
A Solution to the Extended GCD Problem with Applications*

Arne Storjohann

Eidgenossische Technische Hochschule
CH-8092 Zurich, Switzerland

storjoha@inf. ethz. ch
http://www.inf .ethz.ch/personal/storj oha

Abstract

This paper considers a variation of the extended gcd prob-
lem: the “modulo N extended gcd problem”, Given an inte-
ger row vector [a,]~=1. the modulo N extended gcd problem
asks for an integer vector [c,]~=l such that

n

gcd(~c, a,, N) = gcd(al, a~, . . .,a~, N)
,:1

A deterministic algorithm is presented which returns an ex-
ceptionally small solution for a given instance of the prob-
lem: both ma.x~=~Ic, I and the number of nonzero c,’s will
he boundedbyO(logN). The gcd algorithm presented here
has numerou supplications andhaa already ledtofasteralgo-
rithms for computing row reduced echelon forms of integer
matrices and solving systems of linear Diophantine equa-
tions. III this paper we show how to apply our g,cd algorithm
to the problem of computing small pre- and post-multipliers
for the Smith normal of an integer matrix.

1 Introduction

This paper considers the following problem: Given a non-
negative integer AT together with an integer row vector
a = [al, al a,,], find an integer vector c = [cl, c,, ,c~]
such that

,,
gcd(~ c,a, , N) = g(-d(al, al,. ,n,,, N), (1)

,=1

For the special case when N is zero, this is known as the
“extended grd problem”. In the case where I’? is positive,
we call this thv “modulo N extended gcd problem”. In ring
theoretic ter]usl ~~= ~ C,a, should be a generator of the ideal
(a,, azl u,,) in the ring of integers modrdo N,

Solutions to the extended gcd and modulo N extended
gcd problem are required in such problems as computing
canonical triangular and diagonal forms of matrices over the

“’rbis work has been partially supported by grants from the Swiss
Federal Ofiice for Education and Sciences in conjunction with partial
support by ESPRIT LTR Project no. 20244 – ALC!OM-IT.
Permission to make digital/hard copy of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, the
copyright notice. the t]tle of the publication and its date appear,
and notic’e is gilx,n that copying is by permission of ACM, Inc. To
copy othemvisc, t o republish, to post on servers or to redistribute to
lists, reqtiirt=s prior specific per,nission andjor a fee. ISSAC’97, Maui.
Hawaii, [ISA G)19!)7 AC’M 0-8979-875-4/ 97/ 0007$:;.50

domains the integers [6, 7, 11, 19, 20] and the integers mod-
UION [10, 21]. In such applications it is often beneficial to
get a “good” solution vector c, that is, one which is small
with respect to the Lo metric (which counts the number of
nonzero c, ‘s) or the Lm norm (which bounds the magnitude
of the largest c,). The problem of computing good solutions
for the extended gcd problem has recently enjoyed consid-
erable attention [2, 8, 9, 15, 16]. In this paper we consider
the problem of computing a good solution for the modulo
N extended gcd algorithm

The main result of this paper is a deterministic algorithm
for solving the modulo N extended gcd problem. The algo-
rithm returns a solution for c = [cl, C2,. . . . cm] that satisfies
the following properties:

(cl) c, = 1.
(e2) At most [logz NJ of the cl’s will be nonzero.

(e3) Icll S (2(log, A7)’/2l for 1 ~ i < n.
If we assume that entries in the input vector a are bounded
in magnitude by N, then the cost of the modulo N extended
gcd algorithm is O(n log2 N + log3 N) bit operations assum-
ing standard (quadratic) integer arithmetic. Properties (el)
and (e2) are relatively easily satisfied. The main contribu-
tion of our modulo N extended gcd algorithm is that prop-
erty (e3) will also be satisfied. In particular, (e3) ensures
that entries in the solution vector c will be bounded in length
by O(log log N) bits; a typical solution vector, on the other
hand, will have entries bounded in length by O(log N) bits.

Consider the modulo N extended gcd problem with with
N = 223092870 and input vector

a = [5fj039340, 4502(J850, 114868782, 145800000].

A typical solution vector (i.e. one not returned by our algo-
rithm) for this problem is

c = [137521213, 189470769, 155848668, 36654910]

which has entries with the same bit length as N. Such a
solution vector can be found, for example, by setting r to be
a vector with entries chosen uniformly and randomly in the
range O and N – 1, then testing equation (1) for correctness
and repeating with a new random choice if required (see [3]
for the details of such a Las Vegas probabilistic algorithm).
On the other hand, the algorithm presented here returns the
solution vector

r = [1,3,6,10].
In what follows we summarize some new results that have

been obtained by applying our modulo N extended gcd algc-
rithm to the problem of computing matrix canonical forms.
To give complexity results we use the parameters O and e.

109

Two n x n matrices over a ring can be multiplied in O(ne)
ring o erations and two [tl bit integers can be multiplied

Yin O(t “) bit operations. The asymptotically fast (but cur-
rently impractical) algorithm of Coppersmith & Winograd
[1] and the pseudo-linear algorithm of Schonhage & Strassen
[17] allow 9 = 2,376 and any fixed (but positive) c respec-
tively. All algorithms in this paper assume the standard,
practical algorithms for integer and matrix multiplication
which have c = 1 and 0 = 3. In what follows we write IIAII
to denote the largest magnitude entry of an integer matrix
A.

In [20] we apply our modulo IV extended gcd algorithm
to get a very fast, practical and deterministic algorithm for
triangularizing integer matrices. The major breakthrough
of this new triangularization algorithm is that it allows inte-
ger arithmetic to be performed in a residue number system
modulo a basis of word-size primes. Crucial to the method
used in [20] is a subroutine for computing very small solu-
tions to the modulo A’ extended gcd problem; the current
paper presents such a solution. The new triangularization
algorithm of [20] leads directly to efficient solutions for the
following problems: (1) computing the Hermite normal form
with transforming matrix for an integer input matrix of arbi-
trary shape and rank profile, and; (2) computing the general
solution to a system of linear Diophantine equations.

A second application of our gcd algorithm is to comput-
ing transforming matrices for the Smith normal form of an
integer matrix. First recall the definition of the Smith nor-
mal form. It follows from Smith [18] that corresponding to
any A c Z“Xm there exist unimoduhu (square and invert-
ible) matrices U and V over Z such that

UAV=S=diag(sl, sQ,..., s,, O,O). ,O)

with each s, nonzero and with si Isi+l for 1 ~ i < r – 1.
S is called the Smith normal form of A and the ~imodu-
lar U and V are called transforming matrices. While the
Smith normaI form is a unique canonical form, the trans-
forming matrices are highly nonunique and most previous
algorithms for computing S don’t return transforming ma-
trices (cf. [3, 4, 5, 19, 21]). The previously fastest algorithm
[11] for producing a U and V has been presented for the
case of a square nonsingular input matrix A and requires
qn5,376 Iogz IIAI1) bit operational — assuming asymptot-
ically fast matrix multiplication and pseudo-linear integer
arithmetic — to reduce a U and V with entries bounded

!2in length by O-(n log l~Al1) bits, The algorithm we present
here requires only O-(n log2 IIAI1+ n3 log3 IIAII) bit opera-
tions — assuming standard integer and matrix multiplica-
tion — to produce a U and V with entries bounded in length
by O(n log IIAII) bits. Moreover, the total size of V, the
sum of the bit lengths of all the entries, will be bounded by
0-(n2 log 11AII) bits — this is on the same order of space re-
quired to write down the input matrix A. For comparison,
the previously fastest algorithm produces a V with worst
case size bound 0-(TL5log2 llAl~) bits — thk bound is a fac-
tor of about 0(n3 log IIAII) larger then the space required to
write down to input matrix. The Smith normal form algo-
rithm we present here also recovers transforming matrices
for the case of a rectangular input matrices of full column
rank.

The rest of this paper is organised as follows. In Section
2 we present some number theoretic algorithms which form

lTo summarize complexity results we use .soft-”Oh” notation: for
real valued functions f and g, j = O-(g) if and only if f = O(g. log’ g)
for 30me constant c >0.

the basis of our modulo N extended gcd algorithm. In Sec-
tion 3 we present the gcd algorithm itself and show how it
applies to the problem of computing canonical matrix forms.
Section 4 presents the new algorithm for computing pre- and
post-multipliers for the Smith normal form. We consider this
Smith normal form algorithm to be very practical — some
explicit examples demonstrating the good performance of
the new algorithm are given in Subsection 4.2. We conclude
in Section 5 by indicating some relationships of our Smith
normal form algorithm with previous work and also mention
some ideas for future research.

2 Some Number Theoretic Algorithm

This section develops an algorithmic solution to the follow-
ing problem: Given integers a, b, N with N positive and
gcd(a, b) = 1, find the smallest nonnegative integer c that
sat isfies

gcd(a + cb, N) = 1 (2)
Our first result establishes a necessary and sufficient condi-
tion for c to satisfy (2).

Lemma 1 Let a,b,N be integers with N positive and
gcd(a, b) = 1, and let {pl ,p2, . . . ,p. } be the set of distinct
primes which divide N but not b. An integer c will satisfy
gcd(a + cb, N) = 1 i~ and oniy if a + cb # O (mod pi) for
l~i<r.

Proof, (Only 1):) Let c satisfy (2). Assume, to arrive at a
contradiction, that a + cb = O (mod pi) for some i with
1 < i ~ r. Since pilN we must have pi! gcd(a + cb, N),
a contradiction. (If:) Let c satisfy a + cb # O (mod pi)
forl~i~r. Assume, to arrive at a contradiction,
that gcd(a + cb, N) > 1 and let p be a prime which dL
vides gcd(a + cb, IV). Then pl (a + &) and plIV. It follows
that a + cb = O (mod p) and by assumption p must be a
prime which divides N and b. In particular, we must have
b = O (mod p). But then gcd(a, b) = 1 implies p does
not divide a which, together with b = O (mod p), implies
a + cb = a # O (mod p), a contradiction since we have al-
ready seen a + cb = O (mod p). ■

The following fact and subsequent theorem establishes the
existence of a small c which satisfies (2).

Fact 1 (Kanold [14]) Let 1 = al < az < . . . be the se-
quence of integers relatively prime to a positive integer N
and let g(N) = max(a:+l – a~). If N has r distinct prime
factors, then g(N) < 2r3/ 2.

Theorem 2 Let r be a bound on the number of distinct
prime divisors of a positive integer N. Given integers a
and b with gcd(a, b) = 1, there exists a nonnegative integer c
bounded in magnitude by 2r312 that satisfies gcd(a+ch, N) =
1.

Proof. Let P be the product of all distinct primes dividing
N but not b. Let C be the unique integer with O s C < P
which satisfies a - Cb = O (mod P). (Uniqueness follows
from the Chinese remainder theorem.) Let U be the integer
greater than or equal to C’ which is relatively prime to N and
which minimizes the quantity U – C. Then a + (U – C)b # O
(mod p) for all primes p dividing N but not b, and by Lemma
1, gcd(a + (.!7– C)bl N) = 1. Set c = U – C. To prove that

110

c is small enough, let L to be the integer less than or equaI
to C which is relatively prime to N and which minimizes
the quantity C – L. The result follows by noting that c =
iJ– C~LT– L.andby Fact l,U– L~g(N)<2v-3{2. ■

We now give three deterministic algorithms for comput-
ing the quantity c of Theorem 2. Algorithm I, the brute
force search approach, admits a worst caae complexity of
0(log35 N) bit operations but has the advantage of simplic-
ity. Algorithm II requires as input a list of distinct prime
factors of N and uses a number sieve to compute c in only
0(log2 N) bit operations. This algorithm is useful for cases
where N can be factored easily. Algorithm III combines
ideas from Algorithm I and II. In particular, the complex-
ity is better than that of Algorithm I but we don’t need as
input a list of distinct prime factors of N. Before giving the
algorithms, wc first recall the complexity model for standard
integer arithmetic,

The number of bits in the binary representation of an
integer a is given by

lga=
{

1, ifa=O;
1 + Llogz [a[j, if Ial >0.

Given integers a, b and A4 we can: compute the product ab in
O((lg a) (lg b)) bit operations; compute integers g and r such
that a = qb+r with O s Irl < Inl in O((lga/b)(lg b)) bit ope-
rations; compute the gcd g of a and b in in O((lg a/g)(lgb))
bit operations when Ial ~ Ib[; compute either direction of
the isomorphism implied by the Chinese remainder theorem
in 0(lg2 A4) bit operations where M is the product of the
rnodu]ii.

2.1 Algorithm 1: Brute Force

Theorem 3 Let a, b, N be integers wtth N posdiue and
gcd(a, b) = 1. There exists a deterministic algorithm that
computes the smallest nonnegative integer c that satisfies
gcd(a + cb, N) = 1. If Ial, lb~ < N, then the cost of the
algon”thm is bounded by O(log 5 N) bit operations.

Proof, Compute gcd(a + tb, N) for t = O,1,2,. . . and set c
to be the minimum twith gcd(a + tb, N) = 1. By Theorem
2, the solution c will be found after at most 12r3/2] steps,
where r is the number of distinct prime divisors of N. Each
test requires at most 0(log2 N) bit operations for the gcd
computation, and r is bounded by O((log N)~(log log N)),
leading to a worst case complexity of O(logs’ N) bit ope-
rations. ■

2.2 Algorithm II: Prime Factorization

Theorem 4 Let a, b, N be integers with N positive and
gcd(a, b) = 1. Given the set {pI ,pz, . . ,p, } oj distinct prime
divisors of h’, there exists a deterministic algorithm that
that computes the smallest nonnegative integer c that satis-
fies gcd(a + cb, N) = 1. 1/ Ial, [b! < N, then the cost of the
algor~thm is bounded by 0(log2 N) bit operations.

Proof. Set K = [2r-3’2J and initialize all entries to true
in a binary array B indexed from O to K. The idea is to
sieve out all bad points from the set {O, 1, K} according
the criteria of Lemma 1. For O < t < K, B[t] = false will
indicate that gcd(a + tb, N) >1. For ~= 1,2, ..., r, set 13[t]
equal to false for all integers O < t< K that satisfy a+tb = O

(mod pi). This is accomplished by the following nested loop,
where the binary function mod (g, d) takes as first argument
a rational number, es second argument a positive integer,
and returns the unique nonnegative integer congruent to g
modulo d and in the range O to p – 1.

fori=lto r-do
(a,, b,) t (mod(a,p,), mod(b,p,));
if b, # O then

si - mod(-ai/b,, p,)
for j = o to 1(K – 9i)/p,]

13[9, + j~,] 4- false;

Now, by Lemma 1, an integer tbetween O and K will satisfy
gcd(a+tb, N) = 1 if and only if B[t]is still equal to true, and
by Theorem 2, there exists at least one such twith B[t]true.
Do a linear search of the array 1? and set c to be the smallest
index t with B[t] true. We now show that the above sieving
procedure can be accomplished in 0(log2 N) bit operations.
The computation of all the a, ‘s, b, ‘s, s,’s and upper indices
[(K - s,)/p,J of the inner loop is bounded by 0(log2 N) bit
operations since the product of the pi’s is bounded by N.
The number of iterations of the inner loop is given by

,

r
~ r+ K~l/i

,= 1
< r+ K(l+logr)

< hK log r
for some absolute constant h. Computing the index of B in
the inner loop involves numbers bounded in magnitude by K
and so requires 0(log2 K) bit operations. Since K = 0(r312)
where r = O((log N)/(log N log log N)), the total cost of the
inner loop is bounded by O-(log3f2 N) bit operations, and
the entire procedure by 0(log2 N) bit operations. ■

2.3 Algorithm III: Integer Factor Refinement

The drawback with the algorithm of Theorem 4 is that it
requires as input a list of all prime divisors of N. Finding all
prime divisors of N is equivalent to computing the complete
factorization of N — no efficient algorithm is known for this
problem. The algorithm we propose next doesn’t require
as input the complete factorization of N, but rather takes
as input some factorization [dl, dz, d~] of N. Here, a list
[dl, dz, ds, d,] of integers is a factorization of N of length
qifd, >lforl<i$qanddldz dq=N. Note that
the di’s need not be distinct. Rather, the important point
for our purposes is that d, >1 for 1< i < q. The following
algorithm Conditioner requires 0(log2 N) bit operations to
produce either: (a) the smallest c satisfying gcd(a +cJ, N) =
1, OR (b) a new factorization of N with length greater than
q. Since the complete factorization of N can have length
at most lg N, this bounds the number of times case (b) can
occur.

Algorithm: Conditioner
Input: Integers a, b, N with N positive and gcd(a, b) = 1.
A factorization [dl, d~,. . . . dq] of N.
Output: Either the smallest nonnegative integer c satisfy-
ing gcd(a + cb, N) = 1 OR a new factorization for N with
Iength greater than q.

111

(1) [Initialize:]
K e [2(log2 N)3/2j ;
for t = O to K do l?[t] t true;

(2) [Compute residues:]
fori=ltoqdo

(al, bi) +- (mod(a, d;), mod(b, di));
g, ~ gcd(bi, d:);
if 2 s 9i < d, then goto (6);

(3) [Sieve:]
fori=ltoqdo

if bi # O then
S, + mod(—a; /bi, d;);
for j = O tO L(K – Si)/(tiJ

B[si + jdi] +- false
(4) [Find candidate solution and assay correctness:]

t t the minimum index with II[t]true;
fori=ltoqdo

gi +- gcd(at + tbil di);
if gi >1 then goto (6);

(5) [Ouput solution:]
return t and quit;

(6) [Ouput nontrivial facto; :~~~ment:]
return [all,dl —l,g, , t g,, q+], ..., dq] and quit;

Theorem 5 Algorithm Conditioner is correct. Z~Ial, Ibl <
N then the cost of the algorithm is 0(log2 N) bit operations.

Proof. Step (1) is bounded by 0(log3/2 IV) bit operations
and step (2) by 0(log2 N) bit operations since ~ ~<i<q di =
N and di >1 for 1 ~ i < q. In step (2), if some g; s~tisfies
2 s gi < d, for 1 $ i ~ q, then this provides a nontrivial
factorization of d, m step (6). On the other hand, if step
(3) is reached, then b, # O (mod di) implies bi is relatively
prime to di; this shows that the computation of si + mod
(–ai/bi, di) is valid. By the same =gument ss in the proof
of Theorem 4, the total cost of step (3) will be bounded
by 0(Iog2 N) bit operations. By Lemma 1, step (3) sets
B[t] = false only if gcd(a + tb, N) >1. On the other hand,
if I?[t] is still true after step (3) completes, then a~+ tbi # O
(mod d,) for all 1< i ~ q. By Theorem 2, there will exists
at least one tbetween O and K with B [t] still equal to true
in step (4). By the fact that ai + tbi # O (mod di) for
1< i ~ q, the gcd’s gi computed in step (5) will all satisfy
1< gi < di for 1 ~ i < q. In particular, if gi >1 for some i,
then this provides a nontrivial factorization of di in step (6).
On the other hand, if gi = 1 for 1 ~ i ~ q, then we must
have gcd(a + tb, N) = 1. Finally, note that the complexity
of step (4) is bounded by 0(log2 IV) bit operations since

~__~<,<qdi = N and lail,lbil < di with di >1 for 1 ~ t ~ q.

Corollary 6 Given a positive integer N and k pairs of
numbers (al, bl), (az, bz), (ak,b~) with gcd(ai, bi) = 1 for
1 s i ~ k, there ezists a deterministic algorithm that com-
putes, in succession for i = 1,2,... , k, the smallest non-
negative integer ci that satisfies gcd(ai + cibi, N) = 1. 1~
Iait, Ibil < N for 1< i < k, then the running ~irne of the
algorithm is bounded by O(k log2 N + log3 N) bit operations.

Proof. Starting with the trivial factorization [N] of length
one, use algorithm Conditioner to compute ci in succession
for i = 1,2,. ... k. Algorithm Conditioner requires repeti-
tion at most k + llog2 N] times since the factorization [N]
can be refined (nontrivially) at most [log2 N] times. ■

3 The modulo N extended gcd algorithm

Let N be a positive integer and

A= [al az . a“]

be an 1 x n row vector. The modulo N extended gcd al-
gorithm given in the introduction can be posed in terms of
computing a certain n x n unimodular conditioning matrix

[
c1
c“ 1 1

c= C3 1
“.

L c. lJ

Postmultiplying A by C has the effect of adding certain mul-
tiples of columns 2,3,. . ., n to column 1 of A. The condi-
tioned matrix AC can be written as

AC=[a~ az as . an]

with

(3)
i=l

and should satisfy

gcd(a~, N) = gcd(al, az, . . . ,a~, N). (4)

Theorem 7 There exists a deterministic algorithm that
takes as input a positive integer N together with an inte-
ger vector [ai]~=l, and returns as output an integer vector
[c,]~=l which satisjies (~) with (3). Furthermore, the output
vector will satisfy

(cl) c, = 1.

(e2) At most llog2 N] oj the ci’s wilt be nonzero.

If IaiI ~ N jor 1 ~ i ~ N, then the running time of the
algorithm is bounded by O(n log2 N + log’ N) bit operations.

Proof. The algorithm works by computing cl in succession
for 1 = 1,2, ..., k. Let c1 = 1 and define the intermediate
values af = al +czaz+. ..+ clal mod N. At the end of stage
1– 1 and start of stage 1, the quantities c1, C2,. . . . cl- I have
already been computed and satisfy

gcd(a~, N) = gcd(al, az, . . ,a~, N) (5)

for i = 1 – 1. Note for the initial case i = O that con-
dition (5) is trivially satisfied. The goal at stage 1 is to
compute a suitable c1 such that (5) is satisfied for i = 1.
This is accomplished by choosing Cf to be the smallest non-
negative integer such that gcd(a~_ ~/g + c1 . (al/g), N) = 1
where g = gcd(a~_ ~,ar). By Theorem 2, c1 will be bounded
in magnitude by [2(log2 N)2(3]. This shows that condition
(e3) is satisfied. We now show that condition (e2) is satis-
fied. Note that gcd(a~, N) is a divisor of gcd(a~_ ~,N) for
i = 1,2, . . . k and if gcd(a; , N) = gcd(aa-1, N) then Ci will
have been chosen to be zero. Since N is [1 + log2 N] bits
in length, there can be at most [log2 NJ distinct choices for
i with gcd(a~, N) a proper divisor of gcd(a~..-~,N). Here we
are using the upper bound [log2 N] for the number of prime
divisors (not necessarily distinct) in the full factorization of
N. This shows that at most [log2 Nj of the ci’s will be
nonzero. The running time follows from Corollary 6. ■

112

4 Transforming matrices for the Smith normal
form

Given an 71 x m rank m integer input matrix, we want to
recover an n x ~~unimodular matrix U and an m x m urri-
modular matrix V such that UAV = S, where S is the
%nith normal form of .4. Some of the ideas we use in our al-
gorithm have appeared previously in different contexts. For
clarity, we prefer to present the new algorithm first and wait
until Section 5 to indicate some interesting similarities with
previous work. In Subsection 4.1 we give our algorithm for
computing transforming matrices. In Subsection 4.2 we give
some explicit examples of the new Smith normal form afgo-
rithm. Before continuing, we recall some definitions, define
some notation and summarize some previous results,

The Smith normal form S = UAV = diag(sl, S2, s~)
of .4 is obtained by applying unimodular row and column
transformations to A. We denote the diagonal entries s~ by
.s(A, i), The quantity det L(A) — the determinant of the
lattice of .4 is equal to s] S2 s“, and is invariant under
both unimodu]ar row and column transformation. When A
is square nonsingular, then det C(A) = Idet Al.

The Smith normal form can afso be computed over the
ring Z ~ of integer modulo d. A matrix diag(sl, s2, s~) E
Z~x”’ isin Smith normal form ifs,ls, +l fori = 1,2, . . . ,rn–
1 and each s, belongs to the set N; = {x mod d : z E Z, O <
.r s d, rid}. The set N; is called a prescribed complete set of
nonaasociates of Z d specifying that the diagonal entries
belong to A’,; ensures uniqueness of the form. Over the ring
Z , the prescribed complete set of associates is simply the
set of nonnegative integers.

It will be ronvenicmt to sometimes consider a matrix over
Z to be over Z d --- simply reduce all entries modulo d. Con-
versely, any matrix over Z d may be considered to be over Z
– simply embed all entries from Z d into Z If A is an inte-

ger matrix, we will write sd(A, i) to denote the i-th diagonal
entry of the Smith normal form of .4 ~s computed over the
ring Z ,i. The following result ensures that for certain values
of d the Smith normal form of A as computed over Z d will
be the same M the Smith normal form of A over Z.

Theorem 8 If A is an n x m rank m integer matrix and d
IS a posdive multiple of 2det,C(A) then s~(A, i) = s(A, i) for
l~i~m.

Proof. See, for exampk, [21, Theorem 12]. ■

For a, b E Z ,i, we write grdd(a) b) to denote the unique
principal generator of the ideal (a, b) Q Z d which be-
longs LO N,; Note that gcd~(a, b) can be computed as
gcd(ii, b, d) mod d where ii and b are in Z with a = ii mod d
and b = 6 mod d. For the case a, b = O, we have gcdd(O, O) =
O. For complexity analysis we will sometimes count ring op
eratious from Z,{. Given two elements u, b E Z d, a ring
operation is mm of computing ab, a – b, gcdd (a, b) or de-
termining if alb and if so returning a c with ac = b. Each of
these operations can be accomplished in 0(log2 d) bit oper-
ations using standard integer arithmetic.

Jf’e will nerd thr following result.

Fact 2 (Hafner & McCurley [5]) Let A ~ Z ~xm and
let i and j lW zndmcs w~th 1 ~ i ~ n and 1 ~ j ~ m.
Working mfr. the rmg Z ~, we can apply unirnodular row
tran.sfor7n[~tt[,7~.s to fmn.sform.4 to a matriz B which sat-
~sjics B,j = gcd<i(.4,,,,.4, +1,,,. ,A”,j) and BkJ = O for
i + 1 s k ~ II. The: algorithm reqmrcs O(nm) operations
from z,/

4.1 The transforming matrix algorithm

Let A be an n x n nonsingular integraf input matrix and
d = 21det Al. Our algorithm for computing the Smith nor-
mal form S of A follows the mod d approach of many previ-
ous algorithms (see Hafner & McCurley [5]) and computes
over the finite ring Z ~ in order to avoid the problem of
intermediate expression swell. Unlike most previous algo-
rithms, we will also recover a unimodular U and V satisfying
UAV = S. Since A is square nonsingular, it will be suffi-
cient to recover a V and then compute U as U t SV– 1A- 1.
Since we are working over the ring Z d we must take care that
the V we produce will be unimodular over Z (and not just
over Z ~). Our approach is to compute a decomposition for
V as the product of a unit lower triangular matrix C and
unit upper triangular matrix R, namely

‘=11::::3:::1111 ”;2;;’11 (’)

Entries in column j of R will be bounded in magnitude by
s(A, j). Each column in C will be the solution to a particular
instance of the modulo N extended gcd problem with N = d.
The modulo N extended gcd algorithm of Corollary 6 will
produce entries for C which admit the very small length
bound of O(log log d) bits; this bound on the size of entries
in C leads to very pleaaing bounds on the magnitudes of
entries in V t CR and U + SR–’C–r A–’.

We now explain how to recover the matrices C and R.
Initialize T to be a copy of the input matrix A. The first
phase of the algorithm is to transform T using unimorhrlar
row and column operations over Z d to an upper triangular
matrix which has i-th diagonal entry sd(.4, i). Recording
column operations during this phase will produce the lower
triangular matrix C of (6). The algorithm is recursive and
can be understood by considering the first step which com-
putes the entries CZ1,cSI, c=I of the first column of C.
The goal at this first step is to compute a matrix

[
1

C21 1 1

which will comprise the entries in the first column of C. Note
that postmultiplying T by Cl will cause certain multiples of
column 2,3, n to be added to column 1; the purpose of
this is to ensure that the matrix TC1 has gcdd of all en-
tries in the first column equal to the gcdd of all entries in T.
The entries ck1 are computed for k = 2,3, m in succes-
sion. Let T’ be the n x 2 submatrix comprised of columns
1 and k of T. Compute a unimodular row transformation
B’EZ;’2 of T“ such that B’ has all entries below the frrst
entry Bj2 in column 2 zero. By Fact 2 this costs O(rJ) ring
operations from Z d. Because B’ has rank 2 over Z , entry
B; k will be nonzero. Compute g t gcd(B~ ~, l?{k) and set
a t B~l/g and b +- B~2/g. Using Algorithm Conditioner
of Subsection 2.3 (with N = d) compute the smallest non-
negative integer twhich satisfies gcdd(a + tb) = gcdd (a, b).
Set c~l - t and add t times column k of T to column 1
of T. Note that adding t times column 2 of B’ to column

113

1 of II’ will ensure that the gcdd of all entries in column 1
of Z3’ is the gcdd of all entries in columns 1 and 2 of l?’.
The key to our approach is the next statement: Since 1?’ is
a unimodular row transformation of columns 1 and k of T,
adding t times column k of T to column 1 of T will ensure
that the gcd~ of all entries in column 1 of 2’ is now the gcd~
of all entries in columns 1 and k of T. After computing c~1
for k = 2,3,. ... m the work matrix T will have gcdd of all
entries in the first column be the gcdd of all entries in T.
Working over Z ~, apply unimodular row transformations to
the work matrix T so that

[+1T= ‘1 ~1

The conditioning of column 1 we performed earlier now en-
sures that S1 will be the gcdd of all entries of T, that is,
s 1 = .%(T, 1). Column 2 of C is computed by applying the
procedure just described to the (n – 1) x (n – 1) matrix T1.
At the end of the triangularization phase the work matrix
T will be upper triangular with i-th diagonal entry equal to
s~ = sd(A, i) for 1 ~ i < m. By Theorem 8 we will have
si = s(A, i). Fact 2 and Corollary 6 bound the running time
so far by ~(n3) operations from Z d plus an additional worst
case cost of 0(log3 d) bit operations.

In phase two we zero out the offdiagonaf entries in
the now upper triangular work matrix T using unimodu-
lar row and column operations over Z. Recording the col-
umn operations produces the matrix R row by row for row
i = n,n — 1, . . . 1 in succession, At stage i = k we have

T=

and

R=

S1 * . . . *
S2 .,. *

,.,.
sk

1
1

1

* * . *
* * *

.,.. . .,
* * . *

Sk+l
sk+2

I 1 J
By adding appropriate integer multiples of rows k + 1, k +
2., . . . n of T to row k of T. ensure that entrv T~; satisfies,. ...
–sj <Tkj~Oforj=k+l, k+ 2,. ... n. Nowadd–Tkj
times column k of T to column j forj = k+ l,k+2,. . ,n.
Record these column operations in R. This zeroes out the
offdlagonal entries in row k. Using integer row operations
reduce all entries in the upper right hand (k – 1) x (~ – k – 1)
block of T modulo the diagonal entries in each column —
this ensures that all entries in the work matrix T remain
bounded by d. The computation of R is easily seen to be
bounded by 0(n3 log2 d) bit operations.

~he two phase algorithm just described leads to the fol-
lowing.

Theorem 9 There ezists a
takes as input a nonsingular
quantity d = 21det Al, and

deterministic algorithm that
A c Z ‘x” together with the
returns as output the Smith

normal form S of A together with a unimodular postmul-
tiplier matrix V which satisfies UAV = S where U =
SV - 1A- 1 will also be unimoduiar. Entries in row j of
V will be bounded in magnitude by O(nsj (log d)3/2) where
sj is the j-th diagonal entry of S. If entries in A are
bounded in magnitude by d, then the cost of the algorithm is
0(n3 log2 d + log3 d) bit operations assuming standard inte-
ger arithmetic.

The next result shows how to handle the case of rectan-
gular input matrix with full column rank.

Theorem 10 There ezists a deterministic algorithm that
takes as input a full column mnk A E Z nxm, and
returns as output the Smith normal form S of A to-
gether with unimoduiar transforming matrices U and V
which satisfy UAV = S. Entries in U and V will be
bounded in length by O-(rn log [IAI1) bits. Furthermore,
entries in row j of V will be bounded in magnitude by
O(msj (log d)3/2) where sj is the j-th diagonal entry of S
and d = S1S2. .s~ = O(rnlogrnllAll). The cost of the al-
gorithm is 0(nrn3 log2 mllAll + m4 log3 mllAll + m3 log2 d)
bit operations assuming standard integer arithmetic.

Proof. First compute the Hermite normal form triangular-
ization H of A together with a unimodular premultiplier ma-
trix UH which satisfies UHA = H and has entries bounded in
length by O(m log ml IAI1)bits. This can be accomplished in
0(nm3 log2 ml IAII+ m4 log3 ml[Al 1)bit operations using the
algorithm in [20]. Set d = 2hl hz . . h~ where hi is the i-th
diagonal entry of H. Then d = O(rn log ml lAl~), Let HI be
the principal m x m submatrix of H so that HI is square
nonsingular. Compute V and S using the algorithm of The-
orem 9. It follows from the fact that HI is in Hermite normal
form and from the bounds on the size of entries in V uar-

F.anteed by Theorem 9 that the matrix U = SV– 1H1– wdl
have entries bounded in magnitude by O(m log mllAll). The
matrix U1 t SV– 1H~dJ(l/d) can be computed in the allot-
ted time using standard techniques. (For example, using a
homomorphic ima~in~ scheme with Chinese remainderirw.)
The prem~ltiplier U ~ obtained from UH by premultiply~g
the principal m x m block of UH by U1.

4.2 Some explicit examples

The 9 x 9 square nonsingular input matrix

A=

–7 8 –21 –29 7 0 –10 –3 1

3600 –7 30 –12 5 –1

13 15 6 13 4 10 –5 14 –lo

–1 6 12 –lo 3 –7 10 –13 14

9 10 –3 –11 11 11 –6 –7 –14

–4635 10 2 –24 –6 12

5 –8 18 0 13136158

–11 11 18 9 01774–7

2 –1 33 4 –9 –3 –19 5 -12

has Smith normal form

S = diag(l,l,l,l,6,30,180,6300,44100).

114

andUsing the algorithm of Section 4 we can compute 9 x 9 uni-
modular transforming matrices USECSand VSEC4which satisfy
UAV = S. In what follows, we write (tl to indicate a intesrer. .
with t decimal digits. Then

usEc4 =

and

[6] [6] [6] [6] [6] [5] [3] [6] [5]

[6] [6] [6] [6] [6] [6] [3} [6] [5]

[5] [5] [5] [5] [5] [5] [3] [6] [5]

[6] [6] [6] [6] [6] [6] [4] [7] [6]

[6] [6] [6] [6] [6] [6] [4] [6] [5]

[6] [6] [6] [5] [5] [5] [3] [6] [5]

[6] [6] [6] [6] [6] [6] [4] [7] [6]

[6] [6] [6] [6] [6] [6] [4] [7] [6]

[7] [7] [7] [6] [6] [6] [4] [7] [6]

100032076”

11004 28 119

30101084311

01416114433

11106 52 207

11106 53 208

111915150738

11015 39 181

11004 29 122

3187

4631

13157

19361

8766

8808

40905

8225

26944

29411

107658

114992

57501

57966

108351

35525

30184

Entries in both UsEcSand VsEc4are bounded in length by
7 decimal digits. Note that for 1 s j s n, entries in col-
umn j of VsEcSare on the same order of magnitude as the
j-th diagonal entry of S –- just as guaranteed by Theo-
rem 9. To get an idea of the total size required to write
tlown V, let size(A) denote the sum of the lengths (num-
ber of decimal digits) of all entries in an integer matrix A.
Then si2e(~’\Ecs) = 167. For comparison, we give next the
transforming matrices UMVR4and VMVR4returned by the cur-
rent version of the ismith command in Maple V Release
4. The i smith command uses a variation which also com-
putes transforming matrices of the modular determinant ap
preach

fJ!.4vR4
[0] [0] [0] [1] [0] [0] [0] [0] [1]

[0] [0] [0] [1] [0] [0] [0] [0] [1]
[0] [0] [0] [2] lo] [1] [1] [0] [1]

[0] [4] [0] [7] [o] [5] [5] [3] [6]

[12] [16] [12) [19] [11] [17] [17] [15] [18]

[12] [17] [13] [20] [11] [18] [18] [16] [19]

[19] [27] [22] [30] [23] [28] [28] [26] [29]

[29] [37] 132] [39] [32] [38] [38] [36] [39]

[30] [38] [32] [40] [33] [39] [39] [37] [40]

VMVR4
[0] [0] [0] [1] [0] [0] [0] [0] [1]

[0] [0] [0] [1] [0] [0] [0] [0] [1]

[0] [0] [0] [2] [0] [1] [1] [0] [1]

[0] [4] [0] [7] [0] [5] [5] [3] [6]

[12] [16] [12] [19] [11] [17] [17] [15] [18]

[12] [17] [13] [20] [11] [18] [18] [16] [19]

[19] [27] [22] [30] [23] [28] [28] [26] [29]

[29] [37] [32] [39] [32] [38] [38] [36] [39]

[30] [38] [32] [40] [33] [39] [39] [37] [40]

In this case, entries in UMVR4and VMVR4are bounded in
length by 40 decimal digits ‘and size(VMvR4)= 1489. Thus,
for this example the new algorithm returned a postmultiplier
matrix that requires a factor of about nine times less space
to write down.

More spectacular examples are easily generated. Con-
sider the case of a 40 x 40 square nonsingular matrix

A= .,,.,,

2 –2 2 ~~~ –1 o

L-1 1 0 -2 1

which has all entries bounded in magnitude by 9. The
Smith normal form of A is comprised of_13 one’s followed by
2,2,10, 10, 10,6000,36000. The algorithm of Section 4 pro-
duces pre- and postmultipliers which have entries bounded
in length by 14 decimal digits; the total size of the postmul-
tiplier 691. Maple’s ismith command produces a postmul-
tiplier with entries bounded in length by 118 decimal digits
and total size 12923; this is about 19 times as large as 691.

5 Conclusions

We have presented a solution for the modulo A’ extended
gcd problem which returns an exceptionally small solution
vector of multipliers. The gcd algorithm presented here has
important application in computing canonical forms of inte-
ger matrices; in Section 4 we have presented a new algorithm
for computing small transforming matrices for the Smith
normal form of an integer matrix. We mention here some
interesting similarities of our Smith normal form algorithm
with previous work.

Our approach is to postmultiply the input matrix A by
an m x m unit lower triangular “conditioning” matrix C
such that the diagonal entries in the Hermite normal form
triangulmization of the conditioned matrix AC will be the
same as those in the Smith normal form of A. Our Smith
form algorithm computes very small entries for C using the
modulo N extended gcd algorithm of Section 2. This idea of
postmultiplying by a unit lower triangular matrix was fist
used by Kaltofen, Krishnarnoorthy & Saunders [12, 131 in
the context of computing Smith normal forms of polynomial
matrices; there the matrix C was chosen randomly. Other

115

randomized algorithms using this preconditioning idea in-
clude Storjohann & Labahn [22, 23]. Villard [24] has given
an algorithm — also for computing Smith normal forms of
polynomial matrices — which computes deterministicully
the entries of C. More recently, Giesbrecht [3] has given
a randomized Smith normal form algorithm for integer ma-
trices that computes the columns of C by, in essence, using
a Las Vegas probabilistic algorithm to obtain solutions to
the modulo N extended gcd problem.

In the future, we plan to apply some of the ideas pre-
sented here to computational problems over other domains.
For example, it should be possible to construct an algorithm
which computes “good” (i.e. small degree) solutions for the
extended Euclidean problem over the ring F[z] of univariate
polynomials with coefficients from a field F; this would be
useful for computing canonical forms of polynomial matri-
ces.

Finally, the modulo N extended gcd problem we have
introduced here should be analysed along the lines of [15]
where the complexity of finding an optimal solution to the
extended gcd problem with respect to the L- and LO norm
is studied.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

COPPERSMITH, D., AND WINOGRAD, S. Matrix multi-
plication via arithmetic progressions. Journal of Symb-
olic Computation 9 (1990), 251-280.

FORD, D., AND HAVAS, G. A new algorithm and refined
bounds for extended gcd computation. Tech. Rep. 354,
The University of Queensland, 1995. Submitted.

GIESBRECHT, M. Fast computation of the Smith nor-
mal form of an integer matrix. In Proc. Int ‘1, Symp.
on Symbolic and Algebraic Computation: ISSAC ’95
(1995), A. H. M. Levelt, Ed., pp. 110-118.

GIESBRECHT, M. Probabaiistic computation of the
Smith normal form of a sparse integer matrix. In Algo-
rithmic Number Theory: Second International Sytnpo-
sium (1996), H. Cohen, Ed., pp. 175–188. Proceedings
to appear in Springer’s Lecture Notes in Computer Sci-
ence.

HAFNER, J. L., AND MCCURLEY, K. S. Asymptoti-
cally fast triangularization of matrices over rings. SIAM
Journal of Computing 20, 6 (Dec. 1991), 1068-1083.

HAVAS, G., AND MAJEWSKI, B. S. Diagonalization
of integer matrices. To appear in Journal of Symbolic
Computation.

HAVAS, G., AND MAJEWSKI, B. S. Hermite normal
form computation for integer matrices. Congresses Nu-
merantium 105 (1994), 87–96.

HAVAS, G., ANDMAJEWSK], B. S. A hard problem that
is almost always eaay. Algorithms and Computation,
Lecture Notes in Computer Sciece 1004 (1995), 216—
223.

HAVAS, G., MAJEWSKI, B. S., AND MATTHEWS, K. R.
Extended gcd algorithms, Tech. Rep. 302, The Univer-
sity of Queensland, 1995. Submitted.

HOWELL, J. A. Spans in the module (Z ~)“. Linear
and Multiiinear Algebra 19 (1986), 67—77.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

IL1OPOULOS,C. S. Worst-case complexity bounds on
algorithms for computing the canonical structure of fi-
nite abelian groups and the Hermite and Smith normal
forms of an integer matrix. SIAM Journal of Comput-
ing 18, 4 (Aug. 1989), 658–669.

KALTOFEN,E., KRISHNAMOORTHY,M. S., AND SAUN-
DERS, B. D. Fast parallel computation of Hermite and
Smith forms of polynomial matrices. SIAM Journal of
Algebraic and Discrete Methods 8 (1987), 683-690.

KALTOFEN,E., KRISHNAMOORTHY,M, S,, AND SAUN-
DERS, B. D. Parallel algorithms for matrix normal
forms. Linear Algebra and its Applications 136 (1990),
189-208.

KANOLD, H.-J. Uber eine zahlentheoretische Func-
tion von E. Jacobsthal. Abh. Braunschwieg. Wiss.
Gesellsch. 25 (1975), 7-10.

MAJEWSKI, B. S., AND HAVAS, G. The complexity
of greatest common divisor computations. Algorith-
mic Number Theory, Lecture Notes in Computer Sci-
ence 877 (1994), 184—193.

MAJEWSKt, B. S., AND HAVAS, G. A solution to the
extended gcd problem. In Proc. Int ‘1. Symp. on Sym-
bolic and Algebraic Computation: ISSAC ’95 (1995),
A. H. M. Levelt, Ed., pp. 248—253.

SCHONHAGE,A., AND STRASSEN,V. Schnelle Multip-
lication grosser Zahlen. Computing 7 (1971), 281-292.

S~ITH, H. J. S. On systems of linear indeterminate
equations and congruences. Phil. 7hans. Roy. Sot. Lon-
don 151 (1861), 293-326.

STORJOHANN,A. Computing Hermite and Smith nor-
mal forms of triangular integer matrices, Tech. Rep.
256, Department Informatik, ETH Ziirich, Dec. 1996.

STORJOHANN,A. A fast+ practical+ deterministic algo-
rithm for triangularizing integer matrices. Tech. Rep,
255, Department Informatik, ETH Ziirich, Dec. 1996.

STORJOHANN,A. Near optimal algorithms for comput-
ing Smith normal forms of integer matrices. In Proc.
Int ‘1. Symp. on Symbolic and Algebmic Computation:
L$SAC ’96 (1996), Y. N. Lakshman, Ed., ACM Press,
pp. 267-274.

STORJOHANN, A., AND LABAHN, G. Preconditioning
of rectangular polynomial matrices for efficient Her-
mite normal form computation. In Proc. Int ‘1. Symp.
on Symbolic and Algebmic Computation: ISSA C ’95
(1995), A. H. M. Levelt, Ed., ACM Press, pp. 119-125.

STORJOHANN,A., AND LABAHN, G. A fast Las Vegas
algorithm for computing the Smith normal form of a
polynomial matrix. Linear Algebra and its Applications
253 (1997), 155—173.

VILLARD, G. Generalized subresultants for computing
the Smith normal form of polynomial matrices. Journal
of Symbolic Computation 20, 3 (95), 269—286.

116

