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Outline

Introduction to search engines.

List Intersection - compression, skips, bitvectors.
Document reordering - URL vs. terms-in-document.
Partial bitvectors - semi-bitvectors with skewed groups.

Conclusions.
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Search Engine Query Processing
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Data for List Intersection

Documents

* Inverted index using document level postings lists.
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List Intersection
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* To intersect, find the query term lists.
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List Intersection
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« Execute list intersection (small to large).

* We run pairwise (term-at-a-time) processing of
conjunctive-AND with lists ordered by
document ID (allows merge).




List Encoding

Bitvector: XXX XXX XXX

Uncompressed: P, P, P, P, P,, P, P P, P, P,

Compressed: A, A LA A A A LA LA LALA ...

Compressed+skips: ALALA LA LA LA LA LALAA .

 Bitvectors are fast.
* Uncompressed lists are fast, but waste probes.
* Compressed lists have no random access.
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* (Can also use a hybrid bitvector approach:

» Use bitvectors if freq. > F and compressed lists for
others [Culpepper and Moftfat 2010].




List Encoding

bitvectors

F-»

Terms

|| Bitvector
| Compressed Documents

* Add (large overlaid) skips to compressed lists [new]
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Document Ordering (orig)

Documents

* Renumber the documents (columns) for improvements.
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Document Ordering (url)

Documents

 URL ordering (= similarity) gives tight clustering.

13




Document Ordering (td)

Documents

e Terms-in-document (td) ordering gives skewed clustering.
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Combine Using Groups [new]

Group documents by terms-in-document to get
skewed clustering.

Order within each group by URL to get tight
clustering.

Call this td-g#-url ordering.




Grouped Order
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» Skew still remains in td-g3-url ordering.




Partial Bitvectors [new]

Semi-bitvector: —Sn,---

cut point

* Semi-bitvector data structure [new]:

* Encode the front of a list as a bitvector.

* Encode the remainder using skips and delta
compression.

» Stores more postings 1n bitvectors (faster) for given
space (so more efficient).




List Encoding
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* Semi-bitvectors with grouping are fast and compact.
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Experiments

Conjunctive-AND list intersection in memory.
Space = encoded size of lists (no dictionary).

Time = list intersection (no lookup 1n dictionary).

Using GOV?2 dataset (426GB) and 5000 corpus
queries (4.1 terms per query).

* Original order = random order.




Experimental Results (orig)
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» Bitvectors are very fast and skips (X=256) help other lists.
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Experimental Results (url)
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» Bitvectors+skips still faster after reordering.
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Experimental Results (td-g8-url)
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* Improvements using semi-bitvectors with 8 groups.
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Conclusions

Skips can improve hybrid bitvector approaches.

Grouping can combine skewed and tight clustering.

Semi-bitvectors with grouping improves space and time:
* More postings in bitvectors for given space.

» Smaller deltas for compression.

* Better locality of access and shared decoding.

Future work:
» Combine with ranking based systems.




Thank you.

Questions?

/* Comments */

Andrew Kane: arkane@cs.uwaterloo.ca

(Student travel grant generously provided by SIGIR)




Existing Ordering Approaches

Rank based — PageRank

Matrix manipulation — block diagonal
Document size

Content similarity — similarity clustering, TSP
Metadata — URL

Hybrid — url.server.suffix-td-url




Terms-in-document Order
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Terms-in-document count for GOV2 dataset, split by
number of postings into three groups, produces skew.

+ Area under the curve is equal for each partition.
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Entropy for Grouping
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Terms—in—document Groups
* Grouping can make the data more compressible.

* Degradation 1s slow (entropy of td = 5.07)

27




Postings 1n Bitvectors
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* Grouping and semi-bitvectors allows more postings

to be stored in bitvectors




Ranking vs. Semi-bitvector

Algorithm /System time (ms/q) space (GB)
Lucene (vbyte) 26.0 42.1
Quasi-succinct indices (QS™*) 11.9 36.9
Exhaustive AND 6.56 4.5
Hierarchical Block-Max (HIER 10G) 4.29 14.5
PFD+semi-bitvectors(z5, td-g8-url) 0.96 8.8

* Semi-bitvectors with conjunctive-AND are faster
than these ranking based systems (from published
results with similar hardware) on GOV2.




Semi-bitvectors in Ranking

Pre-filter — run AND first then ranking.
Sub-document pre-filter — AND over windows.

High density filters — store dense regions as bitvectors,
since low rank information.

Query specific filter — dynamically pick terms to use semi-
bitvectors.

Guided processing — execute on subset of documents using
AND to decide how to process query.




