
Deterministic Unimodularity Certification

Colton Pauderis
cpauderi@uwaterloo.ca

Arne Storjohann
astorjoh@uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo, Ontario, Canada N2L 3G1

ABSTRACT

The asymptotically fastest algorithms for many linear alge-
bra problems on integer matrices, including solving a sys-
tem of linear equations and computing the determinant, use
high-order lifting. Currently, high-order lifting requires the
use of a randomized shifted number system to detect and
avoid error-producing carries. By interleaving quadratic and
linear lifting, we devise a new algorithm for high-order lift-
ing that allows us to work in the usual symmetric range
modulo p, thus avoiding randomization. As an application,
we give a deterministic algorithm to assay if an n × n in-
teger matrix A is unimodular. The cost of the algorithm is
O((log n)nω

M(log n + log ||A||)) bit operations, where ||A||
denotes the largest entry in absolute value, and M(t) is the
cost of multiplying two integers bounded in bit length by t.

Categories and Subject Descriptors

I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms; G.4 [Mathematical Software]: Algorithm Design
and Analysis; F.2.1 [Analysis of Algorithms and Prob-

lem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms

Keywords

Integer matrix, unimodular matrix

1. INTRODUCTION
Classical linear algebra problems on an integer matrix

A ∈ Z
n×n include computing the determinant detA and

a rational solution vector A−1b. For computing A−1b, the
p-adic lifting algorithm of Dixon [4] already achieves an ex-

pected running time of (n3 log ||A||)1+o(1) bit operations,
where ||A|| = max |Aij | denotes the maximum magnitude

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC 2012, July 22–25, 2012, Grenoble, France.
Copyright 2012 ACM 978-1-4503-1269/12/07 ...$15.00.

of entries in A. High-order lifting [16] allows the incorpora-
tion of matrix multiplication to reduce the expected running
time to (nω log ||A||)1+o(1), where 2 ≤ ω ≤ 3 is the exponent
of matrix multiplication [5, §5.10].
But for many problems the improvement in running time

is more fundamental than reducing the exponent of n from 3
down to ω. For example, without the use of subcubic matrix
multiplication, the previously fastest algorithm for comput-
ing detA uses an expected number of (n3.2 log ||A||)1+o(1)

bit operations and (n2.2 log ||A||)1+o(1) bits of intermediate
space [11]. The algorithm for detA based on high-order lift-

ing [16, §13] uses an expected number of (n3 log ||A||)1+o(1)

bit operations and is space-efficient: intermediate space re-
quirements are bounded by (n2 log ||A||)1+o(1) bits. A more
striking example is integrality certification: given a second
matrix C ∈ Z

n×n, can all columns of C be generated as
a Z-linear combination of columns of A? This question is
equivalent to determining if A−1C is a integer matrix. If
||C|| ∈ Θ(||A||), then directly computing A−1C using a stan-
dard method such as quadratic lifting or homomorphic imag-
ing and Chinese remaindering would require on the order of
(nω+1 log ||A||)1+o(1) bit operations and Ω(n3 log ||A||) bits
of intermediate space. (Recall that f(n) ∈ Ω(g(n)) precisely
when g(n) ∈ O(f(n)).) High-order lifting can answer the
integrality certification question with a space-efficient algo-
rithm in a Las Vegas fashion using an expected number of
(nω log ||A||)1+o(1) bit operations [16, §11].

Our main theoretical contribution is a new deterministic
algorithm for high-order lifting that avoids the randomiza-
tion that was required by the previous algorithm [16]. We
will discuss our contribution and its implications in detail
below. First let us recall what high-order lifting computes.
Let A ∈ Z

n×n be nonsingular and let X ∈ Z be chosen
(usually at random) to be relatively prime to detA, with
logX ∈ Θ(log n + log ||A||). (Recall that f(n) ∈ Θ(g(n))
precisely when f(n) ∈ O(g(n)) and g(n) ∈ O(f(n)).) In a
nutshell, high-order lifting is used to efficiently compute a
so-called residue R ∈ Z

n×n such that

AB = I +RXk

for k ∈ O(n) a power of two and for B ∈ Z
n×n an inte-

ger matrix satisfying ||B|| ∈ O(Xk). This bound for ||B||
gives the bound ||R|| ∈ O(n||A||). Notice that B is necessar-
ily congruent to A−1 mod Xk, and since k ∈ Θ(n), writing
down B explicitly would require Ω(n3(log n+ log ||A||)) bits
of space. Instead of computing B explicitly, a sparse inverse

281

expansion [16, §8] of B is computed:

A

B
︷ ︸︸ ︷

((· · · (∗(I + ∗X
2) + ∗X

4)(I + ∗X
4) +· · ·) + ∗X

k) =I +RXk.

Each ∗ is an n × n integer matrix with entries bounded in
magnitude by O(n||A||). Since k ∈ Θ(n), the total size of
the sparse inverse expansion is O((log n)n2(log n+log ||A||))
bits. For the integrality certification problem mentioned
above only the residue R is required. For solving A−1b,
the sparse inverse expansion is applied in O(log n) steps to
the X-adic expansion of b.

High-order lifting requires a modulus X that is relatively
prime to detA. If not known a priori, X can be constructed
as the power of a prime p that is randomly chosen in the
range 2k−1 < p < 2k, where k = 6 + ln ln(nn/2||A||n). Once
a suitable X is in hand, the previously known algorithm for
high-order lifting requires further randomization to imple-
ment the shifted number system [16, §3-4] to avoid and de-
tect error-producing carries. For example, suppose X = 10,
and consider perturbing the X-adic expansion of an integer
a with a small perturbation γ:

a = 59989
︷ ︸︸ ︷

5X4 + 9X3 + 9X2 + 8X + 9+

γ = 99
︷ ︸︸ ︷

9X + 9 =

a+ γ = 60088
︷ ︸︸ ︷

6X4 + 8X + 8 .

If we are interested in only the leading coefficient of the X-
adic expansion of a we prefer to work with an approximation
of a (i.e., only the first few leading coefficients), but as shown
above even a small perturbation can affect the leading co-
efficient. The shifted number system avoids this problem
with high probability by randomly shifting the class of rep-
resentatives modulo X; instead of the positive range [0, 9]
we might choose [−2, 7]. In this shifted number system we
have

a = 59989
︷ ︸︸ ︷

6X4 −X − 1+

γ = 99
︷ ︸︸ ︷

X2 − 1 =

a+ γ
︷ ︸︸ ︷

6X4 +X2 −X − 2,

so the leading coefficient of a has not been affected by the
perturbation.

The deterministic algorithm for high-order lifting we pro-
pose here avoids the following complications of using the
shifted number system.

• The modulus X must be chosen large enough to afford
sufficiently many choices for the shift to ensure the
probability of failure is at most 1/2. That is, the lower
bound on the magnitude of X depends not only on the
minimum precision required for the lifting process, but
also on the number of computations performed.

• After each computation the guard coefficients in the
shifted X-adic expansion must be obtained explicitly
to detect error-producing carry propagation.

Being able to work with a modulus X that is as small as
possible is crucial for an efficient implementation of high-
order lifting. In particular, each iteration of the lifting dou-
bles the precision of the output, but doubling the precision
of X makes each lifting step at least twice as expensive
while decreasing the number of iterations by only one. For
our deterministic algorithm, we prove that the modulus X
can be any integer relatively prime to detA that satisfies
X ≥ max(10000, 3.61n2||A||), independent of the number

of computations performed. For comparision, the previous
randomized algorithm for unimodularity ceritification [16,
§7] requires X ∈ Ω(n4(log n)||A||).

Our implementation of the high-order lifting algorithm
(see §5) can choose X to be the product of “word-size”
primes, thus keeping intermediate quantities in a residue
number system and avoiding conversions that would be re-
quired after each step of the computation to check guard co-
efficients. This allows an efficient reduction to level 3 BLAS.

The rest of this paper is organized as follows. In §2 we offer
a detailed study of both linear and quadratic X-adic lifting.
Our deterministic high-order lifting algorithm is given in §3.
As an application, we give in §4 a deterministic algorithm
to certify if an integer matrix has determinant ±1. In §5 we
report on a prototype implementation of the new high-order
lifting algorithm. Finally, §6 concludes.

Cost functions.
Cost estimates are given in terms of a multiplication time

M(t) for integers: two integers bounded in magnitude by 2t

can be multiplied using at most M(t) bit operations. We
use ω as the exponent of matrix multiplication: two n × n
matrices over a commutative ring can be multiplied using at
most O(nω) ring operations. For more details about integer
and matrix multiplication we refer to the textbook by von
zur Gathen and Gerhard [5].

In this paper we place no restrictions on ω. In particu-
lar, our results remain valid even if the exponent of matrix
multiplication is 2.

Preliminaries.
Let X > 2 be an integer. For any rational number a that

has denominator relatively prime to X, we let Rem(a,X)
denote the unique integer in the usual “symmetric range”
modulo X, that is, Rem(a,X) ≡ a mod X and

Rem(a,X) ∈

[

−
⌊X − 1

2

⌋

,
⌊X

2

⌋]

.

The next two lemmas follow directly from the above defini-
tion.

Lemma 1. |Rem(∗, X)|/X ≤ 1/2.

Lemma 2. If a ∈ Z satisfies |a| < X/2 then Rem(a,X) =
a.

For a matrix A filled with rational numbers having denom-
inator relatively prime to X, we write Rem(A,X) for the
matrix obtained from A by applying Rem(·, X) elementwise
to each entry.

2. LIFTING
Let A ∈ Z

n×n be nonsingular. Given an X ∈ Z>2 that
is relatively prime to detA (denoted by X ⊥ detA), X-adic
lifting can be used to compute Rem(A−1, Xi) up to some
precision i. We first recall the standard linear and quadratic
lifting algorithms in §2.1 and §2.2, respectively, and in §2.3
we give a variation of quadratic lifting that yields a straight
line formula

B(I +RX)(I +R2X2)(I +R4X4) · · · (I +R2k−1

X2k−1

)

that is congruent to A−1 mod X2k .

282

2.1 Linear lifting
For convenience assume X is odd. This assumption is not

required, but simplifies the presentation slightly because for
oddX we have Rem(A−1, Xk) = C0+C1X+· · ·+Ck−1X

k−1

where each Ci satisfies Ci = Rem(Ci, X).
Linear X-adic lifting is based on the identity

A−1 =

Rem(A−1, Xi)
︷ ︸︸ ︷

C0 + C1X + · · ·+ Ci−1X
i−1 +A−1RiX

i, (1)

where the residue Ri is equal to

Ri = (1/Xi)(I −ARem(A−1, Xi)). (2)

If Ri is known, the next coefficient Ci in the X-adic expan-
sion of A−1 can be computed using

Ci = Rem(C0Ri, X),

and the next residue using

Ri+1 = (1/X)(Ri −ACi). (3)

This gives the following standard algorithm to compute the
X-adic expansion of A−1.

C0 := Rem(A−1, X);
R1 := (1/X)(I −AC0);
for i = 1 to k − 1 do

Ci := Rem(C0Ri, X);
Ri+1 := (1/X)(Ri −ACi)

od

The essence of linear X-adic lifting is that Ci and Ri+1 can
be computed using only A, Ri and C0: the other coefficients
of the X-adic expansion of A−1 are not required. The fol-
lowing theorem captures this essential idea of linear X-adic
lifting.

Theorem 3. Let A ∈ Z
n×n be nonsingular and X ∈ Z>2

be relatively prime to detA. If B,R ∈ Z
n×n satisfy

• A−1 = B +A−1RXk

for some k > 0, then for any M ∈ Z
n×n such that M ≡

A−1R mod Xl for some l > 0, we have

• A−1 = B +MXk +A−1R′Xk+l,

where R′ := (1/Xl)(R−AM). In particular, we can choose

l = 1 and M := Rem(A−1R,X).

2.2 Quadratic lifting
Identically to linear lifting, quadratic lifting, also known

as algebraic Newton iteration, is based on the identity

A−1 = Rem(A−1, X2i) +A−1RX2i , (4)

where the residue R is equal to

R = (1/X2i)(I −ARem(A−1, X2i)). (5)

Note that equations (4) and (5) are exactly equations (1)
and (2) but with i replaced by 2i. In linear lifting we used the
local inverse C0 = Rem(A−1, X) to increase the precision of
the inverse by one at each step. In quadratic lifting, the
precision of the inverse is doubled using the observation

A−1 ≡ Rem(A−1, X2i)(I +RX2i) mod X2i+1

.

The standard algorithm [2, Algorithm 3.1] for computing

Rem(A−1, X2k) is shown below.

B := Rem(A−1, X);
for i = 0 to k − 1 do

R := (1/X2i)(I −AB);

B := Rem(B(I +RX2i), X2i+1

)
od

2.3 Quadratic lifting as a straight line formula
Now suppose we have Rem(A−1, X2i) only modulo X2i ,

say

B = Rem(A−1, X2i) + CX2i

for some matrix C ∈ Z
n×n. If we compute the residue R̄

from B we obtain

R̄ = (1/X2i)(I −AB)

= R−AC,

where R is the residue computed from Rem(A−1, X2i) as
shown in (5). However, similar to (4),

A−1 = B +A−1R̄X2i (6)

still holds. Although B contains the extra term CXk, this
is cancelled out in (6) by the negation of the same term ap-
pearing in A−1R̄Xk. The above consideration leads to the

following code fragment to compute Bi ≡ Rem(A−1, X2i)

mod X2i for i = 0, 1, . . . , k.

B0 := Rem(A−1, X);
for i = 0 to k − 1 do

Ri := (1/X2i)(I −ABi);

Bi+1 := Bi(I +RiX
2i)

od

The difference between the above recipe compared to the
standard presentation of Newton iteration is that the com-
putation of the Bi for i ≥ 1 does not include a modulo

operation to ensure that Bi = Rem(A−1, X2i). The benefit
of avoiding the modulo operation is that the computation of
Ri for i ≥ 1 can be considerably simplified by using the fact
that Ri = R2

i−1 for i = 1, 2, . . . , k − 1. Indeed,

Ri = (1/X2i)(I −ABi)

= (1/X2i)(I −ABi−1(I +Ri−1X
2i−1

))

= (1/X2i)(I − (I −Ri−1X
2i−1

)(I +Ri−1X
2i−1

))

= R2
i−1.

This gives the following simplified recipe.

B0 := Rem(A−1, X);
R0 := (1/X)(I −AB0);
for i = 1 to k − 1 do

Ri := R2
i−1

od

Once the residues R1, R2, . . . , Rk−1 have been computed by

the simplified recipe, the Bk ≡ Rem(A−1, X2k) mod X2k

from the original recipe can be expressed as a straight line

283

formula

Bk = B0(I+R0X)(I+R1X
2)(I+R2X

4)· · ·(I+Rk−1X
2k−1

).

Because the Bi are computed without a modulo operation
we will have

Bi = Rem(A−1, X2i) + CiX
2i

for some overflow term Ci. For B0 we have C0 = 0 and
hence ||R0|| ≤ n||A||. But because Ri+1 = R2

i the bound
||Ci|| and ||Ri|| will grow prohibitively large as i increases.
For example, if X = 1000, then

Rem(777−1, X8) = −1287001287001287001287,

but the straight line encoding for a formula congruent to
777−1 modulo X8 produced by the above loop is

B0
︷ ︸︸ ︷

−287(1 +

R0
︷︸︸︷

223 X)(1 +

R1
︷ ︸︸ ︷

49729X2)(1 +

R2
︷ ︸︸ ︷

2472973441X4)

= −7870782033322240001287001287001287001287

≡ −1287001287001287001287 mod X8

We end this section with the following theorem which cap-
tures the essential idea of quadratic X-adic lifting.

Theorem 4. Let A ∈ Z
n×n be nonsingular and X ∈ Z>2

be relatively prime to detA. For any B,R ∈ Z
n×n that

satisfy

• A−1 = B +A−1RX,

we have

• A−1 = B(I +RX) +A−1R2X2.

Proof. Multiplying both sides of the equation A−1 =
B + A−1RX on the right by RX gives A−1RX = BRX +
A−1R2X2, and thus A−1 = B + A−1RX = B + BRX +
A−1R2X2.

3. DOUBLE-PLUS-ONE LIFTING
Define Xi = X2i+1−1. Then Xi+1 = X2

i X for all i ≥
0. We will interleave the processes of quadratic and linear
X-adic lifting. At step i = 0, 1, 2. . . . we will “double the
precision plus one,” that is, compute a matrix Bi that is
congruent to A−1 mod Xi where

X0 = X

X1 = X2
0X = X22−1

X2 = X2
1X = X23−1

...

The expansion we will compute has the following form.

A−1=(· · · ((B0(I+R0X0)+M0X
2
0)(I+R1X1)+M1X

2
1)+· · ·)

More precisely, we initialize B0 := Rem(A−1, X0 = X) and
compute, for i = 0, 1, 2, . . . in succession, the following sparse
inverse expansions:

B1 =B0(I +R0X0) +M0X
2
0 ≡ A−1 mod X1(= X2

0X)

B2 =B1(I +R1X1) +M1X
2
1 ≡ A−1 mod X2(= X2

1X)

...

(7)

Each multiplicative factor (I + RiXi) encodes a step of
quadratic lifting, so that Bi(I + RiXi) ≡ A−1 mod X2

i−1,
and each additive term MiX

2
i encodes a single step of linear

X-adic lifting so that Bi(I + RiXi) + MiX
2
i ≡ A−1 mod

X2
i−1X.
The approach is best illustrated with a concrete example.

Let X = 1000 and A = 777, and consider the computation
of 777−1. To begin we initialize B0 = Rem(A−1, X) and
R0 = (1/X)(I −AB0) to obtain

A−1

︷ ︸︸ ︷

777−1 ≡

B0
︷ ︸︸ ︷

−287(1 +

R0
︷︸︸︷

223 X) mod X2.

But

B0
︷ ︸︸ ︷

−287(1 +

R0
︷︸︸︷

223 X) = −65001287

=

Rem(777−1, X2)
︷ ︸︸ ︷

1287 −64X2,

so our straight line formula −287(1 + 223X) for 777−1 mod
X2 contains the overflow term −64X2. Nonetheless, by
Theorem 4 we have

A−1

︷ ︸︸ ︷

777−1 =

B0
︷ ︸︸ ︷

−287(1 +

R0
︷︸︸︷

223 X) +

A−1

︷ ︸︸ ︷

777−1

R2
0

︷︸︸︷

2232 X2,

so we can proceed with one step of linear X-adic lifting:
compute M0 = Rem(A−1R2

0, X) and Ri+1 = (1/X)(R2
0 −

AM0) yielding

A−1

︷ ︸︸ ︷

777−1 ≡

B0
︷ ︸︸ ︷

−287(1 +

R0
︷︸︸︷

223 X) +

M0
︷ ︸︸ ︷

(−223)X2

︸ ︷︷ ︸

B1

+

A−1

︷ ︸︸ ︷

777−1

Ri+1
︷︸︸︷

223 X2X.

Now we have a straight line formula B1 for 777−1 mod X2X
without any overflow:

Bi = −287(1 + 223X)− 223X2

= −287001287

= Rem(777−1, X2X).

In general, the expression Bi may have some overflow, but
with a judicious choice of X (based on ||A|| and n) we can
ensure the overflow will be very small. Algorithm Double-

PlusOneLift is shown in Figure 1.

DoublePlusOneLift(A,X, n, k)
Input: A ∈ Z

n×n, X ∈ Z with X ⊥ detA, k ∈ Z>0.
Output: B0, R0 . . . , Rk,M0, . . . ,Mk ∈ Z

n×n as in (7).
Condition: X ≥ max(10000, 3.61n2||A||).
B0 := Rem(A−1, X);
R0 := (1/X)(I −AB0);
for i = 0 to k − 1 do

R̄ := R2
i ;

Mi := Rem(B0R̄,X);
Ri+1 := (1/X)(R̄−AMi)

od;
return B0, R0, R1, . . . , Rk,M0,M1, . . . ,Mk

Figure 1: Algorithm DoublePlusOneLift

284

Theorem 5. Algorithm DoublePlusOneLift is correct.

Moreover, for all i, 0 ≤ i ≤ k, the output satisfies ||Ri|| <
0.6001n||A|| and ||Bi|| < 0.6Xi.

Proof. We prove by induction on i that at the start of
each loop iteration we have

A−1 = Bi +A−1RiXi, (8)

and

||Bi|| < 0.6Xi, (9)

where Bi = Bi−1(I +Ri−1Xi−1) +Mi−1X
2
i−1. For the base

case i = 0, Theorem 3 shows (8) and Lemma 1 shows (9).
Now assume that (9) and (8) hold for some i, i ≥ 0. Theo-
rem 4 gives

A−1 = Bi(I +RiXi) +A−1R2
iX

2
i (10)

and Theorem 3 gives

A−1 = Bi(I +RiXi) +MiX
2
i +A−1Ri+1Xi+1,

which shows that (8) is satisfied for i + 1. From (8) we
have Ri = (1/Xi)(I − ABi) which gives the bound ||Ri|| <
(1/Xi)+0.6n||A|| ≤ 0.6001n||A||. This bound for ||Ri|| gives

||Bi(I +RiXi)|| ≤ ||Bi||+ n||Bi||||Ri||Xi

< 0.6Xi + n(0.6Xi)(0.6001n||A||)Xi

= (0.6/Xi + 0.36006n2||A||)X2
i

≤ 0.36012n2||A||X2
i . (11)

Finally, note that

||Bi+1||/Xi+1 = ||Bi +BiRiXi +MiX
2
i ||/(X

2
i X)

< 0.36012n2||A||/X + 1/2,

which is < 0.6 using X ≥ 3.61n2||A||. This shows that (9)
holds for i+ 1.

We now turn our attention to bounding the running time.
The only subtlety is the computation of Rem(A−1, X), which
requires a recursive reduction to matrix multiplication and
the inversion of some integers modulo X. Let B(t) denote
the cost of the extended Euclidean problem with two in-
tegers bounded in magnitude by 2t. We can take B(t) ∈
O(M(t) log t) (see for example [5, §15]). Then Rem(A−1, X)
can be computed in O(nω(log n)M(X) + n2(log n)B(X)) bit
operations by using a fast algorithm for unimodular trian-
gularization [9] (see for example [16, §2]).

Corollary 6. If k ∈ O(log n) and logX ∈ O(log n +
log ||A||) then the running time of algorithm DoublePlu-

sOneLift is bounded by O((log n)nω
M(log n + log ||A||) +

n2(log n)B(log n+ log ||A||)) bit operations.

The following corollary will be useful in the next section.
We first sketch the main idea of the proof. If A is unimodular
then we must have Bk−1(I + Rk−1Xk−1) = A−1 + EX2

k−1

for some integer matrix E. Now, if k is large enough, so
that X2

k−1 is large enough compared to ||A−1||, then the
magnitude bounds established in the proof of Theorem 5
imply that ||E|| < X/2. In the last iteration of the loop we
have R̄ = AE, and because ||E|| < X/2 is small enough we
have Mk−1 = Rem(E,X) = E, and hence Rk will be zero.

Corollary 7. If k is chosen large enough to satisfy

X2
k−1 ≥ (n(n−1)/2||A||n−1)/(n2||A||),

then A is unimodular if and only if Rk is the zero matrix.

Proof. Assume A is unimodular. Then A−1 is integral
and by Hadamard’s bound we have

||A−1|| ≤ (n− 1)(n−1)/2||A||n−1

≤ (n2||A||)X2
k−1.

Since Bk−1(I +Rk−1Xk−1) is congruent to A−1 mod X2
k−1,

we have

A−1 = Bk−1(I +Rk−1Xk−1) + EX2
k−1 (12)

for some E. Solving (12) for E, and then using (11) and (12),
gives

||E|| = ||A−1 −Bk−1(I +Rk−1Xk−1)||/X
2
k−1

≤ ||A−1||/X2
k−1 + ||Bk−1(I +Rk−1)||

≤ n2||A||+ 0.36012n2||A||

< X/2,

where the last inequality follows from the assumption X ≥
3.61n2||A||. Let R̄ = R2

k−1. Then considering equation (10)
with i = k − 1 and (12) gives

A−1R̄X2
k−1 = EX2

k−1.

Now consider the step of linear X-adic lifting during the last
loop iteration in the algorithm. The algorithm computes
Mk−1 = Rem(A−1R̄,X) = Rem(E,X) = E, where the last
equality follows from ||E|| < X/2. Finally, since Mk−1 = E
we have R̄−AMk−1 = 0.

4. DETERMINISTIC UNIMODULARITY

CERTIFICATION
Algorithm UniCert, shown in Figure 2, modifies Double-

PlusOneLift from the previous section to deterministically
assay if a given matrix A is unimodular: instead of being
given as input, the modulus X is chosen to be a power of 2;
to save space, the O(log n) matrices comprising the sparse
inverse expansion formula are not saved during the compu-
tation; and the loop includes a check for early termination
in case the a priori bound for ||A−1|| is pessimistic.

Theorem 8. Algorithm UniCert is correct. The cost of

the algorithm is O((log n)nω
M(log n + log ||A||)) bit opera-

tions and the intermediate space requirement is bounded by

O(n2(log n+ log ||A||)) bits.

Proof. The running time bound follows from Corollary 6
by noting thatB0 can be computed inO(nω(log n)+nω

M(e))
bit operations by first computing Rem(A−1, 2) and then

doubling the precision up to 2⌈log2 e⌉ using algebraic Newton
iteration.

We now prove correctness. Note that the algorithm com-
putes the same quantities as algorithm DoublePlusOneLift,
so let Mi and Ri+1 be the matrices M and R computed in
iteration i of the loop. At the end of loop iteration i the
algorithm has computed a sparse inverse formula Bi+1 such
that A−1 = Bi+1+A−1Ri+1. If Ri+1 is zero then A−1 is ev-
idently integral; this shows that the algorithm returns “Yes”
only if A is unimodular.

By definition, Xk−1 = X2k−1 and henceX2
k−1 = X2k+1−2.

By the choice of k in the algorithm, the condition on X2
k−1

stipulated by Corollary 7 holds, and if A is unimodular the
algorithm will return “Yes” before completing loop iteration
i = k − 1.

285

UniCert(A,n)
Input: A ∈ Z

n×n.
Output: “Yes” if A is unimodular, “No” otherwise.
Let X = 2e with e minimal such that

X ≥ max(10000, 3.61n2||A||).

Let k ∈ Z be minimal such that

X2k+1−2 ≥ (n(n−1)/2||A||n−1)/(n2||A||).

if detRem(A, 2) = 0 then return “No” fi;
B0 := Rem(A−1, X);
R := (1/X)(I −AB0);
for i = 0 to k − 1 do

R̄ := R2;
M := Rem(B0R̄,X);
R := (1/X)(R̄−AM);
if R is the zero matrix then return “Yes” fi

od;
return “No”

Figure 2: Algorithm UniCert

5. EMPIRICAL RESULTS
The following describes a prototype implementation of

DoublePlusOneLift in terms of the level 3 BLAS. As pre-
sented, DoublePlusOneLift requires X and k (respectively,
the base of the X-adic lifting and the number of lifts) as
input. For purposes of this implementation, X and k were
selected to be sufficiently large as required by Theorem 5
and Corollary 7.

The Basic Linear Algebra Subprograms (BLAS) are a
ubiquitous interface providing, as the name suggests, low-
level linear algebra routines: scalar/vector, matrix/vector,
and matrix/matrix multiplication. Our implementation re-
lies primarily on the level 3 BLAS routines provided by the
Automatically Tuned Linear Algebra Software (ATLAS) li-
brary [18]: a widely used, portable, highly optimized imple-
mentation of the BLAS. In addition, we make limited use of
the Integer Matrix Library (IML) [3] and the GNU Multi-
Precision Arithmetic (GMP) library [7] for matrix inversion
over a finite field and arbitrary precision integer arithmetic
respectively.

ATLAS operates on matrices of double-precision floating-
point numbers. To allow our algorithm to work with ma-
trices of arbitrarily large integers despite this limitation, we
employ a standard modular scheme: operations on matri-
ces over the integers are instead performed on their residues
modulo multiple suitably-sized primes. Using the bound
from Theorem 5, we choose moduli q1, q2, . . . qm with Y =
q1q2 . . . qm and Y ≥ 1.2002n||A||. Each prime qi is chosen
small enough so that all entries in a matrix product can
be represented exactly by the 53 bits of a double’s man-
tissa. That is, for matrices of dimension n, qi must satisfy
n(qi − 1)2 ≤ 253 − 1.

The X-adic lifting steps of the algorithm also require some
quantities be computed modulo X. Again, this quantity
may also be too large to allow the BLAS routines to be
applied directly. We use an additional set of prime moduli
p1, p2, . . . pl with X = p1p2 . . . pl and X ≥ 3.61n2||A||.

Working over two coprime bases requires converting be-
tween residues in the two bases. The following code snippet

illustrates this.

for i = 0 to k − 1 do

Mi := Rem(B0 Rem(Ri, X)2, X)
Ri+1 := Rem(X−1(R2

i −ARem(Mi, Y)), Y)
od;

Note that Mi is computed with respect to the X-basis,
but, in the next line, is used in a computation in the Y -
basis.

The basis extension technique of Shenoy and Kumaresan
[15] can be used to compute such conversions. Briefly, this
technique extends standard Chinese Remainder Theorem-
based reconstruction by requiring a redundant modulus and
corresponding residue be maintained. Residues with respect
to basis Y can then be reconstructed exactly, rather than
modulo Y as in standard methods. Basis extension, then,
can be accomplished by performing this reconstruction mod-
ulo each prime in the target basis X.

The number of moduli in bases X and Y are denoted l
and m, respectively. Computing a single residue in basis X
from a complete set of residues in basis Y requires Θ(l) op-
erations. So, converting between bases requires Θ(lm) oper-
ations. Moreover, both l and m are bounded by O(log ||A|+
log n). The cost of basis conversion at each iteration then is
O(n2(log ||A|| + log n) and is dominated by the cost of the
matrix multiplications. Empirically, profiling the implemen-
tation confirms that the cost of basis extension is, in fact,
negligible.

Timings.
Tables 1 and 2 summarize our experimental results. These

timings were made on an Intel 1.3 GHz Itanium2 with 192
GB RAM running GNU/Linux 2.4.21. The software was
compiled with gcc 4.1.2 and linked against IML 1.0.3, AT-
LAS 3.6.0, and GMP 4.1.3. Tests were performed on ran-
domly generated input matrices of two types: those with
single decimal digit entries and those with 100 decimal digit
entries.

Dimension Time
1000 57 s
2000 454 s (≈ 7.6 minutes)
4000 3756 s (≈ 62.6 minutes)
8000 41120 s (≈ 11.4 hours)

Table 1: Small entries: 1 decimal digit entries

Dimension Time
200 5 s
400 33 s
1000 472 s (≈ 8 minutes)
2000 4336 s (≈ 1.2 hours)

Table 2: Large entries: 100 decimal digit entries

The published timings1 for linear system solving with IML
were performed on a very similar machine and provide a
point of comparison. Using IML, solving a linear system

1http://www.cs.uwaterloo.ca/~astorjoh/iml.html

286

http://www.cs.uwaterloo.ca/~astorjoh/iml.html

of dimension 2000 with 100-digit entries required about 1.3
hours. Here, computing the sparse inverse expansion with
input of the same size required approximately the same
amount of time. IML timings in P. Giorgi’s dissertation [6]
are also comparable: for input of dimension 2000 with 30
digit entries, solving a linear system and computing a sparse
inverse expansion both require about thirty minutes. This
result suggests (at least for input of about this size) that
high-order lifting has some potential as a practical approach
to the problems of, for instance, determinant calculation or
integrality certification.

Dimension Input size (MB) Peak usage (MB)
200 2.56 51.52
400 10.24 212
1000 64 1360
2000 256 5600

Table 3: Memory usage with 100 decimal digit input

entries

Dimension Input size (MB) Peak usage (MB)
1000 24 208
2000 96 832
4000 384 3332
8000 1536 13312

Table 4: Memory usage with 1 decimal digit input

entries

Tables 3 and 4 show the memory usage of selected com-
putations. The majority of the extra space is used to store
intermediate computations in the residue number systems.
That is, the extra space required is proportional to the num-
ber of elements in the two coprime bases and, consequently,
exceeds the size of the input by only a logarithmic factor.

6. CONCLUSIONS AND FUTURE WORK
Given a nonsingular A ∈ Z

n×n together with an X ∈ Z>2

such that X ⊥ detA, we describe an algorithm to compute
a high-order residue R ∈ Z

n×n such that BA = I + RXk,
together with a sparse inverse expansion for the matrix B ≡
A−1 mod Xk. The algorithm is deterministic compared to
the previously known approach which relied on a randomized
shifted number system [16, §3-4].

The algorithm reduces the computation to matrix multi-
plications, the number of which can be exactly quantified
a priori. In addition to X, the implementation makes use
of a second modulus Y ∈ Z>2 such that Y ⊥ X. The two
coprime moduli X and Y should satisfy X ≥ 3.61n2||A|| ≥
Y ≥ 1.2002n||A||. Initialization requires one matrix inver-
sion modulo X and one matrix multiplication modulo Y .
Next, fewer than log2 n iterations are performed, each itera-
tion requiring at most two matrix multiplications modulo X
plus two matrix multiplications modulo Y . The timings of a
prototype implementation, which reduces the computation
to level 3 BLAS by choosing X and Y to be the product of
word-size primes, demonstrate the effectiveness of the ap-
proach.

Our work is motivated by the applications of high-order
lifting to solving a wide variety of linear algebra problems.

These include unimodularity certification (testing if detA =
±1), integrality certification (testing if A−1C is integral for
a given matrix C), and more difficult problems such as cer-
tifying the rank [17] or computing the determinant [16, §13].
In this paper we have specified in detail how to apply

the high-order lifting algorithm DoublePlusOneLift to ob-
tain a deterministic algorithm for unimodularity certifica-
tion. Much work remains to investigate the application of
DoublePlusOneLift — with a view towards minimizing the
number of required “word-size” matrix multiplications —
to obtain algorithms for some of the seemingly more dif-
ficult problems mentioned above. Practically fast imple-
mentations of algorithms for problems like computing nor-
mal forms of matrices will use a multi-faceted approach:
numeric-symbolic solvers [13], hybrid methods [14], output
sensitive techniques [10], relaxed lifting [1] and heuristic
methods designed to exploit the structure of commonly oc-
curring or generic cases [12]. We expect that the unimod-
ularity and integrality certification using high-order lifting
will be a key ingredient used to certify correctness in a Las
Vegas fashion the output of algorithms that would otherwise
be Monte Carlo.

One quibble with algorithm DoublePlusOneLift is that
it produces a sparse inverse formula that requires Ω(log n)
as much space as required to write down the input matrix.
For an input matrix with order 10000, this could be a factor
of 10 blowup. However, for applications like unimodularity
and integrality certification, only the final residue R such
that AB = I+RXk is required. Moreover, for linear system
solving, the components (R0,M0), (R1,M1), . . . of the sparse
inverse expansion of B can be applied as they are computed,
avoiding the need to keep them [16].

An interesting question is to devise a method which avoids
the need to randomly find an X that is relatively prime
to detA. For polynomial matrices this can be done using
triangular x-basis decompositions [8].

7. REFERENCES

[1] J. Berthomieu and R. Lebreton. Relaxed p-adic Hensel
lifting for algebraic systems. In Proc. Int’l. Symp. on

Symbolic and Algebraic Computation: ISSAC’12.
ACM Press, New York, 2012.

[2] D. Bini and V. Y. Pan. Polynomial and Matrix

Computations, Vol 1: Fundamental Algorithms.
Birkhauser, Boston, 1994.

[3] Z. Chen and A. Storjohann. A BLAS based C library
for exact linear algebra on integer matrices. In
M. Kauers, editor, Proc. Int’l. Symp. on Symbolic and

Algebraic Computation: ISSAC’05, pages 92–99. ACM
Press, New York, 2005.

[4] J. D. Dixon. Exact solution of linear equations using
p-adic expansions. Numer. Math., 40:137–141, 1982.

[5] J. von zur Gathen and J. Gerhard. Modern Computer

Algebra. Cambridge University Press, 2nd edition,
2003.

[6] P. Giorgi. Arithmetic and algorithmic in exact linear

algebra for the LinBox library. PhD thesis, École
normale supérieure de Lyon, LIP, Lyon, France,
December 2004.

[7] T. Granlund and the GMP development team. Gnu
mp: The GNU multiple precision arithmetic library,
2011. Edition 5.0.2. http://gmplib.org.

287

http://gmplib.org

