
Document Size
Distribution

Andrew Kane and Frank Wm. Tompa
University of Waterloo

arkane@cs.uwaterloo.ca

LSDS-IR Workshop - Feb. 28th 2014

1

Outline

•  Introduction to search engines.

•  Distribution by document size.

•  Experiments:
•  Space improvement.

•  Runtime improvements.

•  Applications in practice.

2

Search Engine Query Processing

Query Lookup Intersect Rank top-k Expand

terms encodings list short list metadata

Result

AND
OR

Weak-AND
Phrase

Proximity

Early Termination
Pruning

3

Search Engine Query Processing

Query Lookup Intersect Rank top-k Expand

terms encodings list short list metadata

Result

AND
OR

Weak-AND
Phrase

Proximity

Early Termination
Pruning

4

List Intersection

Result
List

Query
Lists

Intersect

5

•  Pairwise list intersection

•  Here we use conjunctive-AND with lists
ordered by document ID.

Document Ordering

6

•  Renumbering the documents affects space-time
efficiency.

•  Best is URL ordering (similar to clustering).

•  Document size ordering (terms-in-document or td)
is worse than URL ordering.
•  So, people typically ignore td ordering.

•  Random ordering is used as a base of comparison.

Early Termination

7

•  When list intersection will produce lots of results:

•  Store each list in impact order (usually
frequency), rather than by document ID.

•  Process only fronts of lists (early termination).

•  Use accumulators to combine lists.

•  Impact ordering can outperform URL ordering.

Search Engine Query Processing

8

Query Lookup Intersect Rank top-k Expand

terms encodings list short list metadata

Result

AND
OR

Weak-AND
Phrase

Proximity

Early Termination
Pruning

Scale by Distribution

Document Distribution

9

•  How do you distribute documents to partitions?

Document Distribution

•  Random distribution is normally used:
•  Balanced distribution of query work and index size.
•  We refer to this as rand-p.

•  Claim:
Document size distribution improves performance:
•  Benefits to index size and query resource usage.
•  Balancing requires tuning of the partition cutoff points.
•  We measure size by # terms in document.
•  We refer to this as td-p.

10

Within Partitions

•  Can use any ordering within the partitions.

•  We use random ordering for our tests to avoid bias, so
we compare rand-p-rand vs. td-p-rand.

•  Using URL ordering produces similar types of
improvement (i.e., td-p-url is better than url-p-url).

•  Future work: compare td-p-impact and rand-p-impact.

11

Experiments

•  Conjunctive-AND list intersection in memory.

•  Three partitions with equal number of postings.

•  Sum index space and query runtime over partitions.

•  Setup:
•  Using GOV2 dataset (426GB) and 5000 corpus queries

(4.1 terms per query).

12

Document Size

•  Terms-in-document count for GOV2 dataset, split by
number of postings into three partitions, produces skew.
•  Area under the curve is equal for each partition.

0.0 0.2 0.4 0.6 0.8 1.0

0

500

1000

1500

2000

2500

3000

Fraction of Documents

Te
rm

s−
in
−d

oc
um

en
t

●
x=10.9%,y=608

●
x=38.7%,y=313

13

Density in Partitions

•  Skew in list density (for queries):
 DLarge Dmedium DSmall

Smallest list density 2.39% 0.98% 0.23%

•  Skew in result density is even larger:
 DLarge Dmedium Dsmall

Result list density 0.50% 0.11% 0.02%

•  So, exploit this skewed density.

14

Compressed List Encoding

5 10 12 20

5 5 2 8

List:

Delta:

Compressed: 5 5 2 8X

Header

1 7 3 6Y

...

...

...

15

•  We use simple16 compression: header+data = 4+28 bits

Results for Compressed Lists

•  Encoding as compressed lists of deltas (simple16):
•  rand-p-rand: 7.54 bits/posting.

•  td-p-rand: 6.70 bits/posting.

•  Space improvement of 11.1%.

•  Runtime essentially the same.

16

Adding Skips to Encoding

20 37Skips:

Compressed: 5 5 2 8X 1 7 3 6Y

...

...

17

•  Tuning: number of postings skipped.

Benefits with Skips

•  Skew from terms-in-document distribution:
•  In small-document partitions:
•  Reduces density of intermediate results.

•  Therefore, skips more effective.

•  In large-document partitions:
•  Increases density of postings.

•  Therefore, cache line clustering (locality of access).

•  Amortized costs to decode a block.

18

Results for Skips

6 7 8 9 10 11 12

0

2

4

6

8

10

12

14

space (bits/posting)

tim
e

(m
s/

qu
er

y)

3264
128

256

3264
128

256

S16+skips(rand−p−rand)
S16+skips(td−p−rand)

19

Bitvector Encoding

List:

Bitvector: 0000 0100 0010 1000 0000 1000 0000

5 10 12 20 ...

...

20

•  Tuning: use bitvectors if freq. > F and compressed
lists for others [Culpepper and Moffat 2010].

Benefits with Bitvectors

•  Bitvectors used more effectively:
•  Density threshold F applied to each term independently in each

partition.
•  Therefore, more bitvectors (green) in large-document partitions.

D
Large

T

D
Medium

D
Small

21

Results for Bitvectors

6 7 8 9 10 11 12

0

2

4

6

8

10

12

14

space (bits/posting)

tim
e

(m
s/

qu
er

y)

1/4

1/8

1/16

1/24

1/32

1/4

1/8

1/16

1/24
1/32

1/48 1/64

S16+bitvectors(rand−p−rand)
S16+bitvectors(td−p−rand)

22

Distribution in Practice

•  Use a hierarchy of distribution/ordering
mechanisms in practice, for example:
•  Tier documents by global relevance (e.g., PageRank).

•  URL domain distribution (e.g., .gov) within a tier.

•  Document Size Distribution within a domain.

•  Order by URL or impact within partition.

23

Conclusions

•  We have shown that document size distribution
improves space and time:
•  Compression of postings lists.

•  Locality of access inside structures.

•  Performance of skips and bitvectors.

•  Document size distribution is broadly applicable.

•  Future work:
•  Compare td-p-impact and rand-p-impact.

24

Thank you.

25

Questions?

/* Comments */

Andrew Kane: arkane@cs.uwaterloo.ca

Ranking

•  Direct improvements:
•  Delta compression and skips are often used in ranking

systems.

•  Expected improvements:
•  Locality of access from increased density of lists.

•  Sparse intermediate results.

•  Structures/processing that adapts to each partition.

26

Potential Improvements

•  Within a partition:
•  Tune algorithms in each partition to fit the data in

partition.

•  Across partitions:
•  Run on subset of partitions to decide on subsequent

processing. For example, decide on AND vs. Weak-
AND processing for other partitions.

27

