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Abstract 

A sinq)lo randoruixed algorithnl is given for fillding an integer 
solubion to a s:-stclu of linear Di01)lmnt,ine equations. Givcu 
as input a s?;stcrrl which admits an int.cger solul.ion, the id- 

gorithru can 1~ used t,o find such a. solution wit,h probabilit~~ 
ilt least l/2. The running time (nunlber of bit operations) is 
esscntiall~ cubic in the dimemion of the s?;stem. The mal- 

ogous result is prcsentctl for 1inca.r spst.cnls over the ring of 
polqonlials wit.li coefficients from a field. 

1 Introduction 

Solving a systen~ of linear Diophantine quations is a clas- 
sical mathonmtical prol~lcm: givm au int.eger matrix .A and 
vector 0, the goal is t0 find an int.egcr vector 3’ that. !Misfies 
dx = b. We present a simple ranclon~ixed algorit.lm for solv- 
ing t.his problem. IVe also show how t.O adapt. l.he algorithnl 
to solve lilleitr systcmls Over tlw rhg of urlimriate polynonli- 
als with c0efficicnt.s from a field. The algoribhm is c!asy t,o 
ioiplenicnt, mcnlor; cfficient~ and faster than previous meth- 
ods. The algorithnl is probabilist.ic in tllc following WIISC. If 
a solution vector is rcturnctl it. is giiararlt,c(+i t0 1~ correct.. 
On the other hmd, t.he algorithm does not. mrrcnt.lv ccrtif! 
incousisteuq Xld IIliLy rct,iirn NIL for it sj%.eIn which does 
ilthlit il solut.ion; t.he chance Of t.liis happening is b0unded 
by a usi(lr spccifietl error td(!rilIlCC f > 0. 

For t.he moment we restrict, the discussion t0 integer s\-s- 
ten+ t:he case for pol~uoniial s?;s(.en~s is analogous. III this 
paper we anal\isc our algorithms under the ilSSUIIIptiOI1 of 
standard. quadratic integer arithmetic. Let o(M (t)) bit op- 
crat.ions be sufficient. to Iuultipl~ two t-hit integers. ‘Then 
sl.antlard aritlmetic has M(t) = t”. FFT-based nlcthods 
allow Jr(t) = flog t log log t. 

Let. n be t.he largtrr of the row or colunm dimension of a 
linear Diophanl.inc s?;stenl .-lx = 1). Let [j he a. lm~ntl on the 
~~agrlit.udes of entric>s in .A antI b. If .&I: = b admits an int.eger 
s0lut,iou for x, theu it, iltlIIlitS an int.egcr solution with entries 
hitviug leugt~h O(rt(log 71. + log 3)) 1.jit.s - this bound is tight, 
in t.llcb worst. case. The: a.lgorithnl we present hcrc-t WCS an 
espcmed niimb(~r of o- (rc”(log 3)‘) I)it operations to wt,urn 

a solution with this sizr 1Jound. For inpul s)Fstcnls with 
log$ sum11 compared to n: this improves on t.lle previousl!; 
fiXA& algoritlm which uses 0‘ (n’l log /3 + 7tM(71 log 3)) bit 
operations in the worst case [i]. hloreovcr, t,he algorithn1 
WC present here, like that in [i]: requires additional stora.gc 
for ouly 0 (H’ (log ‘7~ + log ,)) Ms. This space complesit~, 
which is lillear ill t.he Six! of the CJUtpllt vector iHId f?SSCIltiidy 

linear in the size of a. dense inpulj s\istcni. is an iniport~ant 
feat ure of t.he algorit,hm. 

The glolml tcchnicluc of our Diophantinr solver is simi- 
lar to the randomized algorithm in [i]. The key idea is to 
compute a SIlliLl nuuiber of rat.ional solutions of pcbrturba- 
tions of tlic input system. In [i], the perturbed systems have 
the form U.4L.y = L/6: where U and L are randond~ chosen 
Tocplitz nlat.ric:es. 111 our algorithm, the perturlx31 sj3telrls 
have the form -WV = b. wllcre P is a rilIldOII1 tlmse Inatris. 

Note t1ia.t if 1/ is a rat.ional solution to APy = h? then Pjg 
is a rat.ional solul.ion to thcl original s>-stem :lr = 6. The 
idril is to conlpu tr it srquenc:e 0f tllrse pcrturlxd rational 
solutions which can then hopefull!: be comhinetl to obtain a 
Diophantiuc solut.ion. This suggests an iCera.t.ivt: algorit.hm 
which is supposed to Yonvcrgell t.o a Diophant,ine solution. 
.A worked CXiLIlllJlC’ tlaI~~OI1st~ri11,ing this Wchique is gircn in 

%Ct.iCJIl 2. The Chidh~ge is twOfCJld. First, show how to (-#I- 
cimtly solve t.hc pcrturbcd riltiOIlid syst,enIs. Second, spw- 

if? how to choose the entrim in t,lic perturbation matrices, 
a.nd prom’ that fast, convergcmce can be espcctxxl with these 
choices. 

III [i]: the perturbctl rational sj3tems are solved us- 
ing t.llc \Viedcmann algoritlm together wit,li a Iiomomor- 
phic imaging sclmne; this leads to an algorit,hm which ad- 
mits an easy coarse grain parallclization and expl0it.s the 
possible structure or sparsit,?: of .A. Choosing the U a.nd 
L to lx ‘roeplitz is inlportant I;0 t,llat matrix-vcc%or prod- 
1lct.s involving li and L cl0 not COSl, niore than Inatris- 

vector prod&s involving A. For a \:Cary sparse niat.ris 
1 - I with niimbcr of nonmro ent.rics essentially linear in- 

stead 0f qldrrttic: in IL! this ?lpprOiX:h lC?iltIS to RI1 idgO- 

rithm with running t.ime O- (,rt,” log 9 + JIM (11 log @)) hit op- 
mxtions. For a dense input s>Tstcnl. though: the running 
time is O-( n’l log $ + 71M( 11 log 3)) hit operations. In order 
to prove thal. a small (i.e. logarit,hmic) uumlm of perturbed 
rational sollltions will convcrgc~ t.o a Diophantine solution. 
ent,ries in U and L ilrf? clloscu from a SIIli~ll extension ring of 
the intc~gers. 

Ollr alJprOiKl1 is to solve t.lle p~Xt~llrl~~Yl rational s>-st,enls 
using linear I)-ildic lifiing as &scribed in [4]. In SccGn 5 we 
offer pscvIdo-co&: for t,lIe p-;-t&~ ratiOIlid solwr together with 
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a ruuuiug time aual.l?;sis under Ihe assunlpt~ion Of st.audartl 
aritlirwtic. 

This leaves t;hc question of how t.0 choose eutries in 1-lit 
precouditioniug mabrices P. For practical reasons, we mmuld 
like try itvoid requiriug to work wcr a11 est,eusiOn ring. Itle- 
aI:> entries in P should lx! very sniall intcgcrs so i15 to keep 
grmvtll of numbers 1.0 a minimum. To iIC:lliCVP t.h(b claimed 
runniug time bound for our iteral.ivc Di0plli~Ilt~iIlc solvf)r, WC 
require couwrg(!ncc to il Diopliantinc! so1ut~ion iu a11 espec:k!d 
nunlbcr of O(log 11 + log log ;j) it~erilt~ious. In i.liis paper \vv 
prow that swh a rat,e of couwrgeucc cm lye espcc~cd even 
if the entries iu P are C~OSCII from t.1~ snlallest possible sllh- 
set. Of the ring, namely {I). 1). This proof is biw(ltl OII two 
resu1t.s. First: we giw in Swt,iou 3 a new cllnracteriz;ltioIl 
of whcu a l”f!coriditioIiing uiatris P will be sucwssful wibh 
respect to a given prime y, i,llRt is, wheu y does not al)- 
pear in the doliominator cif t.he pert.urlwd rat.ioual solut.iori. 
Swond: in Swtiori 1 we use it linear algebra bawd couuting 
argunient~. sinlila+ t,o that in [14]. to prove tllilt, a randonil? 
cliosc~i (0. l)-matrix 1’ will bc effect,ivc with respect to 1) 
wit.h probabilit~y at lrnst l/4. The argummts iu %&xi 3 
and 1 use oulp elementary facts about lattiws md vect;or 
spares aud are applicable Over an arbit.rary principal ideal 
domain. 

Llauy syst,cnls arising in practir:e ilr(l rCCtEiIlglllilr arid/or 
siugular and it is dcsirilhle t0 take this irito a.cc0iin~~ when 
desiguiug algorithms. We ~1Ilill~W our algorit,linis in terms 
of the five paraniaters 7). m. I’: 11-Llll. autl Jlbll. IIcrc, I’ is thv 
rank of an 71. x ‘7t1 input matrix =I and II.411 is a lmiutl On 
the maguit~udes of eut.rics in .4 (siulil;lrlJ- for I/6//). Them tlw 
cost of our algoritliui is (7 (7wtr(lOg ~~.4~~)’ + r,3(log llbll)‘) 
bit, OperltiOus. If il xolutiou vecror is produced, it will 
1ia.w entries lmmclctl iu length by C)(,.log(,~~rllAIl) t-log #II) 
bits. WC give the itIldOg0us wsult for solving a. syst.cni 
over the ring F[-Y], F a fitltl. In this case t.ho algorithm 
WCS O- (nmr(dcg .a)’ + m( dcg h)‘) ficltl operations from F. 
Enbrics in solutiou vectors will have degrees hounded by 
qr deg A + deg 6). 

2 Diophantine linear system solving 

III this scc:t,iOri we giw au c?xNllpl(~ riisking clear 110~ Our 
randonGzed algorithni for solving Diopllautine liurar syst,cms 
wt-orks. We Only give an esiurlple Of il full row riuik system, 
leaving t.he d(lf.ails of t.he gcncral case t.0 Section 6. TIP idea 
of t.lie algorithru described licrc is not, only valid for solving 
integer Diophautiue linear svstems. ThcrefOre, WC present 
some results iu this papor hI the mow general scttiug of 
principal ideal tloulains I?. 111 Section G wc specialize t,o the 
(:RSC \vlle11 R = Z old R = F[S], F a field. 

Ilcnccforth let R bc a principal idcal domain aud li it.s quo- 
tifxit ficlcl. 

Let .C E h’“” lx! given. It, is C!ilS\; to see t,hat the wt. Of all 
‘11 E R surh that. ?LL E A!“’ is au itlcal in R. 

Let 2-1 E R”X”’ of rank ‘~1 and b E R’i. ~1’lwrl .-I Iqptms t0 
1.~ a square mat.ris. t.hc y&em .4x = 6 has a Diolkntine 
solution if and only if t,llc unique rat.ioud solution .A-‘6 Of 
the syst.em has denominator a unit from R. If. howcwr, =1 is 
KM H square rimtris, the syshn .4.c = h 1lilS iufinitely IllilIl~ 
rational SoluOions. The idPit is uow to ronihiuc~ fiuit.el?; umuy 

rat.ional solutions t.0 find a possihlc Diopha.utine solut.ion Of 
t11c syste111. 

TO keep all cxprcssions int.egral (i.e. iu R). we represrnt. 
3’ E K”’ by a pair (2, w), where z E R’” md 11: E R such 
t.hat .r = L/IL,. If -4:: = wb then we call t,lic pair (z, UJ) a 
rati0na.l solut.iOn Of t,hc liuenr s\;stcnl .4:c = 0. If in addition 
u: is a unit iu R then wc ca.11 the pair (2, ,u!) a Diophantine 
solution Of t.hc system. 

Tlw idea. Of Our algorithm. also used in [7]. is to take a 
1iIleiW c:Orlll.~illi~t.i(~ll Of Wverill rat,ional sOlutious Of tlw system 
in order to obt.:b it Diophantinc solution. For this we use 
the followiug lemma. 

Itcratiw applicat.iou Of LCIllIllil 2 to combine mow than t\vc 
solution vectors may result in cspression swell. TO avoid this 
we also use t.hc following modified version of the lcwuna.. 

Pwof: .4( y + tq) = Ay + t-&j = v6 + f,n6 = (I! + tn)h. . 

Let (17,~:) a.nd (z~!JL.I) ,... Jzsr u:,) 1~: rational solutious Of 
.-Ix = 6. We can tlicn use Lcmna 3 to coniputc: rational 
solutions (111: ‘~1 j, . : (?J,<. .c,<) Of .A.,: = b: such that, for all i 
we have gc:d(~~, ,21:) = gcd(tul , . u+ : ta). Nest we can use 
Lcrrmla. 2 i.0 cOmput,e a rational solution (i, a) of AX = 6 
such that ri: = gcd(w, ,;;i) = gcd(rr;, ‘II:, , , w.9). 

To gtrt auothcr ra.t.ional soluC~n of =Is = 6: wc apply the 
following result for different choices of P. 

Our i~pproXl1 is to c.:hoose t.hc matrices P rautlonily froni 
{O? l}“lY”. The following esanlple will demonstrate th(-b 
Iucthod t,hat \~e UW. 

Example Let, 

Taking several choices for P we get. the following solut~ious. 
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Wc now use LCIllIllil 3 to combine the sccorld and the third 
rational solution. Since gcd( 15 + 2 G: 10) = gcd( 13,6, 10). 
we get the new ratiansl solutiou 

/r-361 \ 

Then we USC Lemma 2 t,o combine this new rat.ional solution 
with the firs;t rational solut,ion. Since 1 = gcd(l0, 27) = 
-8 . 10 + 3 27. w’f get the new rational solution ([ -52 -30 78 11 I) 71 3 

which is a Diophantine solut,ion of Ax = 6. 

3 Preconditioning 

In the illgorithnl drmonst.ratcd in Section 2 WC niultip1.v t.hc 
mat,ris .A b\; a matrix P in order 1.0 “randomize” the primes 
that. divide bhc denominat,or of the computed rational solu- 
tion J: of the spstcm -4.x = 6. We call t.his yl,econ.tlitio?l~71! 
the svst.em .&I: = b. In t.his section we study when a prime p 
will be present in the denominator of .I:. In fact, we consider 
thr: slightly tnore general situat,ion. when .4t = b dors not. 
newssarilv have a Diophantine solut.ion. 

Let. R be a principal ideal domain. I,cbt. -4 E RtiX”’ be of 
rimk 71 and b E R”. Recall that to keep esprwsions int,egral 
we roprescnt rational solutions of -4s = 6 1,~ orclwetl pairs 
(rj. w) wit,h z E R”’ : II! E R and -4: = ,u+. It is easy to WC 
that. the set of all II: E R such that. there exists a z E R”’ 
with (z: tu) a rational solut.ion of =I.G = b is an ideal in R. 
Definition 5 d(.-l:b) is a ~lenwutw of the ideal 

{II; E R ( 3: E R”‘: =1z = wb} 

t1(.4,6) is the minimal de7komi7rotor that a r:~tional solution 
of -4% = 6 can haw in t,he sense t,hat tl(.4,6) divide t.hcb 
denominator of any rational solution of -4~ = 6. Clrarlp, 
=Ix = 6 has a Diophantinn solution if and only if tE(.A. 6) is 
a unit in R. Note: t,hnt. ti(A: 6) is defined onl- up t.0 mul- 
tiplicat.ion by a unit in R. but, for our purpose this suits 
well. 
Definition 6 A rational sol~~tion (2, IL:) of .kr = b is ccdlcd 
(I solution with minimal denominator ij ‘w is un r~~cinte of 
d(.4; IJ), that is, if u:/t1(.4, b) is n unit i71 R. 

Definition 7 Let p E R he prkne. For II E R we rlefi71e 

ord,(n) us the inntin~um inteyw 7) swh that y” diorr1e.s u. 

‘To get a srquence of rational solutions of the spstcm 
=Ir = h we apply t,he following result for different choices 
of P. 
Lemma 8 Let P E Rr”X’l bc such that .-1P is nor&n.- 

g~~lw, und let I(: be u de7~orninator of (.W)-“b. Then 
(P(to(.W)-‘b), II:) is a mtional solution of -4:~ = b. 
Pl~oof: -4P(u:(AP)--‘6) = u:(AP)(.-LP)-lb = ?I+ and 
P(~w(.4P)-1t~) E Ii?’ since rr:(=IP)-‘b E n”‘. . 

The ltopc is that a r;ltional solut.ion of .4x = 6 constructed as 
in Lemma 8 has no ost.ra prime divisor p in its tlCIlO~lliIli~t.Or~ 
that. is. that ord,,( 71:) = ord,,(d(.4~ 6)). This will in genc~al 
not be true for all primes at once. 

Definition 9 Let p E 12 be prinre. P E R”“‘” is a good 
prcconditioner with respect to p for t.lic system .S.r = h Zj: 

l dP is 7lOll,Si7l~/lk~~~~~ rknd 

l ord,,(w) = ord,>(tl(.-l, 6)): ffJ a tle7koriki7katw of (9P)-‘II. 

The following fact is used in thcb proof of the nest lemma. 
Recall that a square matrix I’ over R is said to be unimod- 
lllar if 1’ is invertible over R? that. is: if I--’ is ovw R. The 
unimodular mat.ric:es over R are prcciselv those with deter- 
miuant. a. unit from R. 

Fact 10 For nn.y 7~nt7G .A E Wx” uj run& ‘I?, there: ezisls 
n unint.odulnr rr~atriz \,- E R”‘x’7i surh that .-IT’ = H = 
[ HI 0 1. ,wht:re HI is nxu nnd nonsirlg7alar. For ezample~ 
‘wt: talk tnbe H to DC l.h,e collr7nn Htmnite n.owrd jam of .-I 

(see [I 11). 

Proof: Let, 1. and H be as in Fact 10. We claim that w 
can take for II’ the first 71 rows of V-‘. Let I-, E R be prime. 
Since I,,‘--’ is also over R and unimodular it is clear that TT’ 
has rank 1). module p. 

This shows that, 19’ satisfies the first property of the 
lemma. We now show that IT- sat.isfies the second prop- 
erty of the lemma. Let: P E R”’ X” 
Since A = Hl--’ and H = [ HI 

iUlC1 RSSUlllC! I),/ det(TT’-P). 
0 ] wvc ha.w 

e-t = H, TV. (1) 
It follows that .4P = HI TI’P is nonsingular since HI is non- 
singular and M’P is nonsingular module 11. It remains to 
show the second propertp of Definition 9. Let (y. d) be a 
rat.ional solution of .4.x = 6 with minimal denominator, that. 
is, dy = t/b with d an associate of ct( .4,6). Subst.ituting (1) 
into -4~ = d6 yields H;‘b = l/d H-2/. Then 

(M-lb = (H,TT’P)-lb 
= (lI-P)-1TIT;‘6 

1 
= ddfqlr-P) 

dct(li-P)(1i-P)-‘Ii-!/ (2) 

Let. w 1x a tlcnominator of (.-IF’-‘b. From (2) WC see 
that w((d det( r,IrP)) since tlet.( I,\,-P)( TI‘P)-lU’g is oocr R. 
It follows t,hat. ord,,( w) 5 or&,(d) since b,v ilSSUItlI)t ion 
IJ/ dct.(U’P). On the ot.hc!r hand, we must have r&(d) < 
ord,,( n:) since (P(u!(-4P)-‘b). (13) is a. rational solution of 
:1.~ = 6 (by Lemma 8). It, follo\vs that ()rd,,(t/>j = ortl,,(d). 
,Thus, P sat,isfies the two properties of Definition 9 and is a 
good conditioner wit,li respect to 1). . 

Let, p E R be prime and let (3: Li) bc a rat,ional solution of 
.-lx = 6 resulting (as in Section 2) from combining several 
riltional solutions 0btRinfXl by using several preconditioncrs 
P. III order that there bc no E!Stril factor 1) in ,ciq - i.e. 
ord,,(tir) = orcl,(tl(.-l. 6)) - it is requitwl that at, least 0~ 
of thcw matrices P is ii good preconditioucr of -4.l.c = 6 with 
respect. to p. For this it. suffices t,hat p,/ drt.( TYP). 111 the nc!st. 
section we u-ill stwlv 1.hc prol)abilit~ t.hat ii. prim0 divides 
&t( wrj W~LW 1’ E -{cl. I-}“> ,’ 7’ is chosen at random. 
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4 Probability of good preconditioning 

III this section we will prove t.he following theorem. 

Theorem 12 Let .4 E R7’X”1 of ~urrk 11. and h E R”. Let 
11 E R be prime. The probuDilitg that n mndomly chosen 
P E (0: 1}‘7zy” is (1. good prccondi.tioner for .-Z;r = b *with 
wspect to p is at least I/3. 

For a matrix .A over a field F we will denote by C(A) the 
colunlr~---span of A over F: that is: C(A) is the vector space 
generated by the columns of A. When .4 has zero colun~ns, 
C(.4) = (0). R.ecall that a matrix .4 E F’““” of mnk s is in 
reduced column echelon form if: the last n - s columns are 
zero; %I < i? < &, where for I < j 5 s, the first, nonzero 
ent,r,v in colunln j occurs in row i, ; Ai, :j = I a.nd A,, .k = 0 
for 1 5 j 5 s, k # j. For example, 

-1 0 0 o- 
* 0 0 0 
* 0 0 0 
0 1 0 0 
0 0 1 0 
* * * 0 

is in reduced column echelon form with s = 3 and [il: iz, is] = 
[l: 4, 51. Any matrix can be transformed to reduced column 
echelon form using only clcrnentary column operations; this 
ltraves t,hc: rank aud colunm -span unchanged. 

Lemma 13 Let F be afield und N E F’“X” of ranks. Then 

#{u E (0: 1}‘,1 1 u E C(N)} < 2”. 

Proof: \$Ythout loss of generality we may assun~c that. iV is 
in reduced column echelon form and has full colu~nn rank. 
For 2: E F” we have 

ivx E (0, l}“, * x E (0, l}y. 

Since C(N) = {Nx 1 :I: E F”}, the lemma follows easily. l 

Definition 14 A matrix K is (I right--kernel for a mutriz 
-4 if =1K = 0 and for all 3’ such that .4x = 0, we huve 
L E C(h-). 

Lemma 15 Let F be a field, W E F’lX” and P E F”‘Xt 
s*uch th.at WI’ has full colwnn rank. Let Ii be a righ.t-kernel 
for IV. T/Len for ~1 E F”’ : 

IV [ P u ] has full column rank e ‘11. $ C( [ I< P I). 

Proof: Whm t = 0, the lmma holds. So assume t > 
0. 14’ P u ] has full column rank if aud only if I$‘u $ 

5 C(WP . Suppose IVu E C(WP), say WIT. = WPT for ;c E 
Ft. Then u-P:r E C(K) and thus u E C:( [ K I’ 1). When 
‘(1. E C([ h’ I’ 1): then Wu E C:(W [ K P 1) = C(WP). 
. 

Lemma 16 Let F he a field and TV E F”““’ of rank II. 
Then for 0 5 t 5 n: 

#(P E (0: l}“‘xt 1 Ci’P bus rank t} 

Moreover, when K is a 
P E {O> l}‘rryL 

righ,t kernel for IV and 

rank( [ A’ 
is such that rauk(T,t’P) = t? then 

P ] ) = 111 - 1, + t. 

Prooj: By inductiou to t. The lemma trivially holds for 
t = 0. Now assume that the lemma holds for YOIIIC 0 5 t < n. 

Write P E (0: l}r'fx(t+l) as [ Q 'u 1. wlierc & E 
{O, ljmxl and ‘u E (0, 1)“‘. From Le~n~ua 15 it follows that 

rank(WP) = t+l M rmk(WQ) = t and u $ C([ li Q I). 

Frmn this and the induction hypothesis it follows that wlreu 
rank(l%WP) = t + 1; then rank( [ Ii Q 1) = 111. - n + t and 
7~ @ C([ 1i & 1): and thus rank([ Ii Q II, 1) = III. - 
n + t + 1. By the induction hypothesis t,hcre are at least 
2”‘! (1 - (+)“-‘+I) ‘. (1 - (4)“) matrices & E (0: l}“‘xt 
such that rank(WQ) = t. From Lemma 13 we see t.hat 
for each Q E (0: 1) ““I such that rank(K-Q) = t, there arc 
at le,ast 2’” - 21nenft vectors U E (0, I}“’ such that ‘0. 6 
C([ K Q 1). Tl ie inequa1it.y follows for t + 1. . 

Corollary 17 Let F be a field u71d IV E Fnxlrr of rank II. 
When we choose a randonl P E (0: l}‘nx”, then the probo- 
hility that It’P is nonsingrllar is at least 

(+...(l-(;y) >I/4 

Proof: The inequality is well knowu (SW for exan~ple [s]). 
The result follow-s from Lenma 16 (take f = n). . 

Now WC can prove Throrem 12. 

Proof: (of Theorem 12) Let 14: bc a nlatris as in Lemma 11. 
Then P is a good preconditiouer for .4x = b with respect toy: 
when p/ det(WP). Now apply Corollary 17 wit.11 F = R/pR. 
. 

5 Rational linear system solving 

Let R bc a principal ideal domain and Ii it,s quot,icnt field. 
Every linear system 

Ax = b, A E R”xn, ht.4 # 0: b E R” (3) 

adn1it.s a unique rational solution n: E K’“. III t,his sect.ion 
we recall how to recover z using p-iLdiC lifting and rat.ional 
reconstruction. The algorithm is applicable when R = Z 
or R = F[S]. We preseut the algorithm first. for the case 
R = Z. The result for R = F[S] IS analogous and will be 
given in the sequel. For 2 a vect.or or matrix over Z, we 
denot,e by I(21 1 the xuaxiulal magnitude of all entries. 

The method we present, here is similar t,o that described 
in [4, 131. One of our contribut.ions here is to give a.n 
analysis in t,errns of t,hc parameters 11Aij and ( IbJI inst,cad 
of a conmon paramet,cr p = niax(ll=1Il. [[/>[I). In part.icu- 
lar, our analysis shows that even if entries in b have length 
O(,rl(log 71. + log 11A41j)) bits, the asymptotic running t.ime of 
the algorithm remaius unchanged [see Theorem 20.) This 
feature is exploited in [l]. 

Before prcscut.ing the algorithm we first bound the size 
of the rational solutiou x t.o (3). The following well knowu 
bounds follow from Hadaulard’s iuequalit,y and Cram&s 
rule [6]. 

Fact 18 Idct Al < n.‘L/2jl.411N. A4 oreover, (det. .4).x: is over 
Z and satisfie.s Il(det -4)x11 5 7b71”)11All”-111bll. 

184 



Algorithm RatioualSolver(A, 6,~) 
Input: .4 E R”““, b E R”, p E R. 
Output: Either NIL or x E Ii” such t.hat .A.r = 6. 
(1) [Initia.lizc:] 

N := r\‘unlc!ratorBouIl~l(~~, 6); 
D := Dcllominat.orBourid( =I); 
L := LiftingBound( N. D); 
if p I det. .4 then 

B := mod(.Kl,y) 
else 

return NlL 
fi; 

(2) [Lift:] 
z ‘- 0 n 7 I ‘- I 
c := b: 
M := 1; 
while Size(M) < L do 

F := rnod(c,p): 
5 := mod( BT: p); 

c := (c - .42)/p; 

t := z + Arz; 

AI := My 

od; 

(3) [Reconstruct:] 
.r := R.ationalRecomtruction( z, Al; N. D); 
return z 

Figure 1: .4lgorithm R.ationalSolvcr 

Nest we define the mod fuuction. Let u E Q have dcnoul- 
inat,or relat.ivc!l; prime t.o p E N. Then mod(u,p) returns t.he 
unique inkger c: 0 5 c < p: which is congriicnt. to (L mod- 
ulo y. If S is a uiatris or vector, theu niod(~Yri:pj rcturus 
S with all entries rrduced ulodulo p. The algorithm for 
solving (3) is now eiti)- to describe. Wc ~HSIUUC we have a 
p E M: p > 1, p I det A. (We write p I det A Co niea.ii p 
is relatively prime to det A.) Then J: 1la.q a unique p-adic 
expansiou z = 20 + 2lp + z$ + where each 2, E Z” 
SiltiSfiCS ti = xnod( zi: p). We use liucar p-adic lifting t,o corn- 
pute the first 1: terms of this expansion for larg~~~ougli k; 
that, is, find .3 = to + ‘lp + ‘@ 2 + . ” + z&lp SO ttlilt. 

1 = nlod(z. M) with A1 = p”: and then recover .t: from z 
using rational reconstruction (see [3]). 

Fact 19 Let 2 E Z und N: D, IV E N be given. If AI > 
2ND, then there exists at most one x E Q with, z = 
mod(x, Af) and with numerator and denominutor bounded 
in magnitude by N und D respectively. If )zI 5 AI then such 
an :c C(L~L be recovered in 0 ((log AI)‘) bit operations. 

The algorithm for solving (3) is shown in Figure 1. The 
reconstruction phase is performed using the algorit.hm of 
Fact. 10. The remaining fku.:t.ions used in the algorithm can 
bc defiucd as follows: 

l ~umeratorBolln(i(.~,h) + L,,““((d(l”-‘l(b((]~ 

l DeIlominatorBolInd(.-l) + L,T~“‘” 1 I.41 I”] ; 

l LiftillgRountl(N, D) -+ 2ND; 

0 Size(M) + M. 

Theorem 20 (I? = Z) Algorithm Ra.tiouiZ%lver is correct. 
The cost of the alqorithne is Dounded by 

0 (n”(log I/ + log 11-q + logp)z + r,(log llbll,‘) 

Proof: TO c:onlput.c! det .A in tht! hitiidiz;tt.ion pIlit% 

aud dcteruliuc~ B at. t.he SRII~L’ tirucb in cast p I ckt =1 - first. 
reduce all mtries of :1 uiotlulo p aud apply Gaussiau vliuli- 
uation. This requires 0 (rl’(log II-AII)(logy) + n”(logp)“) bit 
operatious. The co9 bound for the recorlstriict,ioli phase fol- 
lows from Fact 10. It renAus t.o bou~~d the cost, of the: lift- 
ing phase. The while loop iIupl(meuts linear p-itdic lift.ing: 
after t.he i-th it.cration wc have z = ~ll~(l(d-‘b,p’) iind c = 
(b-&)/pi. Let, E = nlog n+2rt log Il.+ll+log ~~6~~+logp+l. 
Then log I 1: I 1: log 1 Ic( 1: log M 5 E holds t.hroughout the cons 
putation. For a siugle pass through the loop, the cost of 
computiug Z is bour~lctl by 0 (n’(logp)‘) bit, operations; 
t.hc cost of the rculainiug computations arc bouutlcd by 
O(,m!5 logp) bit opcratious. Noting t.hat t.hc uunlber of itera- 
tions of t,hc while loop is at, most LE/ IogpJ : we arrive at a t,o- 
tal cost, bound for the while loop of 0 (n’E logp + rlE’) bit 
operatious. This simplifies to O( Tl + ‘Tz + T:3) bit operations 
where Tl = ~,“(log rl+log (I=IJl+logp)‘. TL = ?1(10g ll6l)’ autl 
F3 = t~L!(iOg~)j(iOgI(b((). if log ((6(( < ,7t.l0gp thcu T? < T1. 
Otherwise, log ) 161 I 2 71 log 1) and TT.I < Tl. The result follows. 
. 

Kow cousider the case whcu R = F[S], F R field. Let 
CL E F(S) have d(!noIiiin;ltor relatively priuic t,o p E F[.Y]. 
Then ruod(a, p) returus the uuiquc polyuoulial c:. 0 < deg c < 
deg p: which is rougruent. t.0 0 uiodulo p. For 2 a vector or 
matrix over IJ[S]: we denote by (leg 2 the uiariuial degree 
of all entrics. .4ualogous to Fact. 18 we ham! the following 
clcgrcv bour~ds for t.hc solutiotl x-vc’t.or R: to (3). 

Fact 21 tlcy, det .4 5 ‘n drg .A. Mmmxr, (drt. -4)~ is me7 
F[S] und ,srltisjks deg( (tlvl; d).r) 2 (n - 1) dc:g -4 + dcg 6. 
‘Thus. degrees of nunicrat~ors autl dcIloItiili;icors ilplwariag hi 

x will bc lXJUIltlCd by !v = 71 deg .A illld D = (71 - 1 ) tlcg d i- 

dvg 6 rcspcctivc~ly. .4ualagous to Fa(:t 19. recovering ~.hese 
mtries using rai,ional rcc.onst.ruction requires liftiug lip to 
degree bound AI > X + D and COS~.S 0 ( A,f “) fkld op~ri~.- 
tions. The functions us~l in algorithm R at~ioualSolrcr ciul 
be tlcfiwd as follows: 

l ~\;linicratorBourId(=l: 6) + (n - 1) clcrg .a + dcg 6; 

l DeIloniillatorBound(-~) + n deg .A; 

l LiftixigBountl(~~, D) + N + D; 

Theorem 22 (n = F[S]) Algorith?rL RationalSolver is 
correct. Th.e cost of ulgorithrn. is bormded by 

field operuthrs fwlrl F. 

Proof; The proof is anihlogous to that for Tlmrcm 20. 
Let E = 2u dcg -4 + dcg b+ dt~gp. Thcu rleg I, deg c: dcg 111 < 
E holds throughout the lift,iug 1~11;lsc: >Uld the nunh:r of it- 

erak)ns of the while loop is bounded by LE/ tl~g 111. FOI 
ii siuglc pass through the loop. t.he cost of conirmtiug 5 is 
~muidecl by 0 (IL’ (tlcgp)‘) a11t1 tliv rcmaiuiug (muiput atiou 
by O(r,E tlcgp) field opcratious. The result follows. . 
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6 Diophantine linear system solving (general case) 

In this section we will describe a probabilistic algorithm to 
solve a Diophantine linear system in the general? not neces- 
sarily full row rank case. In fact, the algorithm will compute, 
wit,h prescribed probability of success, a solution with min- 
imal denominator, if one exists. When the system hils a 
Diophantinc solution, then a solution with minimal denom- 
inator is a Diophant.ine solution. 

We present the algorithm first for the case R. = Z. The 
result for R = F[S] is analogous and will be given in the 
sequel. 

The algorithm is presented in Figure 3. The idea is to 
first ext,ract a full row rank subsystem which has the same 
solution space. This subsystem is then solved using the al- 
gorithm indicated in Section 2. Finally, it will be checked if 
the solution found for the subsystem is also a solution of the 
original system. 

In algorithm DiophantincSolver we have used the follow- 
ing functions: 

l -VumberOfIterations(~/~, E) + [logc,,7,(2 1og2(2/.)/c)1; 

l ExtcndcdGCD( IL, V) 
+ (d: s: t) with d = gcd(u; w) = SII, + tv, 1.51 5 1.~1: 

ItI I I.4 
We also use algorithm Split, described in Figure 2. 

Algorithm Split(w. U) 
Input: V,U E R. 
Output: t E R. such that tl~ and for all primes p we have: 

x := W’ 
t := u’ 
while .): # 1 do 

x := gcd(x> t); 
t := t/x 

od; 
return 1. 

Figure 2: Algorithm Split 

Theorem 23 (R = Z) Algorithm Split is correct. When 
Iz’I < Iul, its cost is bounded by 0 ((log 1~1)‘) bit operations. 

Proof: The correctness of the algorithm is evident. Let 
~0,. ? zs be the sequence of subsequent values of X. Since 
always ItI 5 1~~1, the cost of the algorithm is bounded by 
O(C,“~~(lOg(~()(lOg(Zi()) = O((lOg~~U~)(lOg(~OXl “‘2,s-11)) 
bit operations. Since :~.oz~l ~~-1 1~: the result follows. l 

Lemma 24 For ‘11, v, w E R: 

Proof: Since for dlu: ‘U we have Split(,u/d; u/d) = Split(?), ,u) 
it, suffices to prove the lemma W~EII gcci(v, ‘u:: 11.) = 1. Let 
plu be prime. When plv, then p[Split,(,u, ,u), w and when 
P/P). t,hen plSplit(~u, u). From this the lrmma follows. l 

186 

Algorithm DiophantineSolver(,: h: 6) 
Input: 9 E R’1X7”, b E R”; F > 0. 
Output: Either KIL or a rational solution of .4x = b. 
(1) [Initialization:] 

s := ~umbcrOfPrimes(-~): 
S := set, of Y primes; 

(2) [Find rank and determine subsystem:] 
M := [log2(2/c)1; 
r:= -1; 
for i to hf do 

6 := a random element, from S; 
i := the rank of A modulo 6; 
ifP>rthen 

p:=@; 
I’ := p 

fi 
od; 
Q: P := submatrices of permutation matrices such that 

Q.4P is an r x ‘r submatrix of A which is 
nonsingular module p; 

B := Q-4; 
c := Qb; 

(3) [Get initial solution:] 
y := RationalSolver(BP, c,p); 
?I, := least common multiple of denominators in y; 
2: := P(uq); 

(4) [Refine solution:] 
N := l\l:umberOfftcratiolis(,u., E); 
y := 0. 
‘7~ := 0; 
for 1: to N while gcd(~,t~) # 1 do 

Comment ~XOW BT = U.C; By = z’c 
P := a random matrix from {O? 1)“‘““; 
p := a random element from S; 
q := R.ationalSolver(BP! c: y); 
if q # ML then 

‘u: := least common multiple of 
denominators in y; 

if gcd(v, W, .(I) # gcd(v! u) then 
t := Split(v, u); 
2 := P(wq); 
y := y + tz; 
w:=w+tw 

fl 
fi 

od; 
(d: s, t) := ExtendedGCD@, v); 
x := ST + ty; 

(5) [Cheek solution:] 
if Ax = db then 

return (:l;, d) 
else 

ret urn NIL 
fi 

Figure 3: .4lgorithm DiophantincSolver 



Theorem 25 (R = Z) Suppo.se Ax = b bus a rational solu- 
tion. Th.en DiophantineSolvcr(.;l, b, e) ~tll return a rational 
,sohtion (5! FL) of .4x = b with minimal dcn.ominator, ,with 
probabeility ut least 1 - 6. 

Proof: .4ssurr1c that. -4s = b has a rat,ional solution and let, t 
be the rank of .4. Then -4 has a t x t nonsingular submat,ris 
(i. F~OIII Hadamard’s bound we see that t.he det.(.i) has at 
most s/2 different prime divisors. 1Vhc11 li does not divide 
det(.i), then the F computed for 5 is equal to t. So the 
probability that i < 1. for a random ?j from S, is at, most 

l/2. So the probability that the ra.nk r computed in st,cp (2) 
equals t is at lcasl; 1 - (l/2)“’ > 1 - f/2. 

Since, in step (3), BP is nonsingular module p? 
RationalSolver(BP, c: p) will return a solut,ion. So after step 
(3): w. is well defined and (2, u) is a rational solution of 
Bx=c. 

Let i, E Z be prime. Suppose P E (0, l}“lx” is a good 
preconditioner for Bx = c with respect to $, p E Z is a prime 
such that, p,J det( BP): Q = RationalSolver( B P, c, p) and w is 
the denominator of cl. Then (P(,w~), W) is a rational solution 
of Bt = c and ordp(PL:) = ordc(d(B,c)). 

For a random P from {0, 1}“1x” we have that P is a 
good prcconditioner for B:c = c with respect t.o 6 wit,11 
probability > l/4. When BP is nonsingular, we see from 
Hadamard’s bound that det.(BP) 1 ia-5 at most s/2 different 
prime divisors and so; for a ranclom y from S. the proba- 
bility that pi dct(BP) is at. most l/2. We see that, in one 
iteration of the loop in st,ep (a), w’c get with probabiltiy at. 
least l/8: a rational solution (4: u:) of Bx = c such that 
orclp(xu) = ordp(cl(B? c)). When at, the end of st.ep (4), 
we still have o&(d) > ordfi(d(B,c)), then we never had 
ordp(tu) = ordc(d(B!c)) in t.he loop. This happens with 
probability at most. (i/8)“. So the probability that at the 
end of st.ep (4): we still have ord,t(cf) > ordg(d(B.c)) for 
some prime divisor @ of 71, is at most log,(u)(i/8)” 5 e/2? 
since ‘~1. has at most log,(?l) prime divisors. So the probabil- 
ity that ord,j(d) = ordp(d(B,c)) f or all primes fi is at least 
1 - E/2. 

When the computed rank Y’ of -4 equals t. then a solution 
with minimal denominator of BL = c is also a solution mit.h 
minimal denominator of .4x = b. So the probability that 
DiophantineSolvcr(.;1: b: E) will return a solut,ion of Ax = b 
with minimal denominator is at least (1 - e/2)’ > 1 - E. l 

Theorem 26 (R = Z) The cost of algo’ithm Diophantinc- 
Solver is bounded by 

0 ((rtrnr(logrrl + log 11.411)’ + m(log llbll)“) N) 

bit ope7,ation.s where N = O(log(l/e) + log r + log log 11=111) 
and P’ is th,e rank. of -4. The solution vector will satisjy 
log ~~x~~ = O(rlog(nzll-411) + log llbll). 

Proof: For S we take the set of first s primes. From [12, 
Corollary l] it follows that for 1 2 6 t.he number of primes 
5 /(log 1)” is at least. 1. From this WC can derive that. primes 
in S have length bounded by O(log m + log log ~~~4~~) bits; 
we use this length bourld implicitly throughout. the rest of 
the proof. The set S can be found in the allot,ed time using 
standard sieving t.echniques [2: Theorem 9.8.11. 

TO compute the rank of =1 module $ - and determine 
CJ and P - first reduce all entries of .4 modulo fi and 
then perform Gaussian eliminat.ion 1noc11do fi. This requires 
0(72m(log IIsAIJ)(lOgfi) + nmr(logj)‘) bit. operations. It fol- 
lows that step (2) can be completed in the allotcd time. 

Yote that step (3) can be considcrecl as one iteration of 
th loop in st,cp (4). Since (IBP(I 5 ,ml(Al( and I(cII 5 IIbll, 
the CCJSt of 011~ CA1 to R.ationalSolvc:r(BP: c, p) is bounded by 
0(7’“(log(~~~II=lll))‘)$-T(log llbll)‘) bit operations. By Fact 18, 
w 5 r’l”(mll-4II)’ and llzll 5 rr”l”(n~Il.4ll)‘-‘Ilt)lI. In step 
(3), P is a permutat.ion matris, so IIBP(I 5 J/All which leads 
to slight,ly better bounds for 71. and ~~x~~. By Fact. 18, ‘II 5 
rr~~~~~4~~” ant1 llzll 5 r”‘IIAII”-’ llbll; the c:laimed bound 
for N follows from this bouncl for u. So far, we have that 
the bit, length of ‘Y,,: IltlI ant1 WC11 xu, I ItI I is bounded by 
O(rlog(mjJ.4II) + log llbll). Now we show t.hat the size of v 
and [!!I I remains small. Not,e that v and I lgl I will bc modified 
only If gcd( L’: ‘w, U) < gcd(u, u); the number of times this cm 
happen is boundc!d by log, ‘u. From this, and the bounds 
previously cst.ablished for ‘1~. II:. I(z((, and t,he fact that 0 <_ 
t < ‘u., it follows easily that, the bit length of w a.nd of entries 
in y remains homdctl by O(r log(mll=lll) + log ~~b~~). From 
these bou~Icls on the size of numbers, the claimed size bound 
for the output vector 11~11, as well as the running time for 
Steps (4) Xld (5): fOllOWS easily. . 

Now we consider t,he case when R = F[S]? F a field. The 
fuctions used in DiophantincSolvcr can be defined as follows: 

l NunlberOfPrirrlcs(.4.) + 2 min(,r,, m) dcg(.4); 

0 Nilml)erOfft~eratiorls(~/r; E) + [log(,,,, (2 deg(lc)/e)l; 

l ExtendedGCD( u; 1:) 
+ (d? s. t) with d = gcd(,u. .v) = su + t.11, 

deg(s) < cleg(ll), deg(t) < deg(n). 

Theorem 27 (R = F[S]) Algorithm Split ,is correct. When 
dcgrr < degv, its cast is bounded by 0 ((deg ,u)‘) field oper- 
ations. 

Proof: Analogous to the proof of ‘Theorem 23. . 

Theorem 28 (R = F[9]) Suppose .4x = b has a rational 
sol&ion. Then Diophant.ineSolver(A4. b: E) will r&m a ra- 
tional sol&ion (2.6) of Ax = b with minimal denominator, 
with probability ut leust 1 - F. 

Proof: The proof is similar t.o the proof of Theorem 25. l 

Theorem 29 (R = F[.Y]) The cost of al!lorithm Diophan- 
tinesolver is bounded by 

0 ((nntr(deg .A)’ + m(degb)‘) . N) 

field opemtiom where IV = O(log l/e + log 7' + log deg A) and 
r is the runX: of -4. The solution vector will sutisfy dcgx = 
O(r deg =1+ deg b). 

Proof: The analysis is very similar to the proof of Theo- 
rem 26. 1Ve only have to say a few words about the con- 
st.ruction of S. Let. q = #F. 

11’hen s 5 qz we can take for S the polynomials X - a, 
where a belongs to sonIe subset of F of size s. 

Otherwise compute 1 such that q’-‘/(2(1 - 1)) < .s and 
d/(21) > s. It is easy to see t,hat I = O(log, s). From 
[lo. Exercise 3.271 it follows t,hat, t,here are at least, .s manic 
irreducible polynomials of degree 1 over F. 

When 1 = 2: we can compute S by eliminating {(S - 
rl)(-Y - b)la, b E F} from the set of all manic polynomials 
of dcgrcc! 2. Since #F < s this can bc done in the allotted 
time. 
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When I > 2, w’c con~pute the set of all manic irreducible 
polynomials of degree I. To check n-hethcr a pol,ynomial is ir- 
reducible WC ust! part, of Berlckamp’s fact.orizat.iou algorithm 
(SW [6]). The cost of this check is l~Our&xl by O(Z” log y-t 1”) 
field operations. So the c~)st. for generating S is in this case 
bounded by 0 (q’(1’ log q + 1”)). Since q < (2s(l - 1))““-l) 
and !/(I - 1) < 2 we can bound the cost of generating S 
by o(,sm~-l) f(log(s))) = O(a’), whcrc f is a polynomial. 
From this it follows t1la.t. we can construct S in the Aot.t.ed 
time. . 

7 Conclusions, extensions and future work 

We have present,cd a landoniixc~d algorithm for computing 
particular solutions to systems of linear Diophant,ine eyua- 
tions. The running time IS csscntiallp cubic in t.hc dimension 
of the input system and the SpiKX' requirement, essentially 
linear in the oiit,put. size. In t,his paler me offer det,ailed 
pseudo-code: implementation should be straightforward in 
any system which offers support for long integer arithmetic. 
\Ve also show how to estencl the algorithm to solve liiiear 
systems over the ring of polynomials with coefficients from 
a field. 

The algorithm is it,erativc and randomized. Each it.clra- 
tion involves post -multiplication by il prccomditioriiIig Inil- 
trix which hiiS ciitrics chosen randomly from { 0: l}. We use 
a key idea from [7]: which is to combine severa.l “random” 
rat.ional solutions to get. a Diopha.nt,ine solution. 

The t.ransfer from structured (Tocplitz) preconditioners 
in [7] to unst,ruct,urcd (dense) precouditioucrs in t.his paper is 
reminiscent of the transfer from [9] to [5]. In both casts the 
possible need for ring or field c~stcnsions has been eliminat,ed. 

A feature of our algorit,hiii is that eut.ries in the prccondi- 
tioning mat.rices are chosen randomly from (0, I}. We prove 
that the algorithm will converge in an espcct~ctl number of 
O(log IL + log log 11-411) it,erations using these random (0. l}- 
mat.riccs. .A possible modificat,ion is to choose the element,s 
of the random ma.trices from a slightly larger set,. Doing 
this, w: (‘an show t,hat. the algorithm will converge in an 
espcct,ed constant number of it,crat,ions, independent. of the 
size of the input system. Iii this way, the complexit?; of t,hc 
algorit,hm is improved by a fact.or O(log n +log log I1.41 I). An- 
other modifica.tion we have esplorc:d is t.o choose part, of the 
lX~ldOlIl preconditioning matrices fixed; t.his will improve the 
probability that the preconditioning is effcct.ivc. .A t,horough 
analysis, in the same spirit as in this paper: of the eflect,iw- 
ness of random matrices as described above will be given, 
together with applic:itt.ions, in the near fllture. 

The following questions arc still open and need sOmc fur- 
ther study. Are the Diophantine solutions generat,ecl by our 
algorithm in some sense randomly distributed? Call OIW 
make an analysis: similas t,o t,hc one in Section 1: for struc- 
tured matrices’! This might, be useful t.o improve the results 
in [7]. 

The running time estimate for our Diophautinc solver 
is doiuinaiitecl by the cost of solving rationitl systcnis. We 
have recalled how t.o accomplish this in O-(TL’( log a)‘) bit 
operatioiis using linear p-adic lifting. Our analysis assumes 
st.andard, quadrat,ic integer arit,hmet,ic. We remark that this 
analysis Can be improved using Sul~~piltl~i~tic: illtcgcr arith- 
metic. The idea is to use quadratic lift,ing to first. const,ruct 
the inverse of A niodulo pk for b = @(log,, /j): md tlml solve 

the system using linear p”-adic lifting. Using this approach 
we can prove a running time of O-( tc”Ai(log;‘;))) bit oper- 

ations. The deta.ils of the analysis will be presented in a. 
future paper. 

Currently, the algorithm presented hcrc does not certify 
inconsistency of an input system which does not admit a 
sol&on. 111 [8] a randomized a.lgorithm is described which 
solves this problem. Another possibility for future work is to 
combine the techniques developed in tdis paper wit,11 those in 
[8] to get an algorit.hm - wit.11 running time essent.ially cubic 
in the dimension of the syst.enl - tllilt will either compute 
a Diophantine solut,ion or mill certif?; l.hat, such a solution 
dots not exist. 
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