
Document Size
Distribution

Andrew Kane, University of Waterloo
arkane@cs.uwaterloo.ca

Database Group Talk - Feb. 12th 2014

(LSDS-IR 2014 workshop paper with Frank Wm. Tompa)

1

Outline

•  Introduction to search engines.

•  Distribution by document size.

•  List intersection.

•  Experiments:
•  Space improvement.

•  Runtime improvements.

•  Applications in practice.

2

Indexing

•  Input: (document, metadata)+

•  Name: (docID, documents, metadata)+

•  Convert: (docID, text, metadata)+

•  Tokenize: (docID, tokens and offsets)+

•  Invert: map of token to docID+
•  i.e. list of documents containing that token (postings list).
•  Add frequency for ranking.
•  Add offsets for phrase, proximity and ranking.

3

Search Engine Query Processing

Query Lookup Intersect Rank top-k Expand

terms encodings list short list metadata

Result

AND
OR

Weak-AND
Phrase

Proximity

Early Termination
Pruning

4

Search Engine Query Processing

5

Query Lookup Intersect Rank top-k Expand

terms encodings list short list metadata

Result

AND
OR

Weak-AND
Phrase

Proximity

Early Termination
Pruning

Partition

Document Distribution

6

•  How do you distribute documents to partitions?

Document Distribution

•  Random distribution is normally used:
•  Balanced distribution of query work and index size.

•  We refer to this as rand-p

•  Document size distribution improves performance:
•  Benefits to index size and query resource usage.

•  Balancing requires tuning of the partition cutoff points.

•  We measure size by # terms in document.

•  We refer to this as td-p

7

Within Partitions

•  Can use any document ordering within the partitions.

•  We use random ordering for our tests to avoid bias, so
we compare rand-p-rand vs. td-p-rand.

•  Using URL ordering produces similar types of
improvement.

8

Search Engine Query Processing

Query Lookup Intersect Rank top-k Expand

terms encodings list short list metadata

Result

AND
OR

Weak-AND
Phrase

Proximity

Early Termination
Pruning

9

List Intersection

5 10 12 20

5 5 2 8

List:

Delta:

Compressed: 5 5 2 8X

Layout

1 7 3 6Y

10

•  Uncompressed lists: next(), fsearch(int,method).

•  Compressed lists: next().
•  We use simple16 compression: layout+data = 4+28 bits

List Intersection

20 37Skips:

Compressed: 5 5 2 8X 1 7 3 6Y

11

•  Skips over compressed lists: next(), fsearch(int).

List Intersection

List:

Bitvector: 0000 0100 0010 1000 0000 1000 0000

5 10 12 20

12

•  Bitvector: contains(int), bitwiseAND(bitvector),
convertToList().

•  Hybrid: Use bitvectors if freq. > F and compressed
lists for others [Culpepper and Moffat 2010].

Experiments

•  Conjunctive-AND list intersection.

•  Three partitions with equal number of postings.

•  Sum index space and query runtime over partitions.

•  Setup:
•  Using GOV2 dataset (426GB) and 5000 corpus queries

(4.1 terms per query).

•  AMD Phenom II X6 1090T 3.6Ghz Processor running
Ubuntu Linux 2.6.32-43-server.

13

Document Size

•  Terms-in-document count for GOV2 dataset, split by
number of postings into three partitions.

0.0 0.2 0.4 0.6 0.8 1.0

0

500

1000

1500

2000

2500

3000

Fraction of Documents

Te
rm

s−
in
−d

oc
um

en
t

●
x=10.9%,y=608

●
x=38.7%,y=313

14

After Partitioning

•  Encoding as compressed lists of deltas (simple16):
•  rand-p-rand: 7.54 bits/posting.

•  td-p-rand: 6.70 bits/posting.

•  Space improvement of 11.1%.

15

Benefits with Skips

•  Skew from terms-in-document distribution:
•  In large-document partitions:
•  Increases density of postings.

•  Therefore, cache line clustering (locality of access).

•  In small-document partitions:
•  Reduces density of intermediate results.

•  Therefore, skips more effective.

16

Results for Skips

6 7 8 9 10 11 12

0

2

4

6

8

10

12

14

space (bits/posting)

tim
e

(m
s/

qu
er

y)

3264
128

256

3264
128

256

S16+skips(rand−p−rand)
S16+skips(td−p−rand)

17

Benefits with Bitvectors

•  Bitvectors chosen independently in each partition (red).

•  More bitvectors in partitions with larger documents (green).

High

Low

Large SmallDocuments
(Partitioned)

 List
(Frequency)

F

F

F

18

Results for Bitvectors

6 7 8 9 10 11 12

0

2

4

6

8

10

12

14

space (bits/posting)

tim
e

(m
s/

qu
er

y)

1/4

1/8

1/16

1/24

1/32

1/4

1/8

1/16

1/24
1/32

1/48 1/64

S16+bitvectors(rand−p−rand)
S16+bitvectors(td−p−rand)

19

Ranking

•  Direct improvements:
•  Delta compression and skips are often used in ranking

systems.

•  Expected improvements:
•  Locality of access from increased density of lists.

•  Sparse intermediate results.

•  Structures/processing that adapts to each partition.

20

Potential Improvements

•  Within a partition:
•  Tune algorithms in each partition to fit the data in

partition.

•  Across partitions:
•  Run on subset of partitions to decide on subsequent

processing. For example, decide on AND vs. Weak-
AND processing for other partitions.

21

Distribution in Practice

•  Use a hierarchy of distribution/ordering
mechanisms in practice, for example:
•  Tier documents by global relevance (e.g., PageRank).

•  URL domain distribution (e.g., .gov) within a tier.

•  Document Size Distribution within a domain.

•  Order by URL within partition.

22

Conclusions

•  We have shown that document size distribution
improves:
•  Compression of postings lists.

•  Locality of access inside structures.

•  Performance of skips and bitvectors.

•  Document size distribution is broadly applicable.

23

Questions/Comments

24

Related Ideas - Outline

•  Databases:
•  Order by row size.

•  Order by usage.

•  Using terms-in-document partitions:
•  Solving model constants.

•  Other:
•  Replication vs. Partitioning.

•  Error identification.

25

Database Row Size

•  Ordering by document size improves search systems.

•  Reordering in databases is restricted to clustering by
attributes.

•  Use ordering by row size in database systems?
•  Number of non-null values.

•  Number of characters in row values.

26

Density vs. Usage

•  Ordering by document size improves search systems.

•  Document size correlates with likelihood of being in
result list (at least for conjunctive-AND queries).

•  For database queries, ordering rows by their usage in
queries may produce similar improvements.
•  Improves locality of access and filtering of indexes.

•  Ordering by recency of update.

•  Ordering by recency of access.

27

Solving Model Constants

•  Each document size distributed partition has
different data distributions.

•  Use partitions to solve system of linear equations
and get performance model constants.
•  Random distribution gives singular system.

•  Normally need to isolate parameters to solve for
constants.
•  Isolate by changing dataset or query workload.

•  Could be related to query mix.

28

Replication vs. Partitioning

•  To improve throughput, should a search system add
replicas or do more document partitioning?

•  Assume: linear scaling of partitioning.

•  For example:
•  1x4GB partition = 1000 qps

•  2x4GB replicas = 2000 qps

•  2x2GB partitions = 2000 qps, but now have 2GB of
memory per partition to improve throughput.

29

Error Identification

•  Processing errors are more common with more data,
and some application cannot tolerate errors (legal).

•  While processing:
•  Verify data read from lists (error correcting codes).
•  Verify data decoded (encode last value in uncompressed

form and compare).

•  Post processing:
•  Verify intersection (result size boundary checks; signature

checks).
•  Verify ranking (boundary checks).

30

Thank you.

31

Questions?

/* Comments */

