
Distribution by Document Size

Andrew Kane
arkane@cs.uwaterloo.ca

Frank Wm. Tompa
fwtompa@cs.uwaterloo.ca

University of Waterloo
David R. Cheriton School of Computer Science

Waterloo, Ontario, Canada

ABSTRACT
Search engines split large datasets across multiple machines
using document distribution. Documents are typically dis-
tributed randomly to produce good load balancing. We pro-
pose that documents be distributed by their size instead.
This can make load balancing more difficult, but it pro-
duces immediate improvements in both index size and query
throughput. To support our proposal, we show improve-
ments to an in-memory conjunctive list intersection system
running on the GOV2 dataset using simple16 compression
combined with either skips or bitvectors. While our list
intersection system does not implement ranking, we also ex-
pect significant performance improvements from using doc-
ument size distribution in ranking based search systems.

In addition, implementations can be adapted to produce
further performance improvements that exploit the docu-
ment size distribution. We present some examples that ap-
ply to a full ranking based search engine and leave their
verification for future work.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance evaluation (efficiency and ef-
fectiveness)

General Terms
Algorithms, Performance

Keywords
Information Retrieval, Distribution, Algorithms, Performance,
Efficiency, Optimization, Compression, Intersection

1. INTRODUCTION
In order to quickly process a query in a large search en-

gine, the processing must be done in parallel across many
machines. In practice, this means splitting the dataset into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LSDS-IR ’14 New York City, USA
Copyright 2014 ACM ...$15.00.

partitions (or shards), which contain non-overlapping sub-
sets of the documents. This process is referred to as docu-
ment distribution, with the documents randomly placed into
the partitions for good load balancing.

Each partition runs the query in parallel, after which the
top-k results from each are merged to produce the final query
result. The partitions do not need to communicate with each
other to process the query, and the amount of communica-
tion needed to broadcast the query and merge the results is
small, so the speedup from document distribution is nearly
linear in the number of partitions. Other techniques, such
as term distribution, cannot handle the scaling and latency
requirements of most systems [5].

We propose that document distribution be done based on
document size, rather than at random. This distribution
causes skew in the placement of postings within the doc-
ument identifier domain, which gives benefits that reduce
the overall index size and improve the query throughput.
While we expect that good load balancing can be attained
by adjusting the range of document sizes assigned to each
partition, we leave such exploration for future work.

We demonstrate space and throughput improvements us-
ing an in-memory list intersection system (i.e., queries are a
conjunction of the postings lists) without ranking. In such a
system, partitioning by document size yields a smaller index
when using simple16 delta compression [25], as well as faster
query results when skips are added to the lists or when large
lists are stored as bitvectors [7].

Similar immediate improvements will be produced in rank-
ing based systems, with additional improvements available
with more tuning of the system. In addition, executing on
a subset of the partitions to decide on subsequent execution
can be effective, because of the differences among partitions.

The remainder of the paper describes related work in Sec-
tion 2, experimental setup in Section 3, document size dis-
tribution in Section 4, resulting benefits in Section 5, and
conclusions in Section 6.

2. RELATED WORK
In this section, we present related work on distributed

search systems, methods of list intersection, and the effects
of document reordering on performance.

2.1 Distributed Search Systems
Distribution of search engine query processing across many

machines is typically done by spreading a dataset’s docu-
ments across multiple partitions (or shards). Documents
are typically distributed into partitions randomly to improve

load balancing. Queries are broadcast to the partitions, each
running in parallel on a separate machine; then top-k results
from each partition are merged to produce the query re-
sults. Running the partitions in parallel produces low query
latency, while the independence of partitions and ease of
result merging allows for near linear scaling. As a result,
document distribution is used in commercial search engines.

Some versions of document distribution cluster documents
by topic [12] or top-k result counts [15] and place clusters
in partitions. The queries then execute on a subset of the
partitions. This process is called selective search (or collec-
tion selection), and it results in improved throughput and
reduced resource use. Unfortunately, topic based partition-
ing has the potential to degrade ranking effectiveness, which
limits its use. As it turns out, our approach effectively clus-
ters by the number of times a document appears in the top-k
results, but without using collection selection and without
needing a large training phase.

In extremely large datasets, the data may be split into
tiers [16] based on some global order such as PageRank or
on past query results. Lower tiers are queried only if higher
tiers do not return sufficiently good results. Each tier is
typically independent and uses document distribution, so
the use of tiers is orthogonal to the work in this paper.

2.2 Intersection Approaches
Many algorithms can intersect integer lists [2, 26]. We

use set-vs-set conjunctive intersection of the term postings
lists from smallest to largest list. Storing the lists as un-
compressed integers (32 bits/postings) is too large, but the
algorithms can exploit random access into the lists, which
gives fast query runtimes. Compressing the lists using deltas
and variable length compression uses much less memory, but
prevents random access, resulting in slow query runtimes.

For illustrative purposes, we choose the simple16 (S16) [25]
compression algorithm, which produces good compression
and runtime performance comparable to other approaches.
The S16 encoding is word (4-byte) aligned, using 4 bits to
allocate the remaining 28 bits to fit a few deltas, meaning it
uses a variable block size, but we combine these into larger
fixed sized blocks [25] for faster decoding. We use the pub-
licly available S16 implementation from the Polytechnic In-
stitute of NYU. More recent advancements in intersection al-
gorithms and implementations involve dynamically varying
block sizes [21], decoding and delta restore using vectoriza-
tion [13], and processing non-delta monotone sequences [23],
but for the purposes of this paper, the S16 compression al-
gorithm is sufficient to illustrate our results.

List indexes are usually included to skip over values and
thus avoid decoding, or even accessing, portions of the lists.
We use a simple list index algorithm that stores every Xth

element in an array, where X is a constant [17]. Other ap-
proaches using segments [17] or variable length skips [6] are
possible, but the differences are not important here. These
list index algorithms can be used with compressed lists by
storing the deltas of the jump points. For simplicity, we
make the compressed block size equal to the skip size X [11].

When using a compact domain of integers, as we are, the
lists can instead be stored as bitvectors, where the bit num-
ber is the integer value and the bit is set if the integer is in
the list. To alleviate the space costs, lists with document fre-
quency less than F can be stored using normal compression,
resulting in a hybrid bitvector algorithm [7]. This hybrid

algorithm is faster than non-bitvector algorithms, and some
very large lists are more compact as bitvectors.

2.3 Reordering
Search engines intersect lists of integers that represent

document identifiers assigned by the system to give a com-
pact domain of values. This assignment of identifiers can be
changed to produce space and/or runtime benefits, and we
refer to this process as ordering the documents.

Search engines typically store their lists as compressed
deltas. Reordering can reduce deltas and thus improve com-
pression. In addition, an ordering can also be modified to
get better compression in areas other than the document
identifier storage, for example, reordering to improve the
compression of term frequencies embedded in lists [24].

Reordering can improve runtime performance by produc-
ing data clustering within the lists as well as query result
clustering within the document identifier domain. This re-
sults in larger gaps of integers that can be skipped dur-
ing query processing. These runtime improvements are seen
not just in list intersection performance, but with frequency,
ranking and even dynamic pruning where knowledge of the
ranking algorithm is used to avoid processing some parts
of the lists [22]. Tuning the compression algorithms to an
ordering can also give a better space-time tradeoff [24].

Below we present various document ordering techniques:

Random: If the documents are ordered randomly (rand),
there are no trends for the encoding schemes or the inter-
section algorithms to exploit, so this is a base of comparison
for the other orderings.

Rank: Reordering to approximate ranking allows the en-
gine to terminate early when sufficiently good results are
found. A global document order [14] can be used, such as
PageRank or result occurrence count in a training set [10].
Individual postings lists could be ordered independently, as
done in impact ordering [1], but this increases space usage
and requires accumulators to process queries.

Content Similarity: Ordering by content similarity uses
some similarity metric that is applied in various ways to
produce an order. Ordering using normal content clustering
techniques [4] or a travelling salesman problem (TSP) [18]
formulation can produce space improvements. Unfortunately,
even with various improvements [3, 20], these approaches are
too slow to be used in practice.

Metadata: Ordering lexicographically by URL provides
similar improvements in space usage as compared to or-
dering by content similarity [19], and it improves runtime
substantially when using skips [24]. URL ordering is es-
sentially using the human-based organization of website au-
thors, which often groups the documents by topic, to pro-
duce content similarity in the ordering. The effectiveness
can vary greatly based on the dataset and even the density
distribution of the data within the chosen domain.

Document Size: The simple method of numbering docu-
ments in decreasing order of the number of unique terms in
the document has been shown to produce index compres-
sion [5] and some runtime performance improvements [22].
Ordering by terms-in-document is approximately the same
as ordering by the number of tokens in the document or
by document size. The improvements obtained from terms-
in-document ordering are not as large as occurs with other
orderings, so it has been mostly ignored.

A full ranking based search engine is likely to order by
global rank or impact order, so that the query can prune
portions of the intersection, while URL order is the most
common approach for list intersection systems. Some recent
work has tried to combine these ideas [8].

Our experiments use random ordering so as not to preju-
dice the improvements for a particular document ordering,
but we believe that distribution by document size will im-
prove space and runtime for any ordering.

3. EXPERIMENTAL SETUP
We use the TREC GOV2 corpus indexed by Wumpus1

without stemming and extracted to document postings. The
corpus size is 426GB from 25.5 million documents giving 9
billion document postings and 49 million terms.

Our workload is a random sample of 5000 queries chosen
by Barbay et al. [2] from the 100,000 corpus queries, which
we have found to produce very stable results. These queries
are tokenized by Wumpus giving an average of 4.1 terms per
query. Detailed query information is presented in Table 1,
including averages of the smallest list size, the sum of all
list sizes, and the result list size over all queries with the
indicated number of terms for the entire corpus.

terms queries % smallest all result
1 92 1.8 131023 131023 131023
2 741 14.8 122036 1520110 39903
3 1270 25.4 194761 6203147 31730
4 1227 24.5 199732 13213388 17879
5 803 16.1 204093 20361435 13087
6 428 8.6 192445 29367581 15004
7 206 4.1 205029 36346235 8240
8 98 2.0 206277 46198187 5726

>=9 135 2.7 198117 63406170 3308
Total 5000 100.0 186070 14944683 24699

Table 1: Query information.

Our experiments simulate a full index; we load the post-
ings lists for query batches, encode them, flush the CPU
cache by scanning a large array, then execute the conjunc-
tive intersection of terms to produce the results. Queries
have copies of their encoded postings lists, so performance
is independent of query order and shared terms. Intersection
runtimes per step are recorded, and overall runtimes are the
sum for all steps of all queries. Space and time values ignore
the dictionary, positional information and ranking.

Our code was run on an AMD Phenom II X6 1090T
3.6Ghz Processor with 6GB of memory, 6mb L3, 512k L2
and 64k L1 caches running Ubuntu Linux 2.6.32-43-server
with a single thread executing the queries. The gcc com-
piler was used with the -O3 optimizations to produce high
performance code. The query results were visually verified
to be plausible and automatically verified to be consistent
for all algorithms.

We used the C++ language and classes for readability,
but the core algorithms use only non-virtual inline functions,
allowing a large range of compiler optimizations. We encode
directly into a byte array for each list, and then include
decode time in our runtimes to produce more realistic and
repeatable measurements. The code was tuned to minimize
memory access and cache line loads.

1http://www.wumpus-search.org/

0.0 0.2 0.4 0.6 0.8 1.0

0

500

1000

1500

2000

2500

3000

Fraction of Documents

Te
rm

s−
in

−
do

cu
m

en
t

●
x=10.9%,y=608

●
x=38.7%,y=313

Figure 1: Terms-in-document distribution for the GOV2
dataset, cutoffs for three partitions are marked.

4. DOCUMENT SIZE DISTRIBUTION

4.1 Terms-in-Document Ordering
The size of documents can be measured in various ways,

but for this paper we consider only the number of unique
terms in the document. This measure is highly skewed in
our GOV2 dataset, so that ordering by decreasing number
of terms-in-document (td) results in more postings being
packed into lower document identifiers. This skew in terms-
in-document size is shown in Figure 1.

The skew in document size produces a skew in the density
of postings in individual lists (i.e. front-packing of postings
in lists), which produces smaller deltas and better compres-
sion. For conjunctive list intersection systems, this skew in
postings makes processing in the dense front portion of the
list more efficient through better locality of memory access
and shared decoding work for multiple candidate documents.
This locality of access will improve runtime performance for
both skips and bitvectors. In addition, the less dense ends
of the lists allow skips to work more effectively.

In the case of conjunctive list intersection systems, com-
bining skewed postings lists gives result lists that are even
more skewed. This is caused by the likelihood of a docu-
ment occurring in the intersection of multiple lists increas-
ing as the number of lists containing the document increases,
which is exactly the number of terms in the document. This
is similar to what would be expected from ordering by the
document’s usage rate in a set of training queries. For ex-
ample, the document usage rate could be measured by the
number of times a document occurs in the postings lists or
result lists for the set of random training queries. Increased
result list skew does not improve the compressibility of the
data, but it does compound the benefits of locality of access
and the effectiveness of skips.

In ranking systems, it is likely that more potential result
documents are to be found in the partitions with large doc-
uments. This skew could be larger than the skew in the
postings lists, but more investigation is need to verify this
property for ranking systems.

4.2 Terms-in-Document Distribution
Ordering by terms-in-document is not the best ordering

for list intersection or ranking based systems, so it is not used
in practice. However, we can use the terms-in-document
measure to distribute the documents into partitions, allow-
ing for the documents to be ordered in a better way within
the partitions, but still gaining some of the benefits found
with terms-in-document ordering.

High

Low

Large SmallDocuments
(Partitioned)

 List
(Frequency)

F

A

A

A

F

F

Figure 2: Schematic of bitvector distribution within index
for terms-in-document partitioning (bitvectors are shaded).

An additional benefit occurs when document size distri-
bution is used with bitvectors. This benefit is not available
to terms-in-document ordering, so it was not discussed in
previous work. Document distribution allows each parti-
tion to decide independently which lists to store as bitvec-
tors, determined by the term frequency within the partition.
With a random distribution, this decision is fairly consistent
because the term frequencies are fairly consistent between
partitions. In our document size distribution, the term fre-
quencies are highly skewed among partitions, meaning that
bitvectors can be used more efficiently.

Partitions with large documents have denser lists and use
more bitvectors, while partitions with small documents have
less dense lists and use fewer bitvectors. This is illustrated
in Figure 2, where F is the cutoff point for using bitvectors
and list ‘A’ demonstrates that the choice to use bitvectors
is independent for each partition. As a result, more actual
postings are stored as bitvectors, which improves query run-
time since bitvectors are much faster than skips. In addition,
having more bitvectors in partitions with large documents
compounds the benefits from locality of access and increased
density of results.

We implemented document size distribution to place an
equal number of postings in each partition. While this does
not produce good load balancing, it is sufficient to demon-
strate the benefits from document size distribution. Such
partitioning could be done using static ranges of document
sizes, for example, splitting around 300 and 600 postings for
GOV2, as shown in Figure 1.

In our experiments, we randomly order the documents
within a partition to show that the improvements are not
confounded by another ordering, and to convince the reader
that benefits are possible for any ordering within partitions.
In all cases, we found similar types of improvement when
using URL ordering within partitions.

Our experiments split the GOV2 dataset into 3 partitions,
even though more partitions might improve performance.
We compare two approaches, the first splits GOV2 using
random document distribution (rand-p-rand) and the second
uses document size distribution as measured by the number
of unique terms per document (td-p-rand). While the ran-
dom partitions have similar document counts, the terms in
document partitions have a large skew in document counts.

4.3 Validation of Skew
The skew in terms-in-document sizes for the GOV2 dataset

has already been shown in Figure 1. This produces a skew

in the individual postings lists used, as shown in Table 2 by
the average density of the smallest lists in the workload of
queries. The rand-p-rand partitions have very little skew as
expected. Note: we order the values for the random parti-
tions according to this measure and maintain this ordering
in subsequent tables.

rand-p-rand td-p-rand
Partition 1 0.76 2.39
Partition 2 0.74 0.98
Partition 3 0.72 0.23

Table 2: Average portion of documents (%) occurring in the
smallest list per query.

As expected, the conjunctive result lists for the td-p-rand
partitions are even more highly skewed: the first partition
contains 58.2% of the results, even though it contains a third
of the postings and only 10.9% of the documents. The sec-
ond partition contains 31.9% of the results, a third of the
postings and 27.8% of the documents, while the third par-
tition contains 10.0% of the results, a third of the postings
and 61.3% of the documents. The rand-p-rand partitions
contain no such skew, as shown in Table 3.

rand-p-rand td-p-rand
Partition 1 8405 13698
Partition 2 8240 8038
Partition 3 8054 2963

Table 3: Average number of results per query.

We have demonstrated that document size distribution
produces skew in the postings lists of our GOV2 dataset,
and additional skew in the conjunctive query result lists for
our workload of queries. In the next section we demonstrate
four significant benefits, namely: compressible data, locality
of access, effective skips, and effective bitvectors.

5. BENEFITS OF DOCUMENT SIZE DIS-
TRIBUTION

In this section, we compare the performance of random
document distribution (rand-p-rand) and document size dis-
tribution (td-p-rand) for a conjunctive list intersection sys-
tem in order to validate the benefits of document size distri-
bution. The total resource usage limits the system through-
put, and we can compute the resource usage by taking the
sum of the single threaded execution times on the partitions.
Load balancing also limits system throughput, but changing
the partition cutoff points when using terms-in-document
distribution can balance the load.

With these assumptions, our results are presented on space-
time graphs, where space sums the per-partition index space
and time sums the per-partition query runtimes for the con-
figuration. We connect these space-time points to give curves
over the parameters of the algorithm (X for the skips and F
for bitvectors). We present the space axis as bits per posting
and the time axis as ms per query.

B1: Compressible data: Document size distribution pro-
duces density skew between partitions, giving smaller and
more uniform deltas and better compression. To demon-
strate this, we calculate the entropy of the deltas for each
partition and average them. Entropy is a measure of the

6 7 8 9 10 11 12

0

2

4

6

8

10

12

14

space (bits/posting)

tim
e

(m
s/

qu
er

y)

32
64

128

256

3264
128

256

S16+skips(rand−p−rand)
S16+skips(td−p−rand)

Figure 3: Space vs. time graph for the S16+skips algorithm.

amount of information in the data, and it gives an indica-
tion of how compressible the data might be. As shown in
Table 4, td-p-rand partitioning has a lower entropy than
rand-p-rand partitioning, meaning it is more compressible.

rand-p-rand td-p-rand
entropy 7.22 6.49

Table 4: Entropy of postings list deltas.

Actual storage using the S16 compression algorithm with
block sizes of 256 is similar, as shown in Table 5.

rand-p-rand td-p-rand improvement %
S16(256) 7.54 6.70 11.1

Table 5: Index space (bits/postings) using S16 compression.

These measurements are for storing the deltas, but we ex-
pect that term frequencies will also be more compressible,
because the frequency values for a term occurring in a doc-
ument should increase as the document gets larger, which
correlates with our terms-in-document measure. This re-
duces the variance of frequency values within each partition,
which makes them more compressible.

B2: Locality of Access: The partitions with large doc-
uments should get better locality of memory access and
more blocks containing multiple values, thus sharing de-
coding costs. Clearly, the partition with large documents
(partition 1 for td-p-rand) has a much higher density of re-
sults, since the number of results is high and the number
of documents is low. This increased density of results gives
more efficient processing of queries, since the average run-
time per result returned is much lower than other partitions,
as shown in Table 6. This efficiency suggests that the density
of results has indeed given us better locality of access.

Ranking based systems will gain similar types of improve-
ment from locality of access if they use our document size
distribution technique.

B3: Effective skips: The partitions with small documents
should get an increased benefit from skips. Indeed, the par-
tition of small documents (partition 3 in td-p-rand) has the
fewest results relative to the total list sizes for our query
workload. As a result, skips are extremely useful in this
partition. To directly demonstrate this, we calculate the
amount of runtime per element in the non-smallest lists (i.e.,

6 7 8 9 10 11 12

0

2

4

6

8

10

12

14

space (bits/posting)

tim
e

(m
s/

qu
er

y)

1/4

1/8

1/16

1/24

1/32

1/4

1/8

1/16

1/24
1/32

1/48 1/64

S16+bitvectors(rand−p−rand)
S16+bitvectors(td−p−rand)

Figure 4: Space vs. time graph for the S16+bitvector algo-
rithm.

rand-p-rand td-p-rand
Partition 1 320 205
Partition 2 319 298
Partition 3 324 446

Table 6: Runtime (ns) per result for S16+skips(64).

the lists where skips can be used). As shown in Table 7,
the partition containing only small documents uses the least
runtime per skippable element and is thus more dependent
on the speed of skipping.

rand-p-rand td-p-rand
Partition 1 0.55 0.99
Partition 2 0.54 0.44
Partition 3 0.53 0.21

Table 7: Runtime (ns) per element in all but the smallest
list of the query for S16+skips(64).

Many types of ranking based search systems use skips, so
similar types of improvement are likely for such systems.

When the first three benefits are combined for the S16+skips
algorithm, there is a significant improvement in both space
and runtime, as shown in Figure 3.

B4: Effective bitvectors: The independence of the place-
ment of bitvectors within each partition results in significant
runtime improvements for td-p-rand partitioning, on top of
the space improvements for the S16 compression algorithm,
as shown in Figure 4 for the S16+bitvectors algorithm.

The use of bitvectors precludes optimizing for ranking in
those postings lists that are stored as bitvectors, but they
are dense and may not contribute much to improve ranking.

6. CONCLUSIONS
We have shown how skewed partitioning from document

size distribution can be used to improve list intersection sys-
tems, allowing more compression and faster query through-
put. Compression comes from lowering the size and vari-
ance of deltas in postings lists. Throughput improvements
using skips are from better locality of access and sparse re-
sult regions. Throughput improvements using bitvectors are
from better locality of access and more effective adaption
of bitvector to varying list densities within partitions. We

demonstrated these benefits using an in-memory conjunctive
list intersection system with random ordering, but similar
types of improvement were seen with URL ordering (td-p-
url) and are expected for ranking based systems.

Additional performance improvements are possible with
ranking based systems. For example, executing on a subset
of the partitions to decide on subsequent execution, either
by distributing top-k ranking information to improve prun-
ing/early termination, or by choosing query execution types
such as AND or WAND (Weak AND).

Document size distribution is broadly applicable, being
usable with any document ordering. Load balancing can
be achieved by changing the partition cutoff points, or in-
creasing replication of slow partitions. Scaling to a large
number of nodes [9] may require a hierarchy of distribution
approaches, such as distributing first by domain (e.g., .gov),
and then by document size within each domain.

Overall, the benefits suggest that document size distribu-
tion warrants closer examination by the research community.

Acknowledgements. This research was supported by the
University of Waterloo and by the Natural Sciences and
Engineering Research Council of Canada. We thank the
researchers at WestLab, Polytechnic Institute of NYU for
providing their block based compression code [25].

7. REFERENCES
[1] V. N. Anh and A. Moffat. Simplified similarity scoring

using term ranks. In Proc. of the 28th ACM Int. Conf.
on Research and Development in Information
Retrieval (SIGIR), pages 226–233, 2005.

[2] J. Barbay, A. López-Ortiz, T. Lu, and A. Salinger. An
experimental investigation of set intersection
algorithms for text searching. Journal of Experimental
Algorithmics (JEA), 14, 2009.

[3] R. Blanco and A. Barreiro. TSP and cluster-based
solutions to the reassignment of document identifiers.
Information Retrieval, 9(4):499–517, 2006.

[4] D. Blandford and G. Blelloch. Index compression
through document reordering. In Proc. of the Data
Compression Conference (DCC), pages 342–351, 2002.

[5] S. Büttcher, C. Clarke, and G. V. Cormack.
Information retrieval: Implementing and evaluating
search engines. The MIT Press, 2010.

[6] F. Chierichetti, S. Lattanzi, F. Mari, and
A. Panconesi. On placing skips optimally in
expectation. In Proc. of the 1st Int. Conf. on Web
Search and Data Mining (WSDM), pages 15–24, 2008.

[7] J. S. Culpepper and A. Moffat. Efficient set
intersection for inverted indexing. ACM Transactions
on Information Systems (TOIS), 29(1), 2010.

[8] S. Ding and T. Suel. Faster top-k document retrieval
using block-max indexes. In Proc. of the 34th ACM
Int. Conf. on Research and Development in
Information Retrieval (SIGIR), pages 993–1002, 2011.

[9] M. Feldman, R. Lempel, O. Somekh, and
K. Vornovitsky. On the impact of random
index-partitioning on index compression. CoRR,
abs/1107.5661, 2011.

[10] S. Garcia, H. E. Williams, and A. Cannane.
Access-ordered indexes. In Proc. of the 27th
Australasian Conference on Computer Science, pages
7–14, 2004.

[11] S. Jonassen and S. E. Bratsberg. Efficient compressed
inverted index skipping for disjunctive text-queries. In
Advances in Information Retrieval, pages 530–542.
2011.

[12] A. Kulkarni and J. Callan. Topic-based index
partitions for efficient and effective selective search. In
the 8th Workshop on Large-Scale Distributed
Information Retrieval (LSDS-IR), 2010.

[13] D. Lemire and L. Boytsov. Decoding billions of
integers per second through vectorization. Software:
Practice and Experience, 2013.

[14] X. Long and T. Suel. Optimized query execution in
large search engines with global page ordering. In
Proc. of the 29th Int. Conf. on Very Large Data Bases
(VLDB), pages 129–140, 2003.

[15] D. Puppin, F. Silvestri, and D. Laforenza.
Query-driven document partitioning and collection
selection. In Proc. of the 1st Int. Conf. on Scalable
Information Systems, page 34, 2006.

[16] K. M. Risvik, Y. Aasheim, and M. Lidal. Multi-tier
architecture for Web search engines. In LA-WEB,
volume 3, page 132, 2003.

[17] P. Sanders and F. Transier. Intersection in integer
inverted indices. In Proc. of the 9th Algorithm
Engineering and Experiments (ALENEX), 2007.

[18] W.-Y. Shieh, T.-F. Chen, J. J.-J. Shann, and C.-P.
Chung. Inverted file compression through document
identifier reassignment. Information Processing &
Management, 39(1):117–131, 2003.

[19] F. Silvestri. Sorting out the document identifier
assignment problem. Advances in Information
Retrieval, pages 101–112, 2007.

[20] F. Silvestri, S. Orlando, and R. Perego. Assigning
identifiers to documents to enhance the clustering
property of fulltext indexes. In Proc. of the 27th ACM
Int. Conf. on Research and Development in
Information Retrieval (SIGIR), pages 305–312, 2004.

[21] F. Silvestri and R. Venturini. VSEncoding: efficient
coding and fast decoding of integer lists via dynamic
programming. In Proc. of the 19th ACM Int. Conf. on
Information and Knowledge Management (CIKM),
pages 1219–1228, 2010.

[22] N. Tonellotto, C. Macdonald, and I. Ounis. Effect of
different docid orderings on dynamic pruning retrieval
strategies. In Proc. of the 34th ACM Int. Conf. on
Research and Development in Information Retrieval
(SIGIR), pages 1179–1180, 2011.

[23] S. Vigna. Quasi-succinct indices. In Proc. of the 6th
Int. Conf. on Web Search and Data Mining (WSDM),
pages 83–92, 2013.

[24] H. Yan, S. Ding, and T. Suel. Inverted index
compression and query processing with optimized
document ordering. In Proc. of the 18th Int. Conf. on
World Wide Web (WWW), pages 401–410, 2009.

[25] J. Zhang, X. Long, and T. Suel. Performance of
compressed inverted list caching in search engines. In
Proc. of the 17th Int. Conf. on World Wide Web
(WWW), pages 387–396, 2008.

[26] J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Computing Surveys (CSUR), 38(2):6,
2006.

