724 -—1112 1724 3969
is
1
D= { 1323] ’

Note that the Smith form of sD ! is S.

12. DETERMINANT COMPUTATION
Suppose A € R"*" is nonsingular with det L X and deg X >
deg A. We present an algorithm to compute the determinant
of A. We are going to assume that A satisfies some rather
strong conditions. First, assume wlog (up to augmentation
with an identity matrix) that n = 2" — 1 for some k.
Decompose the Hermite basis H of C as

H; * *
Hi =
Hy

where H; has dimension 2¢ x 2¢. Let S; be the Smith-form
of H;. The algorithm requires that

e (C1) diag(Sk, Sk—1,--

e (C2) The Hermite basis of A[1...m+1,1...m]is equal
to the Hermite basis of A[x,1...m], m =2"+2F"1 4
w2 i=kk—1,...,1.

., S1,50) is in Smith-form.

If any of these conditions are not satisfied, the algorithm
will detect this and report failure. Given (C2) holds for a
given m, we will assume wlog (up to a permutation of the
first m rows) that A[1...m,1...m] is nonsingular.

The algorithm proceeds in stages fori = 0,1,2,..., k. Stage
i = 0 is to compute So. Now fix some i, i > 0. Let m =
2k 421 4 4+ 2% Let B be the matrix constructed from
All...m + 1,1...m + 1] using the algorithm supporting
Proposition 18. Let C = Aim+2...n,1...m+1].

LemMA 23. (02) holds for i iff CB™' is integral.

In case R = K][z], the integrality of CB~' can be assayed
using Algorithm IntegralityCertificate. Assume hence-
forth that CB™' is integral. (If it isn’t, report failure and
terminate.)

At this point we have constructed an (m + 1) x (m + 1)
matrix B which has Hermite-form equal to

* |k
H;

1

Our goal now is to recover the Smith-form of H;. Let s
be the smallest invariant factor in S;_1, computed during
the (previous) stage ¢ — 1. Finally, use Proposition 22 to

either determine that diag(S;, Si—1) is not in Smith-form or
to recover S;_1. Since diag(Si—1,Si—2,...,S0) is in Smith-
form, we must have degs < nd/m. The cost is given by
Proposition 22. Summing over all stages gives

PROPOSITION 24. Let A € K[z]"*" be nonsingular. Let
X € Klz] with X L detA and deg X > deg A be given.
The algorithm described above will assay if A satisfies con-
ditions (C1) and (C2). If so, the algorithm will produce
diag(Sk, Sk—1,...,S50). Assuming € < 0 — 2, the cost of the
algorithm is O((log n)*n?d***) field operations.

That diag(Sk, Sk—1,.-.,S50) is the Smith-form of A (this
does not follow from (C1) directly) can be assayed in the
same time using k integrality certifications. We omit the
details here.

13. CONCLUSIONS

The algorithms in sections 5—11 are deterministic but re-
quire as input a small degree X such that X L det A. See [7,
Proof of Theorem 29] for a method of finding such an X ran-
domly.

The algorithms in Section 12 requires that A satisfy some
conditions. These are easy to achieve using the precondi-
tioning technique as shown in [4]. Choose (nonsingular)
matrices U and V uniformly and randomly from S™*", S
a subset of K with #S > 4dn*. Then UAV will satisfy all
required conditions with probability at least 1/2 (see [4, Al-
gorithm 3.2] and [13, Algorithm REDUCE]). If #K is too
small, work over an algebraic extension field.

Arguably the most important contribution of this paper is
the idea of using high-order lifting to certify integrality.
Without this technique, many of the algorithms we propose
would be Monte Carlo instead of Las Vegas. The algorithms
we have given for determinant/Smith-form computation are
of practical interest, especially because they certify the out-
put.

The main task remaining is to extend the results here to
the case of integer matrices. The reader may have already
noticed that the key ideas Sections 9—12 carry over easily.
The main difficulties to be solved are:

e Achieve a suitable preconditioning for the input matrix
of the Smith-form computation.

e Get analogous versions of the lifting algorithms in Sec-
tions 5, 7 and 8.

To solve the first difficulty the results in [3] and [8] should
prove useful. The idea is to modify the determinant algo-
rithm to allow considerably weaker conditions than those
outlined at the beginning of Section 12.

The crux of the second difficulty is that the absolute value
norm over Z, unlike the degree norm over K[z], is Archimed-
ean; because integer addition has carries, the analogue of
Lemma 1 does not hold. One solution to this is to do com-
putation in a shifted-adic number system. We will present
this in a future paper.

254

14.

[1]

[11]

REFERENCES
J. Abbott, M. Bronstein, and T. Mulders. Fast
deterministic computation of determinants of dense
matrices. In S. Dooley, editor, Proc. Int’l. Symp. on
Symbolic and Algebraic Computation: ISSAC 99,
pages 197-204. ACM Press, 1999.

J. D. Dixon. Exact solution of linear equations using
p-adic expansions. Numer. Math., 40:137-141, 1982.

W. Eberly, M. Giesbrecht, and G. Villard. Computing
the Smith form of a dense integer matrix. In Proc.
31st Ann. IEEE Symp. Foundations of Computer
Science, 2000.

E. Kaltofen, M. S. Krishnamoorthy, and B. D.
Saunders. Parallel algorithms for matrix normal
forms. Linear Algebra and its Applications,
136:189-208, 1990.

E. Kaltofen and G. Villard. Computing the sign or the
value of the determinant of an integer matrix, a
complexity survey. 2002. Submitted to the special
issue on Congres International Algebre Linéaire et
Arithmétique: Calcul Numérique, Symbolique et
Parallele, held in Rabat, Morocco, May 2001, 17
pages.

R. T. Moenck and J. H. Carter. Approzimate
algorithms to derive exact solutions to systems of
linear equations., pages 65—72. Springer-Verlag,
Berlin-Heidelberg-New York, 1979.

T. Mulders and A. Storjohann. Diophantine linear
system solving. In S. Dooley, editor, Proc. Int’l. Symp.
on Symbolic and Algebraic Computation: ISSAC 99,
pages 281-288. ACM Press, 1999.

T. Mulders and A. Storjohann. Certified diophantine
dense linear system solving. Technical Report 355,
Departement Informatik, ETH Ziirich, Dec. 2000.

T. Mulders and A. Storjohann. On lattice reduction
for polynomial matrices. Technical Report 356,
Departement Informatik, ETH Ziirich, Dec. 2000.

T. Mulders and A. Storjohann. Rational solutions of
singular linear systems. In C. Traverso, editor, Proc.

Int’l. Symp. on Symbolic and Algebraic Computation:
ISSAC 00, pages 242-249. ACM Press, 2000.

V. Pan. Computing the determinant and the
charactersitic polynomial of a matrix via solving linear
systems of equations. Inf. Proc. Letters, 28:71-75,
1988.

A. Storjohann. Algorithms for Matriz Canonical
Forms. PhD thesis, ETH — Swiss Federal Institute of
Technology, 2000.

A. Storjohann and G. Labahn. Preconditioning of
rectangular polynomial matrices for efficient Hermite
normal form computation. In A. H. M. Levelt, editor,
Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC 95, pages 119-125. ACM Press,
1995.

