Diophantine Linear System Solving

Thom Mulders

Arne Storjohann

Institute of Scientific Computing
ETH Zurich, Switzerland
{mulders, storjohal}@inf.ethz.ch

Abstract

A simple randomized algorithm is given for finding an integer
solution to a system of lincar Diophantine equations. CGiven
as input a system which admits an integer solution, the al-
gorithin can be used to find such a solution with probability
at least 1/2. The running time (number of bit operations) is
essentially cubic in the dimension of the system. The anal-
ogous result is presented for lincar systems over the ring of
polynomials with coeficients from a field.

1 Introduction

Solving a system of linear Diophantine equations is a clas-
sical mathematical problem: given an integer matrix 4 and
vector b, the goal is to find an integer vector x that satisfies
Ax = b. We present a simple randomized algorithm for solv-
ing this problem. We also show how to adapt the algorithm
to solve linear systems over the ring of univariate polynomi-
als with coefficients from a ficld. The algorithm is casy to
implement, memory efficient, and faster than previous meth-
ods. The algorithm is probabilistic in the following sense. If
a solution vector is returned it is guaraunteed to be correct.
On the other hand, the algorithm does not currently certify
inconsistency and may return NIL for a system which does
admit a solution; the chance of this happening is bounded
by a user specified error tolerance ¢ > 0.

For the moment we restrict the discussion to integer sys-
tems; the case for polynomial systems is analogous. In this
paper we analyse our algorithms under the assumption of
standard, quadratic integer arithmetic. Let O(M (¢)) bit op-
crations be sufficicnt to multiply two #-bit integers. Then
standard arithmetic has M(t) = t>. FFT-based methods
allow M(t) = tlogtloglogt.

Let n be the larger of the row or column dimension of a
linear Diophantine system Az = 0. Let 3 be a bound on the
magnitudes of entries in A and b. If Ax = b admits an integer
solution for x, then it admits an integer solution with cntries
having length O(n(logn +log 3)) bits — this bound is tight
in the worst case. The algorithm we present here uses an
expected number of O (-71.3(1()g ,-9)2) bit operations to return

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and
that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. ISSAC *99,
Vancouver. British Columbia, Canada. @ 1999 ACM 1-58113-073-2
/1Y /07§ 5.00

181

a solution with this size bound. For input systems with
log 3 small compared to n, this improves on the previousty
tastest algorithm which uses O™ (n* log 3 + nM(nlog 8)) bit
operations in the worst case [7]. Moreover, the algorithm
we present here, like that in {7], requires additional storage
for only O (n*(logn +log B)) bits. This space complexity,
which is linear in the size of the output vector and essentially
lincar in the size of a dense input system, is an important
feature of the algorithm.

The global technique of our Diophantine solver is simi-
lar to the randomized algorithm in [7]. The key idea is to
compute a small number of rational solutions of perturba-
tions of the input system. In [7], the perturbed systems have
the form U ALy = Ub, where U and L are randomly chosen
Toeplitz matrices. In our algorithm, the perturbed systems
have the form APy = b, where P is a random dense matrix.
Note that if y is a rational solution to APy = b, then Py
is a rational solution to the original system Ax = b. The
idea is to compute a scquence of these perturbed rational
solutions which can then hopefully be combined to obtain a
Diophantine solution. This suggests an iterative algorithm
which is supposed to “converge” to a Diophantine solution.
A worked example demoustrating this technique is given in
Section 2. The challenge is twofold. First, show how to effi-
ciently solve the perturbed rational systems. Second, spec-
ify how to choose the entrics in the perturbation matrices,
and prove that fast convergence can be expected with these
choices.

In [7], the perturbed rational systems are solved us-
ing the Wiedemann algorithm together with a homomor-
phic imaging scheme; this leads to an algorithm which ad-
mits an casy coarse grain parallelization and exploits the
possible structure or sparsity of A. Choosing the U and
L to be Toeplitz is important so that matrix-vector prod-
ucts involving U and L do not cost more than matrix-
veetor products involving 4. For a verv sparse matrix
A, with number of nonzcro entries essentially linear in-
stead of quadratic in w, this approach leads to an algo-
rithm with running time O™ (n” log 8 + nM (nlog /3)) bit op-
erations. For a dense input system, though, the running
time is O™ (n'log 3 + nM (nlog 3)) bit operations. In order
to prove that a small (i.e. logarithmic) number of perturbed
rational solutions will converge to a Diophantine solution,
entries in U7 and L are choscn from a small extension ring of
the integers.

Our approach is to solve the perturbed rational systems
using linear p-adic lifting as described in [4]. In Section 5 we
offer pscudo-code for the p-adic rational solver together with

a running timme analysis under the assumption of standard
arithmetic.

This leaves the question of how to choose entries in the
precouditioning matrices . For practical reasons, we would
like to avoid requiring to work over an extension ring. Ide-
aly, entries in P should be very small integers so as to keep
growth of numbers to a wminimmum. To achieve the claimed
running time bound for our iterative Diophantine solver, we
require convergence to a Diophantine solution in an expected
number of O(log n + loglog 3) iterations. In this paper we
prove that such a rate of convergence can be expected even
if the entries in P are chosen from the smallest possible sub-
set. of the ring, namely {0,1}. This proof is based on two
results. First, we give in Section 3 a new characterization
of when a preconditioning matrix P will be successful with
respect to a given prime p, that is, when p does not ap-
pear in the denominator of the perturbed rational solution.
Second, in Section 4 we use a linear algebra based counting
argument, similar to that in [14], to prove that a randomly
chosen {0, 1}-matrix I’ will be effective with respect to p
with probability at least 1/4. The arguments in Section 3
and 4 use only elementary facts about lattices and vector
spaces and are applicable over an arbitrarv principal ideal
domain.

Many systems arising in practice are rectangular and/or
singular and it is desirable to take this into account when
designing algorithins. We analyse our algorithms in terms
of the five paramaters », m, v, [|4]|, and |[b]]. Here, r is the
rank of an n x m input matrix 4 and [|4]| is a bound on
the magnitudes of entries in A (similarly for ||b]]). Then the
cost of our algorithm is O (nnr(log||4|])* + m(log [|8]])?)
bit operations. If a solution vector is produced, it will
have entries bounded in length by O(r log(m]|4]]) + log |b]])
bits. We give the analogous result for solving a system
over the ring F[X], F a field. In this case the algorithm
uses O (nmr(deg A)* + m(degh)?) field operatious from F.
Entries in solution vectors will have degrees bounded by
O(r deg A + degb).

2 Diophantine linear system solving

In this section we give an example making clear how our
randomized algorithm for solving Diophantine lincar systems
works. We only give an example of a full row rank system,
leaving the details of the gencral case to Section 6. The idea
of the algorithm described here is not only valid for solving
integer Diophantine linear svstems. Therefore, we present
some results in this paper in the more general setting of
principal ideal dowains R. In Section 6 we specialize to the
case when R =Z and R = F[X], F a field.

Henceforth let R be a principal ideal domain and K its quo-
tient ficld.

Let € K™ be given. It is casy to see that the set of all
% € R such that ue € R™ is an ideal in R.

Definition 1 For x € K™, a generator of the ideal of all
u € R such that wx € R" s called o denominator of x.

Let 4 € R"*™ of rauk n and b € R". When 4 happens to
be a square matrix, the svstem 4dx = b has a Diophantine
solution if and only if the unique rational solution A~'b of
the system has denominator a unit from R. Tf, however, A is
not a square matrix, the system Aw = b has infinitely many
rational solutions. The idea is now to combinc finitely many

182

rational solutions to find a possible Diophantine solution of
the system.

To keep all expressions integral (i.c. in R). we represent.
€ R™ by a pair (z,w), where z € R™ and w € R such
that @ = z2/w. If 4z = wb then we call the pair (z,w) a
rational solution of the linear system 4x = b. If in addition
w is a unit in R then we call the pair (z,w) a Diophantine
solution of the system.

The idea of our algorithm, also used in [7], is to take a
linear combination of several rational solutions of the system
in order to obtain a Diophantine solution. For this we use
the following lemma.

Lemma 2 Let (z,w) and (y,v) be rational solutions of
Az =b. Let d,s,t € R such that d = ged(w,v) = sw + to.
Then (sz + ty,d) 1is a rational solution of Ax =b.

Proof: A(sz+ty) = sAz+tAy = swh+tvb = (swttv)b = db.e

Tterative application of Lemma 2 to combine more than two
solution vectors may result in expression swell. To avoid this
we also use the following modified version of the lemina.

Lemma 3 Let (z,w), (y,v) and (q,w) be rational solutions
of Az =b. Lett € R such that ged(v+tu, w) = ged(v, u, w).
Then (y + tq,v + tu) is a rational solution of Az =b.

Proof: A(y +tq) = Ay + tAq = vb + tub = (v + tu)b. °

Let (z,w) and (z1,w1),..., (5s,ws) be rational solutions of
Axr = b We can then use Lemma 3 to compute rational
solutions (y1,01),- -, (ys. vs) Of Az = b, such that for all :
we have ged(v;, w) = ged(wn, ..., wi,w). Next we can use
Lemma 2 to compute a rational solution (2,@) of dxr = b
such that @ = ged(w, vy) = ged(w,wy, ..., w,).

To get another rational solution of Ar = b, we apply the
following result for different choices of P.

Lemma 4 Let P € R™ ™. If (z,w) is a rational solution
of APx =D, then (Pz,w) 15 a rational solution of Ax =b.

Our approach is to choose the matrices P randomly from
{0,1}"*". The following example will demonstrate the
method that we use.

Example Let

12 1 3
‘42[2532]

Taking scveral choices for P we get the following solutions.

"0 1 T 07 70
10 10 11

P 10 00 01
0 1| 0 1] 11

, 3 4 3 3 6 6
AP gy 7 2 9 10
6 3 =G

4 -7 -13 21
” 10 iE 6
=TT T 8 71T 2]

6 8 -1

Pq 6 0 21
[T I T O O O

We now use Lemma 3 to combine the second and the third
rational solution. Since ged(15 + 2 - 6,10) = ged(15, 6, 10),
we get the new rational solution
—36
6
42
—15

. 27

Then we use Lemina 2 to comnbine this new rational solution
with the first rational solution. Since 1 = ged(10,27)
—8-10 + 3 - 27, we get the new rational solution
-52
—30
78
11

1

which is a Diophantine solution of 4x = b.

3 Preconditioning

In the algorithin demonstrated in Section 2 we multiply the
matrix 4 by a matrix P in order to “randomize” the primes
that divide the denominator of the computed rational solu-
tion x of the system Ax = b. We call this preconditioning
the system Az = b. In this section we study when a prime p
will be present in the denominator of . In fact, we consider
the slightly more general situation, when Ax = b does not
necessarily have a Diophantine solution.

Let R be a principal ideal domain. Let 4 € R"*™ be of
rank 1 and b € R". Recall that to keep expressions integral
we represent rational solutions of Ax = b by ordered pairs
(z,w) with z € R, w € R and 4z = wh. It is easy to sce
that the set of all w € R such that therc exists a z € R"
with (2, w) a rational solution of Ax = b is an ideal in R.

Definition 5 d(4,b) is a generator of the ideal
{weR|3z€ R™: 4z = wb}.

d(A4,b) is the minimal denominator that a rational solution
of Az = b can have in the sense that d(A4,b) divides the
denominator of any rational solution of Ax = b. Clearly,
Ax = b has a Diophantine solution if and only if d(4.b) is
a unit in R. Note that d(4,b) is defined only up to mul-
tiplication by a unit in R, but for our purpose this suits
well.

Definition 6 A rational solution (z,w) of Ax = b is called

@ solution with minimal denominator if w is an associate of
d(A,b), that is, of w/d(4,b) is @ unit in R.

Definition 7 Let p € R be prime. For a € R we define
ordp(a) as the mazimum integer n such that p” divides a.

To get a sequence of rational solutions of the system
Az = b we apply the following result for different choices
of P.

Lemma 8 Let P € R™™" be such that AP is nonsin-
gular, and let w be o demominator of (AP)"'b. Then
(P(w(AP)™'b),w) is a rational solution of Az =b.

Praof: AP(w(AP)™'b) = w(AP)(AP) b = wb and
P(w(AP)™'b) € R since w(AP)"'b € R™. .

The hope is that a rational solution of Az = b constructed as
in Lemma 8 has no extra prime divisor p in its denominator,
that is, that ord,(w) = ord,(d(A,b)). This will in gencral
not be true for all primes at once.

183

Definition 9 Let p € R be prime. P € R™™ is a good
preconditioner with respect to p for the system Ar = b if:

o AP is nonsingular, and
o ord,(w) = ord,(d(4, b)), w a denominator of (AP)™1b.

The following fact is used in the proof of the next lemina.
Recall that a square matrix V" over R is said to be unimod-
ular if V' is invertible over R, that is, if V™! is over R. The
unimodular matrices over R are precisely those with deter-
winant a unit from R.

Fact 10 For any matric A € R™*™ of rank n, there erists
o unimodular matric V€ R™ ™ such that AV = H
[H 0] where Hy is nxn and nonsingular. For ezample,
we can take H to be the column Hermaite normal form of A

(see [11]).

Lemma 11 Let 4 € R"™™ of rank n and b € R". There
exists a W € R"*™ such that for every prime p € R:

o W has rank n modulo p.
° FOT 1; c an.:(n.:

P P is a good preconditioner for
pldet(WWP) = Ax = b with respect to p.

Proof: Let ¥V and H be as in Fact 10. We claim that we
can take for W the first » rows of V™1, Let p € R be prime.
Since ¥ 7! is also over R and unimodular it is clear that 1
has rank n modulo p.

This shows that T satisfies the first property of the
lemma. We now show that W satisfies the second prop-
erty of the lemma. Let P € R™*" and assume p [det(1°P).
Since A= HV ' and H=[H; 0] we have

A =H1W (1)

It follows that AP = H W P is nonsingular since H, is non-
singular and WP is nonsingular modulo p. It remains to
show the second property of Definition 9. Let (y.d) be a
rational solution of Az = b with minimal denominator, that
is, Ay = db with d an associate of d(A4,b). Substituting (1)
into Ay = db yiclds H;'b = 1/d- Wy. Then

(AP)" ' (HWP)™ '
WPy *H ™
Wr) H

1 . e
ddec (W P) det(WP)YWP)” Wy (2)
Let w be a denominator of (AP)™'b. From (2) we see
that w|(d det(W P?)) since det(W P)(W P)"'Wy is over R.
It follows that ord,(w) < ord,(d) since by assumption
pfdet(WP). On the other hand, we must have ordy(d) <
ord,(w) since (P{w(AP)™'b),w) is a rational solution of
Az = b (by Lemma 8). It follows that ord,(w) = ord,(d).
Thus, P satisfies the two properties of Definition 9 and is a
good conditioner with respect to p.)

Let p € R be prime and let (2,4) he a rational solution of
Az = b resulting (as in Section 2) from combining several
rational solutions obtained by using several preconditioners
P. In order that there be no extra factor p in @ — i.e.
ord, (@) = ordy(d(.1.b)) — it is required that at least one
of these matrices P is a good preconditiouer of Aw = b with
respect to p. For this it suffices that p [det(1W P). In the next
section we will study the probability that a prime divides
det(IW P) when P € {0,131 is chosen at random.

4 Probability of good preconditioning

In this section we will prove the following theorem.

Theorem 12 Let 4 € R*™™ of rank n and b € R". Let
p € R be prime. The probability that a randomly chosen
P e {0,1}™*" is a good preconditioner for 4r = b with
respect to p is ot least 1/4.

For a matrix 4 over a field F we will denote by C(4) the
column-span of A over F, that is, C'(A4) is the vector space
generated by the columns of 4. When 4 has zero columns,
C(A4) = {0}. Recall that a matrix 4 € F"*" of rank s is in
reduced column echelon form if: the last n — s columns are
zero; iy < d»... < is, where for 1 < j < s, the first nonzero
entry in column j occurs in row 4;; 4;; ; =1 and A;; » =0
for 1 < j < s, k#j. For example,

1 0 0 0
* 0 0 0
* 0 0 0
01 00
0 010
* x % 0

is in reduced column cchelon form with s = 3 and [i1,42,143] =
(1.4,5]. Any matrix can be transformed to reduced column
echelon form using only clementary column operations; this
leaves the rank and column -span unchanged.

Lemma 13 Let F be a ficld and N € F™*™ of rank s. Then
#{u € {0,1}" |ue C(N)} < 2°.

Proof: Without loss of generality we may assume that N is
in reduced column echelon form and has full column rank.
For 2 € F'* we have

Nz € {0,1}" = z € {0,1}".
Since C(N) = {Nz | z € F*}, the lemma follows easily. e

Definition 14 A matriz K is o right-kerncl for a matriz
A dif AK = 0 and for all © such that Ax = 0, we have
x € C(K).

Lemma 15 Let F be o field, W € F**™ and P € F™*¢
such that W P has full column rank. Let K be o right-kernel
for W. Then for w e F™:

W[P wu) has full column rank & ug C([K P).

Proof: When t = 0, the lemma holds. So assume t >
0. W [)P w] has full column rank if and only if Wu ¢
C(WP). Suppose Wu € C(WDP), say Wu = WPz for x €
F'. Thenu—Pr € C(K)andthusu € C([K P). When
weC([K P]) then WueC(W[K P]) = C(WP).
[]

Lemma 16 Let F be a field and W € F**™ of rank n.
Then for 0 <t < mn:
#{P € {0,1}"** | WP has rank t}

o (-7 0-())

Moreover, when K is o right kernel for W and
P € {0,1}"™"" s such that rank(WP) = t, then
rank([K P])=m—n+t.

Proof: By induction to t. The lemma trivially holds for
t = 0. Now assume that the leinma holds for some 0 < ¢ < n.

Write P € {0,1}"*¢*D as [Q wu], where Q €
{0,1}™** and » € {0,1}". From Lemma 15 it follows that

rank(WP) =t+1 g rank(WQ)=tandu ¢ C([K Q]).

Fromn this and the induction hypothesis it follows that when
rank(WP) =t + 1, then ra.nk([K Q]) =m-—n+tand
wg C(|K Q)), and thus rank(| K Q u]) = m —
n 4+t + 1. By the induction hypothesis there are at least
gm! (1 - (%)"_H_') <+ (1= (3)") matrices @ € {0,1}™*¢
such that rank(W@Q) = ¢t. From Lemma 13 we see that
for each @ € {0,1}"™! such that rank(W Q) = t, there arc
at least 2™ — 2"~ vectors u € {0,1}™ such that u ¢
C([K Q]). The inequality follows for t + 1. .

Corollary 17 Let F be a field and W € F™*™ of rank n.
When we choose a random P € {0, 1Y% then the proba-
bility that W P is nonsingular is at least

(-9 (-)

Proof: The inequality is well known (see for example [5]).
The result follows from Lemma 16 (take t = n). .

Now we can prove Theorem 12.

Proof: (of Theorem 12) Let W be a matrix as in Lemima 11.
Then P is a good precondisioner for Ax = b with respect to p,
when p[det(W P). Now apply Corollary 17 with F = R/pR.

5 Rational linear system solving

Let R be a principal ideal domain and K its quotient field.
Every linear system

Ar=b, A€ R, detA#0, be R" (3)

admits a unique rational solution 2z € K. In this section
we recall how to recover z using p-adic lifting and rational
reconstruction. The algorithm is applicable when R = Z
or R = F[X]. We present the algorithm first for the case
R = Z. The result for R = F[X] is analogous and will be
given in the scquel. For Z a vector or matrix over Z, we
denote by || Z|| the maximal magnitude of all entries.

The method we present here is similar to that described
in [4, 13]. Onec of our contributions here is to give an
analysis in terms of the parameters ||A]] and ||b]] instead
of a common parameter S = max({[|4][,|[b|[). In particu-
lar, our analysis shows that even if entries in b have length
O(n(log n + log{l4]])) bits, the asymptotic running time of
the algorithm remains unchanged (see Theorem 20.) This
feature is exploited in [1].

Before presenting the algorithm we first bound the size
of the rational solution z to (3). The following well known
bounds follow from Hadamard's inequality and Cramer’s
rule [6]. :

Fact 18 |det 4| < n"/?||A||". Morecover, (det A)zx is over
Z and satisfies ||(det A)x]| < n™/2||Al|" 1 b]).

Algorithm RasionalSolver(4,b, p)
Input: A€ R**™, be R", p€ k.
Output: Either NIL or # € K™ such that Ax = b.

(1) [Initialize:]
N := NumeratorBound(4, b);
D := DenominatorBound(4);
L := LiftingBound(N, D);
if p 1 det 4 then

B :=mod(47,p)
else
return NI1L
fi;
(2) [Lift:]
2= 011-‘/. 1,
c:=b;
M =1,

while Slze(M) < L do

¢ := mod(c, p);

z := mod{Bg, p);
¢:=(c—AZ)/p;
zi=z4+ Mz

M = My

od;

3) [Recoustruct:]
z := RationalReconstruction(z,
return x

M, N,D):

Figure 1: Algorithm RationalSolver

Next we define the mod function. Let ¢ € Q have denom-
inator relatively prime to p € N. Then mod(a, p) returns the
unique integer ¢, 0 < ¢ < p, which is congruent to a mod-
ulo p. If X is a matrix or vector, then mod(X,p) returns
X with all entries reduced modulo p. The algorithm for
solving (3) is now easy to describe. We assume we have a
peN p>1 p L detd (We write p L det 4 to mean p
is relatively prime to det A.) Then & has a unique p-adic
expansion £ = 2o + 2up + 32])2 + -+- where each z; € Z"
satisfics z; = mod(z;,p). We use linear p-adic lifting to com-
pute the first & terms of this e\pauslon for la.rgc enough k,
that is, find 2 = 20 + z1p + ~2p + - 4 2p_1pt 7! so that
z = mod(z._A-I) with M = p¥. and then recover & from z
using rational reconstruction (see [3])-

Fact 19 Let : € Z and N,D,M € N be given. If M >
2N D, then there exists at most one x € Q with z
mod(z, M) and with numerator and denominator bounded
in magnitude by N and D resppctwely If|z| < M then such
an x can be recovered in O ((log M)?) bit operations.

The algorithm for solving (3) is shown in Figure 1. The
reconstruction phase is performed using the algorithm of
Fact 19. The remaining functions used in the algorithm can
be defined as follows:

NumeratorBound(A4,b) — [a™/2{|4]1" " {|l();
LA
e LiftingBound(N, D) = 2ND;

¢ DenominatorBound{.4) —

Size(M) — M.

[y

Theorem 20 (R = Z) Algorithm RationalSolver is correct.
The cost of the algorithm. is bounded by

O (n*(log n + log [|4]] + log p)* + n(log |[b]])*)
bit operations.

Proof: To compute det 4 in the initialization phase -
and determine B at the same time in case p L det 4 — first
reduce all cutries of A modulo p and apply Gaussian elimi-
nation. This requires O (n”(log ||-4]])(log p) + »”(log p)*) bit
operations. The cost bound for the reconstruction phase fol-
lows from Fact 19. It remains to bound the cost of the lift-
ing phase. The while loop implements linear p-d(ll(lifting:
after the i-th itcration we have z = mod(A™'b,p') and ¢ =
(b—Az)/p'. Let E = nlog n+2nlog || A||+1og ||I;||+locrp+1
Then log {|=]]. 1og ||¢|], log Al < E holds throughout the com-
putation. F01 a single pass Llnough the loop the cost of
computing z is bounded by O (n (log p)*) bit operations;
the cost of the remaining computations are bounded by
O(nFElog p) bit operations. Noting that the number of itera-
tions of the while loop is at most [E/log p], we arrive at a to-
tal cost bound for the while loop of O (n” Elogp + nE?) bit
operations. This simplifies to O(Ty + T2+ T3) bit operations
where Ty = n®(log n+log {|4||+log p)*. T» = n(log|[b||)* and
T3 = n2(log p)(log ||b|}). 1f log||b|] < nlogp then T3 < Ti.
Otherwise, log ||b]| > nlogp and T3 < T. The result follows.
o

Now cousider the case when R = F[X], F a field. Let
a € F(X) have denominator relatively prime to p € F[X].
Then mod(a, p) returns the unique polynomial ¢, 0 < dege <
deg p. which is congruent to ¢ modulo p. For Z a vector or
matrix over F[X], we denote by deg Z the maximal degree
of all entries. Analogous to Fact 18 we have the following
degree bounds for the solution vector z to (3).

Fact 21 degdet.4 < ndegA. Moreover, (det A)x is over
F[X] and satisfies deg((det 4)x) < (n— 1) deg 4 + degh.

Thus, degrees of numerators and denominators appearing in
z will be bounded by N =ndegdand D=(n—-1)deg A+
degh rc-spo(tiwlv Analagous to Fact 19, recovering these
cntries using rational reconstruction 1(qur(‘s lifting up to
degree bound M > N + D and costs O (M?) held opera-
tions. The functions used in algorithm RationalSolver can
be defined as follows:

e NumecratorBound(d,b) — (n — 1) deg .4 + degb;
e DenominatorBound(A) — ndeg A;

e LiftingBound(N,D) =+ N + D;

o Size(M) — deg M.

Theorem 22 (R = F[X]) Algorithmn RationalSolver
correct. The cost of algorithm is bounded by

O (n®(deg 4 + degp)” + n(degb)?)
field operations from F.

5

Proof: The proof is analogous to that for Theorem 20.
Let ' =2ndeg A+degb+degp. Then deg =, dege, deg M <
E holds throughout the lifting phase and the number of it-
eralions of the while loop is bounded by |E/degp|. For
a single pass through the loop. the cost of computing Z is
bounded by O (n*(degp)?) and the remaining computation
by O(nE degp) field operations. The result follows. .

6 Diophantine linear system solving (general case)

In this section we will describe a probabilistic algorithm to
solve a Diophantine linear system in the general, not neces-
sarily full row rank case. In fact, the algorithm will compute,
with prescribed probability of success, a solution with min-
imal denominator, if one exists. When the system has a
Diophantine solution, then a solution with minimal denom-
inator is a Diophantine solution.

We present the algorithm first for the case R = Z. The
result for R = F[X] is analogous and will be given in the
sequel.

The algorithm is presented in Figure 3. The idea is to
first extract a full row rank subsystem which has the same
solution space. This subsystem is then solved using the al-
gorithm indicated in Section 2. Finally, it will be checked if
the solution found for the subsystem is also a solution of the
original system.

In algorithm DiophantineSolver we have used the follow-
ing functions:

e NumberOfPrimes(4)
— 2| min(n, m)log, (min(n, m)'/?m{|A4|]) |;

o NumberOflterations(u, €) = [logs/7)(2log,(u)/€);

e ExtendedGCD(u,v)
— (d.s,t) with d = ged(u, v) = su+ tv, |s| < |v|,
[t < lul.

We also use algorithm Split, described in Figure 2.

Algorithm Split(v, u)
Input: v,u € R.
Output: t € R such that t|u and for all primes p we have:

{ plt = pfv
plu/t = pl
T = v;
ti= u;
while z # 1 do
= ged(x,t);
t:=t/x
od;
return ¢

Figure 2: Algorithin Split

Theorem 23 (R = Z) Algorithm Split is correct. When
lv| < |ul, its cost is bounded by O ((log |u|)*) bit operations.

Proof: The correctness of the algorithm is evident. Let
Zo,-...,xs be the sequence of subsequent values of x. Since
always {t| < |u|, the cost of the algorithm is bounded by
O(X27Z; (log |ul)(log [z:1)) = O((log [ul)(log [zoz1 - - - xs-1))

bit operations. Since xoz1l-- - zs—1|u, the result follows. e

Lemma 24 For u,v,w € R:
ged(v + Split(v, u)w, u) = ged(v, w, u).

Proof: Since for d|u,v we have Split(v/d, u/d) = Split(v, u)
it suffices to prove the lemma when ged{v, w,u) = 1. Let
plu be prime. When plv, then p)Split(v,u),w and when
plv. then p|Split(v,u). From this the lemma follows. .

186

Algorithm DiophantineSolver(A4, b, ¢)
Input: 4 € R"*™ b€ R", ¢ > 0.
Output: Either NIL or a rational solution of Az = b.
(1) [Initialization:]
$:= NumberOfPrimes(4);
S := set of s primes;

(2) [Find rank and determine subsystem:]
M := [log,(2/e)];
r.=-1;
for i to M do
p = arandom element from S;
7 := the rank of A modulo p;
if # > r then
p:
T

’

=33,

o

fi

od;

@, P := submatrices of permutation matrices such that
QAP is an r x r submatrix of 4 which is
nonsingular modulo p;

B :=(Q4;

c:= Qb;

(3) [Get initial solution:]
¢ := RationalSolver(BP, ¢, p);

2 := least common multiple of denominators in ¢;
x = P(ug);

(4) [Refine solution:]
N := NumberOflterations(u, €);
y:=0
v:=0;
for i to N while ged(u,v) # 1 do
Comment Now Bz = uc, By = vc
P := a random matrix from {0,1}™*";
p = a random element from S;
q := RationalSolver(BP, c, p);
if ¢ # NIL then
w := least common multiple of
denominators in g;
if ged(v, w, u) # ged(v, u) then
t := Split(v, u);

z 1= P(wq);
y:=y+iz;
vi=v+tw
fi
fi

od;

(d, s,t) := ExtendedGCD(u, v);

T = 8T + ty;

(5) [Check solution:]
if Az = db then
return (x,d)
else
return NIL
fi

Figure 3: Algorithin DiophantincSolver

Theorem 25 (R = Z) Suppose Ax = b has « rational solu-
tion. Then DiophantineSolver(4,b,¢) will return a rational
solution (£,4) of Az = b with minimal denominator, with
probability at least 1 — €.

Proof: Assume that Az = b has a rational solution and let ¢
be the rank of 4. Then A4 has a ¢ x ¢t nonsingular submatrix
A. From Hadamard’s bound we see that the det(4) has at
most 3/2 different prime divisors. When p does not divide
det(A), then the # computed for $ is equal to £. So the
probability that # < ¢, for a random p from S, is at most
1/2. So the probability that the rank r computed in step (2)
equals ¢ is at least 1 — (1/2) > 1 —¢/2.

Since, in step (3), BP is nonsingular modulo p,
RationalSolver(BP, ¢, p) will return a solution. So after step
(3), v is well defined and (z,u) is a rational solution of
Bx =c.

Let p € Z be prime. Suppose P € {0,1}™*" is a good
preconditioner for Bx = ¢ with respect to p, p € Z is a prime
such that pJ det(BP), ¢ = RationalSolver(BP, ¢, p) and w is
the denominator of g. Then (P(wq), w) is a rational solution
of Bx = ¢ and ord;(w) = ords(d(B, ¢)).

For a random P from {0,1}™*" we have that P is a
good preconditioner for Bx = ¢ with respect to $ with
probability > 1/4. When BP is nonsingular, we see from
Hadamard’s bound that det(BP) has at most s/2 different
prime divisors and so, for a random p from S, the proba-
bility that p| det(BP) is at most 1/2. We see that, in one
iteration of the loop in step (4), we get with probabiltiy at
least 1/8. a rational solution (2,w) of Bx = ¢ such that
ords(w) = ordz(d(B,c)). When at the end of step (4),
we still have ord;(d) > ord;(d(B,c)), then we never had
ord;(w) = ordg(d(B,c)) in the loop. This happens with
probability at most (7/8)". So the probability that at the
end of step (4), we still have ordz(d) > ords(d(B.c)) for
some prime divisor p of u is at most log,(u)(7/8)" < €/2,
since « has at most log,(u) prime divisors. So the probabil-
ity that ord;(d) = ords(d(B,c)) for all primes p is at least
1—¢/2.

When the computed rank r of 4 equals ¢, then a solution
with minimal denominator of Bz = ¢ is also a solution with
minimal denominator of 4z = b. So the probability that
DiophantineSolver(4,b, €) will return a solution of Az = b
with minimal denominator is at least (1 —¢/2)>>1—¢. e

Theorem 26 (R = Z) The cost of algorithm Diophantine-
Solver is bounded by

O ((nanr(logm + log || A|})* + m(log [|b]])*) - N)

bit operations where N = O(log(1/e) + logr + loglog || 4][)
and r is the rank of A. The solution vector will satisfy
log [|z]| = O(rlog(m||-A|l) + log [[b]]).

Proof: For S we take the set of first s primes. From [12,
Corollary 1} it follows that for I > 6 the number of primes
< I(logl)? is at least. I. From this we can derive that primes
in S have length bounded by O(logm + loglog || 4]|) bits;
we use this length bound implicitly throughout the rest of
the proof. The set S can be found in the alloted time using
standard sieving techniques [2, Theorem 9.8.1].

To compute the rank of 4 modulo § — and determine
@ and P — first reduce all cntries of A modulo p and
then perform Gaussian elimination modulo p. This requires
O(nm(log || 4|])(log p) + nmr(log p)*) bit operations. It fol-
lows that step (2) can be completed in the alloted time.

187

Note that step (3) can be considered as one iteration of
the loop in step (4). Since ||BP|f < m||A|| and [|c]| < []8][,
the cost of one call to RationalSolver(BP, ¢, p) is bounded by
O(r®(log(1n||4]]))2 +r(log [|b]|)?) bit operations. By Fact 18,
w < "2 (m]| A" and ||z} < 720 |A]])"7[b]]. In step
(3), P is a permutation matrix, so ||BP|| < ||A|| which leads
to slightly better hounds for v and ||z||. By Fact 18, u <
2| Al and ||z|| < 73| A]]"7")[8]]; the claimed bound
for N follows from this bound for u. So far, we have that
the bit length of u, |[x|| and cach w, [[z|| is bounded by
O(r log(m||4]|) + log ||b]]). Now we show that the size of v
and [|y|| remains small. Note that v and ||y|| will be modified
only if ged(v, w, u) < ged(v, u); the number of times this can
happen is bounded by log, u. From this, and the bounds
previously established for u, w, ||z||, and the fact that 0 <
t < u, it follows easily that the bit length of v and of entries
in y remains bounded by O(rlog(m||4[|) + log||b]|). From
these bounds on the size of numbers, the claimed size bound
for the output vector ||x||, as well as the running time for
steps (4) and (3), follows easily. .

Now we consider the case when R = F[X], F a ficld. The
fuctions used in DiophantineSolver can be defined as follows:

e NumberOfPrimes(A) — 2min(n, m) deg(.4);
o NumberOflterations(u, €) — [log g/, (2 deg(n)/€)];

o ExtendedGCD(u, v)
— (d, s.t) with d = ged(u, v) = su + tv,
deg(s) < deg(v), deg(t) < deg(u).

Theorem 27 (R = F[X]) Algorithm Split is correct. When
degv < degu, its cost is bounded by O ((degu)?) field oper-
ations.

Proof: Analogous to the proof of Theorem 23. °

Theorem 28 (R = F[X]) Suppose Arxr = b has a rational
solution. Then DiophantineSolver(.4.b,€) will return a ra-
tional solution (&,4) of Az = b with minimal denominator,
with probability at leust 1 — e.

Proof: The proof is similar to the proof of Theorem 25. e

Theorem 29 (R = F[X]) The cost of algorithm Diophan-
tineSolver is bounded by

O ((nmr(deg A)* + m(degb)?) - N)

field operations where N = O(log 1/e+1og r +log deg A) and
r is the rank of A. The solution vector will satisfy degx =
O(r deg A + degb).

Proof: The analysis is very similar to the proof of Theo-
rem 26. We only have to say a few words about the con-
struction of S. Let q = #F.

When s < ¢, we can take for S the polynomials X — a,
where a belongs to some subset of F of size s.

Otherwise compute [such that ¢'~'/(2(! — 1)) < s and
¢ /@2 > s. It is casy to see that [= O(log,). From
[10, Exercise 3.27] it follows that there are at least s monic
irreducible polynomials of degree [over F.

When ! = 2, we can compute S by eliminating {(X —
a)(X — b)|a,b € F} from the set of all monic polynomnials
of degree 2. Since #F < s this can be done in the allotted
time.

When [> 2, we compute the set of all monic irreducible
polynomials of degree I. To check whether a polynomial is ir-
reducible we use part of Berleckamp’s factorization algorithm
(see [6]). The cost of this check is bounded by O(I* log g +1*)
field opcrations. So the cost for generating S is in this case
bounded by O (¢'(I*log ¢ + I*)). Since ¢ < (2s(1 —1))/¢=1)
and I/(I — 1) < 2 we can bound the cost of generating S
by O(s"¢=V f(log(s))) = O(s%), where f is a polynomial.
From this it follows that we can construct S in the allotted
time.)

7 Conclusions, extensions and future work

We have presented a randomized algorithm for computing
particular solutions to systems of linear Diophantine equa-
tions. The running time is essentially cubic in the dimension
of the input system and the space requirement essentially
linear in the output size. In this paper we offer detailed
pseudo-code; implementation should be straightforward in
any system which offers support for long integer arithmetic.
We also show how to extend the algorithm to solve linear
systems over the ring of polynomials with coefficients from
a field.

The algorithm is iterative and randomized. Each itcra-
tion involves post-multiplication by a preconditioning ma-
trix which has entries chosen randomly from {0,1}. We use
a key idea from [7], which is to combine several “random”
rational solutions to get a Diophantine solution.

The transfer from structured (Toeplitz) preconditioners
in [7] to unstructured (dense) preconditioners in this paper is
reminiscent of the transfer from [9] to [5]. In both cascs the
possible need for ring or field extensions has been eliminated.

A feature of our algorithm is that entries in the precondi-
tioning matrices are chosen randomly from {0,1}. We prove
that the algorithm will converge in an expected number of
O(log n + loglog || 4|}) iterations using these random {0, 1}-
matrices. A possible modification is to choose the elements
of the random matrices from a slightly larger set. Doing
this, we can show that the algorithm will converge in an
expected constant number of iterations, independent of the
size of the input system. In this way, the complexity of the
algorithm is improved by a factor O(log n+loglog ||4(]). An-
other modification we have explored is to choose part of the
random preconditioning matrices fixed; this will immprove the
probability that the preconditioning is effective. A thorough
analysis, in the same spirit as in this paper, of the effective-
ness of random matrices as described above will be given,
together with applications, in the near future.

The following questions are still open and need some fur-
ther study. Are the Diophantine solutions generated by our
algorithm in some sensc randomly distributed? Can one
make an analysis, similar to the one in Section 4, for struc-
tured matrices? This might be useful to improve the results
in [7].

The running time estimate for our Diophantine solver
is dominanted by the cost of solving rational systems. We
have recalled how to accomplish this in O (n®(log 3)?) bit
operations using linear p-adic lifting. Our analysis assumes
standard, quadratic integer arithmetic. We remark that this
analysis can be improved using subquadratic integer arith-
metic. The idea is to use quadratic lifting to first. construct
the inverse of A modulo p* for k = O(log, 3). and then solve
the system using linear p*-adic lifting. Using this approach
we can prove a running time of O (n*Af(log 8)) bit oper-

188

ations. The details of the analysis will be presented in a
future paper.

Currently, the algorithm presented here does not certify
inconsistency of an input system which does not admit a
solution. Tn (8] a randomized algorithm is described which
solves this problem. Another possibility for future work is to
combine the techniques developed in this paper with those in
(8] to get an algorithm — with running time essentially cubic
in the dimension of the system — that will either compute
a Diophantine solution or will certify that such a solution
docs not exist.

References

[1] ABBOTT, J., BRONSTEIN, M., AND MuULDERS, T. Fast
deterministic computation of determinants of dense ma-
trices. These proceedings.

(2]

BacH, E., AND SHALLIT, J. Algorithmic Number The-
ory, vol. 1 : Efficient Algorithms. MIT Press, 1996.

Couruing, G. E., AxD ENCARNACION, M. J. Efficient
rational number reconstruction. Journal of Symbolic
Computation 20 (1995), 287—297.

Dixox, J. Exact solution of linear equations using p-
adic expansions. Numer. Math. 40 (1982), 137-141.

EBerLY, W. Processor-efficient parallel matrix inver-
sion over abstract fields: Two extensions. In Second
Int'l Symp. on Parallel Symbolic Computation: PASCO
97 (1997), M. Hitz and E. Kaltofen, Eds., ACM Press,
pp. 38-45.

GEDDES, K. O., Czaror. S. R., AND LABAHYN, G. Al-
gorithms for Computer Algebra. Kluwer, Boston, MA,
1992.

GIESBRECHT, M. Efficient parallel solution of sparse
systems of linear diophantine equations. In Second Int’l
Symp. on Parallel Symbolic Computation: PASCO 97
(1997), M. Hitz and E. Kaltofen, Eds., ACM Press,
pp- 1-10.

GIESBRECHT, M., LoBo, A., AND SAUNDERS, B. D.
Certifving inconsistency of sparse linear systems. In
Proc. Int’l. Symp. on Symbolic and Algebraic Compu-
tation: ISSAC '98 (1998), O. Gloor, Ed., pp. 113—119.

KALTOFEN, E., AND PaN, V. Processor-efficient par-
allel solution of linear systems II: The general case. In
Proc. 38rd IEEE Symposium on Foundations of Com-
puter Science (Pittsburgh, USA, 1992), pp. T14-723.

Libi, R., AND NIEDERREITER, H. Finite Fields.
Addison-Wesley, 1983.

NEWMAN, M. Integral Matrices. Academic Press, 1972.

(9]

[10]

(11]

[12] Rosser, J. B., AND SCHOENFELD, L. Approximate
formulas for some functions of prime¢ numbers. Il J.

Math. 6 (1962), 64-—94.

VILLARD, G. Calcul Formel et Parullélisme: Resolution
de Systemes Linecaires. PhD thesis, L'Institut National
Polytechnique de Grenoble, 1988.

[13]

[14] WikpEMANN, D. Solving sparse linear equations over
finite ficlds. IEEE Trans. Inf. Theory IT-32 (1986),

54-62.

