Contemporary misconceptions that limit

distributed system design and implementation

Database Seminar
July 20t 2011

Andrew Kane <arkane@cs.uwaterloo.ca>

Abstract:
The current practice for distributed systems builds on unwritten assumptions about how
to design and implement such systems. | believe that some of these assumptions are
limiting potential optimizations, for example, the belief that static compilation is faster
than just-in-time compilation leads to query plans that don't change after a query starts,
and query executions that don't adapt to data distribution changes across the span of a
query. In order to make these ideas more concrete, | will show potential benefits using a
three tiered distributed database system as an example. The misconceptions presented
are related to machine design, data level distribution, and tiered solutions.

outline

Three tiered distributed database

Assumption areas:

?2 A) Fundamental optimization approaches
72 B) Machine design
?2 C) Architecture of DB level distribution

? D) Architecture of full software solution
Possible system design

Conclusions

three tiered distributed database

Three tiered system:

Presentation tier
The top-most level of the application is the >GET SALES
user interface. The main function of the TOTAL 4TOTALSALES
interface is to translate tasks and results to
something the user can understand.
Logic tier
This layer coordinates the application, Y
processes commands, makes logical GET LIST OF ALL ADD ALL SALES
decisions and evaluations, and performs SALES MADE TOGETHER
calculations. It also moves and processes LAST YEAR
data between the two surrounding layers.
SALE 1
) QUERY .
Data tier SALE 4
Here information is stored and retrieved
from a database or file system. The
information is then passed back to the logic
tier for processing, and then eventually
back to the user.
—_—
Storage

Database

From: http://dineshtheblackmamba.wordpress.com/category/uncategorized/

three tiered distributed database

Distributed database:

Communications
facility
Uniprocessor Uniprocessor Uniprocessor
environment environment environment
Database partition Database partition Database partition
CPU CPU CPU
Memory Memory Memory

Disks (o3| Disks

From: http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.admin.doc/doc/c0004569.htm

Contemporary misconceptions that limit distributed system design and implementation - Andrew Kane <arkane@cs.uwaterloo.ca> - July 20th 2011

three tiered distributed database

Three tiered distributed database:

Presentation Layer

Business Layer

Data Layer

three tiered distributed database

Add distribution/replication/load balancing:

Presentation
Layer

Business
Layer

Data
Layer

three tiered distributed database

Deploy with VM over cluster:

HW| HW| HW | HW HW| HW| HW | HW
VM VM VM VM VM VM VM VM
| SWK)K*I |
/:ﬂ tcn\
VM VM VM VM VM VM VM i
HW| [HW HW| [HW| [HW| [HW| [HW ElEE EEE

three tiered distributed database

Who decides on process/VM location in cluster?
What happens when a process/VM moves?

How do you optimize such a system?

outline

Three tiered distributed database

Assumption areas:

?2 A) Fundamental optimization approaches
72 B) Machine design
?2 C) Architecture of DB level distribution

? D) Architecture of full software solution
Possible system design

Conclusions

A) fundamental optimization approaches

belief: static optimization is better than dynamic optimization (e.g. C++ > Java)

GoogleTechTalks: “A JVM Does That?” by Cliff Click

Just-In-Time (JIT) compiler can do optimizations static compilers can’t:
? Reorder operations dependent on usage/data
e.g. if statement reordering
7 Remove dynamic linking
e.g. virtual calls if only one object type exists, dynamic library inlining
7 Hardware specific optimizations
e.g. take advantage of extra CPU commands, or GPU
7 Resource usage based optimizations
e.g. add compression if data movement is bottleneck

Are there any query engines that use JIT for execution? ... No.

A) fundamental optimization approaches

Databases do some dynamic optimization:

2 Optimizer decides on query plan using data information
(histograms, etc).
? Autonomic/self-managing databases (see Ashraf’s CS848
course)
Add/remove machines to adapt to load
Index/physical layout recommendations
Materialized view recommendations
Adapting memory usage

7 Query mix optimizations (admission control type) (see
Xuhui)

A) fundamental optimization approaches

DB’s rarely change query plan or execution after starting query

If after starting distributed query, CPU of join portion becomes
a bottleneck:

7 Move join onto another machine...

7 Run join on more machines and/or with more threads.

Try the start of two query plans to see if your performance
predictions hold, then pick one to finish and abort the other,
or re-optimize with new predictions.

A) fundamental optimization approaches

Dynamically move join if it becomes a CPU bottleneck:

| |
;

=t |

Business
LLLLL

LLLLL

A) fundamental optimization approaches

DB’s don’t use dynamic optimization at lower level.

72 e.g.stored procedure

This is where JIT type compilation could be immediately
valuable.

A) fundamental optimization approaches

belief: you must include hardware optimizations in the entire
system

Current locations of hardware knowledge:

.

7
7

Database buffer pool means you don’t trust the underlying
system to do memory management and cache optimization.

Optimizer knows or assumes a lot about hardware.

Threading assumptions imply knowledge of CPU hardware AND
other queries or applications running in the system.

The number of processes at each tier implies some knowledge of
hardware.

A) fundamental optimization approaches

But, processes can move and hardware can change.

HW| [HW| [HW | [HW HW| [HW| [HW | |HW
VM| |[VM| |[VM | | VM VM| (VM| |[VM | | VM
[Switch | [Switch |

/
\

[Switch

tch |

Presentation
Layer

Business
Layer

|
Wy

VM VM| |[VM| |[VM | |VM Layer
HW/| [HW] [HW] [HW] [HW EOE AEE

A) fundamental optimization approaches

= separate hardware from logic.

7 This is difficult, especially because of data layout.

= expose enough information/options so you can
dynamically optimize.

B) machine design

belief: Cache != memory

Use cache as memory & cache isolation issues:
7 Cache moving with context switch:

“Memory Contexts: Supporting Selectable Cache and TLB Contexts”, Tim Brecht, NDCA
-2, June, 2011.

7 Cache works well until your working space can’t fit, then it falls over unpredictably.
Allocate cache to a process and grow when needed.
Really need predictability for Quality-of-Service using shared VM environment.

Use memory as cache:
. Database Buffer Pool

Interact with other caches (e.g. OS cache) (see Xuhui)
7 OS file system cache

B) machine design

belief: memory != stable storage

Memory used as stable storage:
. SAP IN-MEMORY COMPUTING: Real-time Analytics
? Memory replication on another machine is ‘stable’

Stable storage that looks like memory:
7 Flash memory, e.g. SSD

Read is fast, write is in blocks and slower
7 Phase-change memory (PCM):

IBM Press Release - developed PCM 100x faster than flash (Jun 30t 2011)

2 “the scientists achieved a worst-case write latency of about 10 microseconds, which represents a 100x
performance increase over even the most advanced Flash memory on the market today”

“Better 1/0 Through Byte-Addressable, Persistent Memory”, Condit et al., SOSP 2009

7 “byte-addressable persistent memory technologies (BPRAM) ... such as phase change memory ... can be
placed side-by-side with DRAM on the memory bus, available to ordinary loads and stores by a CPU”

B) machine design

belief: new hardware systems will look like and work like old
hardware systems.

Flash + ALU + very little cache = processing node.
7 (Partha Ranganathan HPLabs)

PCM on memory bus (Byte-Addressable...).
Isolating cache to a specific process (reduce interaction).
Cell processors (= vector processors with normal CPU on one chip).

Processing in the GPU.

B) machine design

= logic should act on data and specify changes in the
data's access methods, persistence, redundancy, and
consistency when needed.

? Transactional Address Spaces (TAS) - Andrew Kane (course
project).

7 Options for data layout should be available to the
optimizer, with conversion routines.

Note, this could support upgrade and migration while online.

architecture of DB level distribution

belief: data is owned by a machine/partition in chunks

USERS

|id| nickname | password | firstname | lasthame | street | street_number | zip | city | countryl

VN T R I——— \

USERS_DETAILS

users_id | lastname | street | street_number | zip | city | country

NEWS NEWS_2008
| id] title | description | created_on | published_on | | id| title | description | created_on | published_on |
— 4 + +
| 1 lart1 |blabla | 20080408 | 20080410 | 1 |art1 |blabla 20080408 20080410
| 2 Jart2 |blabla | 20080408 | 20080408 | 2 [art2 [blabla 20080408 20080408
|3 |art3 |blabla | 20080610 | 20080610 | 3 [art3 |blabla 20080610 20080610
{;{’Sg :g:'g:: I vy : e = 4 |art4 |blabla 20080815 20080815 N
a ai
| 6 |arté |blabla | 20090508 | 20090510 | ° Horlzo ntal
| 7 |art7 |blabla | 20080608 | 20090610 | NEWS_2009 °
18 [ant8 |blabla | 20090708 | 2000710 | | id| title | description | created_on | published_on |
b S + +
5 |art5 |blabla 20090408 20090410
6 [art6 |blabla 20090508 20090510
7 [ant7 [blabla 20090608 20090610
8 |art8 |blabla 20090708 20090710

Images from: http://blog.nickbelhomme.com/php/scalable-web-applications_158

C) architecture of DB level distribution

Indexes and materialized views may break the rule of data
ownership by a node.

Rarely see duplication or temporary migration of data.

7 Could maintain both column store and row store, or parts of
each...

2 Could move hot or recently updated data to another (faster/
better/less loaded) machine.

E.g. how to take advantage of a new machine? What if it has
new/different hardware?

C) architecture of DB level distribution

Add one machine with SSD, but can’t take advantage of it because of nodes owning data

HW| |[HW| |[HW | |HW HW| [HW| [HW | |HW
VM| (VM| VM| | VM VM| (VM| VM| |VM
I Sww'tch |

-

— Switch
N

? ?
Presentatio
VM| (VM| VM| |VM Layer
HW | [HW | [HW | [HW Business
L
Layer
SSD = = = = = =
- ElIEE EEE

C) architecture of DB level distribution

Really want to put some modified data on SSD and refer to primary location.

>

R1..
R100
~
HDD

— | Switch

k | ——

RS'..
R10'

~_
SSD

May migrate back to original location at later time, or before
access by query...

C) architecture of DB level distribution

belief: software approaches within a chip/machine are
separated from distributed approaches (i.e. nodes + hierarchy
connecting them).

Movement of data within a chip or between cores is not
normally taken into account.

Indirectly taking advantage of limiting data movement:

? Split processing of query into processing type chunks executed
using a thread pool, results in faster system (MS SQLServer) -
Pedro Celis W09.

C) architecture of DB level distribution

Why approach the optimization differently if you have 4 machines or a 4 core machine?

HW HW
HW| |[HW | |HW Core| |Core| |Core| [Core Core| |Core| |Core| |Core
VM| |VM | | VM VM| (VM| |VM oS

J

[Switch |

». Switch |

Presentation
Layer

Cost of accessing shared memory/cache on the single machine Business
ayer
should be taken into account (shared L3 cache...), just like
. . . Data
communication between processes/machines. Layer

C) architecture of DB level distribution

= allow more dynamic treatment of data ownership,
including duplication.

= optimize across entire distributed database system in a
consistent way.

D) architecture of full software solution

belief: you can't use multiple distributed systems together

? (i.e. interaction only at the top level if at all and no shared
transactions)

E.g. combine DBMS with Key-Value store.
7 Need to maintain data consistency...

7 Expose transactions to layer above, consistent for multiple data
systems.

Could do this in the same way as maintaining an index or
materialized view.

7 Allow optimizer to use multiple data systems.

D) architecture of full software solution

Maintain updates to Key-Value store and database.

| i

Update
KV
N1
|
KV
N2
Prefg;;artion

DB DB DB DB DB DB Business
P1 P2 P3 P1 P2 P3 Lever

Data
Layer

Explicit (user) Vs. Implicit (optimizer) ElE1E E1EE

D) architecture of full software solution

belief: tiered systems are the way to go, and can’t do optimization
between tiers.

“Dynamic Provisioning of Multi-tier Internet Applications”, Urgaonkar et
al., ICAC 2005.

72 Decide in which tier to add a new machine.
2 Can’t share resources well.

Combine the tiers and dynamically decide where to execute code pieces.
7 Better load balancing, failover, resource usage, etc.
7 Design everything as code snippets:

Allow snippet execution to move around.

Including DB query elements.

Multiple implementations with selection at runtime by optimizer.

D) architecture of full software solution

' '

| |
User Request User Request
A
—— \\ BL1 BL2a
BL1 BL2
I

[\
/ f Y , BL2b BL2b
Q1 Q2 Q2 Q1 Q2 Q2 Presenttion

Business
Layer

Fixed tiers VS. Mixing tiers Data

Layer

D) architecture of full software solution

= optimize across entire system including all levels, and
multiple data engines

outline

Three tiered distributed database

Assumption areas:

?2 A) Fundamental optimization approaches
72 B) Machine design
?2 C) Architecture of DB level distribution

? D) Architecture of full software solution

Possible system design

Conclusions

possible system design

Specify tree of code chunks to execute all code levels. Multiple
implementations of the chunk interfaces allow execution plans and
optimization. Must specify enough information to do such
optimization (estimates of processing, data input/output size, etc).

—»User Request
N
N N
BL1 BL1b
Q1 Q2

N

DB1 KV1

possible system design

Specify routines to convert data between layout formats to
allow dynamic layout and duplication of data in different

formats.
A B
LayoutAZ\ fLayoutA LayoutB /LayoutKV
Convert N~ >~ Convert

possible system design

Optimizer decides which implementations to use and where to

run them.
User Request —»User Request
| BL1 | |BL1b| \\BL1
S
@] [a] >
N —
| DB1 | | KV1 | N
DB1
X
A B

LayoutA | | LayoutB ‘

—

LayoutA | | LayoutB

Possible choices Plan selection

possible system design

Map onto machines, JIT low-level as needed, monitor for higher
level changes.

Blg\ User Request

/’\\
a ~ N
{\ T
A B
-—— ———
LayoutA LayoutB

~ ~

possible system design

Execute higher level changes if needed, JIT/un-JIT as needed.

|

3 m User Request

gL m

LayoutA LayoutB
N w

possible system design

Tools to help:

? Transactional memory with attributes specifying
replication/consistency/etc.

Transactional Address Spaces (TAS)?

?2 Consistent intermediate form for code would allow JIT type
optimizations at all points in the system.

(Perhaps Microsoft has the right idea here with .NET
intermediate form.)

outline

Three tiered distributed database

Assumption areas:

?2 A) Fundamental optimization approaches
72 B) Machine design
?2 C) Architecture of DB level distribution

? D) Architecture of full software solution
Possible system design

Conclusions

conclusions

Talk to the compiler people.

?2 Try using Just-In-Time compilation for query execution.
Separate the code logic from the optimizer.

Look at the entire system as a unit.

7 Include multiple data management systems.
2 Try to have one optimizer for entire system.

Questions / Comments ?

