Skewed Partial Bitvectors
for List Intersection

Andrew Kane and Frank Wm. Tompa
University of Waterloo

arkane@cs.uwaterloo.ca

SIGIR - July 8™ 2014

1

Outline

Introduction to search engines.

List Intersection - compression, skips, bitvectors.
Document reordering - URL vs. terms-in-document.
Partial bitvectors - semi-bitvectors with skewed groups.

Conclusions.

Search Engine Query Processing

Query | Lookup Intersect | Ranktop-k = Expand | Result

terms encodings list short list metadata

AND
OR
Weak-AND
Phrase
Proximity

Early Termination
Pruning

Search Engine Query Processing

@ space
time

Query | Lookup @sect Rank@ Expand & Result

terms encodings list short list metadata

AND
OR
Weak-AND
Phrase
Proximity

Early Termination
Pruning

Search Engine Query Processing

Query | Lookup Intersect | Ranktop-k = Expand | Result

terms encodings list short list metadata

AND
OR
Weak-AND
Phrase
Proximity

Early Termination
Pruning

Data for List Intersection

Documents

* Inverted index using document level postings lists.

6

List Intersection

g, X

q,

q,

a,

Documents

* To intersect, find the query term lists.

7

List Intersection

Intersect

'

—-

~

Result
List

« Execute list intersection (small to large).

* We run pairwise (term-at-a-time) processing of
conjunctive-AND with lists ordered by
document ID (allows merge).

List Encoding

Bitvector: XXX XXX XXX

Uncompressed: P, P, P, P, P,, P, P P, P, P,

Compressed: A, A LA A A A LA LA LALA ...

Compressed+skips: ALALA LA LA LA LA LALAA .

 Bitvectors are fast.
* Uncompressed lists are fast, but waste probes.
* Compressed lists have no random access.

Very Large

Large

List Encoding

s
DILV .

—grcompressea:

Slow

| . m . . . \ \ . e
Mg’ M4 Mo Ma) My Mgy Mg’ M2 Mgy Mg’

A A _ A _A_A _A_A_A_A__A

—Compresseu:

Compressed+skips:

ALA A A A AAANA,..

* (Can also use a hybrid bitvector approach:

» Use bitvectors if freq. > F and compressed lists for
others [Culpepper and Moftfat 2010].

List Encoding

bitvectors

F-»

Terms

|| Bitvector
| Compressed Documents

* Add (large overlaid) skips to compressed lists [new]

11

Document Ordering (orig)

Documents

* Renumber the documents (columns) for improvements.

12

Document Ordering (url)

Documents

 URL ordering (= similarity) gives tight clustering.

13

Document Ordering (td)

Documents

e Terms-in-document (td) ordering gives skewed clustering.

14

Combine Using Groups [new]

Group documents by terms-in-document to get
skewed clustering.

Order within each group by URL to get tight
clustering.

Call this td-g#-url ordering.

Grouped Order

"
®
=
O
Q
Y
@)
-
QO
T
O
al

0.4 0.6

Fraction of Documents

» Skew still remains in td-g3-url ordering.

Partial Bitvectors [new]

Semi-bitvector: —Sn,---

cut point

* Semi-bitvector data structure [new]:

* Encode the front of a list as a bitvector.

* Encode the remainder using skips and delta
compression.

» Stores more postings 1n bitvectors (faster) for given
space (so more efficient).

List Encoding

| Bitvector
| Compressed

r T T
Large Medium Small

Documents by Group

* Semi-bitvectors with grouping are fast and compact.

18

Experiments

Conjunctive-AND list intersection in memory.
Space = encoded size of lists (no dictionary).

Time = list intersection (no lookup 1n dictionary).

Using GOV?2 dataset (426GB) and 5000 corpus
queries (4.1 terms per query).

* Original order = random order.

Experimental Results (orig)

-0 PFD+skips(orig)
- o - PFD+bitvectors(orig)
—A— PFD-+bitvectors+skips(orig)

—_~
>
e
O]
>

o
(2]
£

N
(0]

£
=

space (bits/posting)
» Bitvectors are very fast and skips (X=256) help other lists.

20

Experimental Results (url)

—7— PFD+bitvectors+skips(orig)
~&-- PFD+skips(url)
—=— PFD+bitvectors+skips(url)

—_~
>
e
O]
>

o
(2]
£

N
(0]

£
=

space (bits/posting)

» Bitvectors+skips still faster after reordering.

21

Experimental Results (td-g8-url)

—&— PFD+bitvectors+skips(url)
—— PFD+semi-bitvectors(td—g8-url)

—_~
>
e
(O]
>

o
(/2]
£

N
0]

£
=

space (bits/posting)

* Improvements using semi-bitvectors with 8 groups.

22

Conclusions

Skips can improve hybrid bitvector approaches.

Grouping can combine skewed and tight clustering.

Semi-bitvectors with grouping improves space and time:
* More postings in bitvectors for given space.

» Smaller deltas for compression.

* Better locality of access and shared decoding.

Future work:
» Combine with ranking based systems.

Thank you.

Questions?

/* Comments */

Andrew Kane: arkane@cs.uwaterloo.ca

(Student travel grant generously provided by SIGIR)

Existing Ordering Approaches

Rank based — PageRank

Matrix manipulation — block diagonal
Document size

Content similarity — similarity clustering, TSP
Metadata — URL

Hybrid — url.server.suffix-td-url

Terms-in-document Order

— —
o (o))
o o
o o

>
o
o}
7
=
|
)
£
o
|_

x=10.9%,y=608
' . X=38.7%,y=313

0.4 0.6

Fraction of Documents

Terms-in-document count for GOV2 dataset, split by
number of postings into three groups, produces skew.

+ Area under the curve is equal for each partition.

26

Entropy for Grouping

3.4

3.2

3.0

2.8

2.6 I I
0 40 60

Terms—in—document Groups
* Grouping can make the data more compressible.

* Degradation 1s slow (entropy of td = 5.07)

27

Postings 1n Bitvectors

3
N
(2]
L
©]
-
O
(]
>
=
o]
£
(72]
(o))
c
—
[%2]
o
o

—8— PFD+bitvectors+skips(url)

—— PFD+semi-bitvectors(td—g8-url)

[
8

I
10

space (bits/posting)

12

* Grouping and semi-bitvectors allows more postings

to be stored in bitvectors

Ranking vs. Semi-bitvector

Algorithm /System time (ms/q) space (GB)
Lucene (vbyte) 26.0 42.1
Quasi-succinct indices (QS™*) 11.9 36.9
Exhaustive AND 6.56 4.5
Hierarchical Block-Max (HIER 10G) 4.29 14.5
PFD+semi-bitvectors(z5, td-g8-url) 0.96 8.8

* Semi-bitvectors with conjunctive-AND are faster
than these ranking based systems (from published
results with similar hardware) on GOV2.

Semi-bitvectors in Ranking

Pre-filter — run AND first then ranking.
Sub-document pre-filter — AND over windows.

High density filters — store dense regions as bitvectors,
since low rank information.

Query specific filter — dynamically pick terms to use semi-
bitvectors.

Guided processing — execute on subset of documents using
AND to decide how to process query.

