
The Challenge of “GOOD
ENOUGH” Software

October 6th 2003
Presented by: M Usman
Shakil

The Game Plan

� What is Software Quality?
� How much Software Quality?
� The Utilitarian Model
� The Double-Cycle Project Model
� Key Process Ideas (KPIs) of Good Enough

Software
� Good Enough to be the Best

What is Software Quality? (The
Model)

The Ideal Picture:
� Determining & Achieving requirements
� Adequately staffed & enough time to do the work
� Quality Assurance presence in every phase of the development

process, from requirements definition to final testing.
� Management’s Commitment to quality on the unquestioned faith

that it is always worth whatever it will cost.
The Real Picture:
Requirements Shift and Waver
Perpetually Understaffed and Behind Schedule
Software Quality Assurance is often a Fancy word for Ad-hoc testing
First one to market wins the most market share
Management more interested in making more money than in the niceties
and the necessities of the Software Engineering

What is Software Quality?
(Various Views)

Manufacturing View Customer View

Aesthetic View

Quality is Elegance, an
ineffable experience of
Goodness

Problem:
Perfectionists &
Underachievers

Quality is Fitness of use,
whatever satisfies me

Problem:
Chasing will-o’-the-wisp

Quality is Correctness,
Conformance to
Specifications

Problem:
Perfect Products that
satisfy no one

How much Software Quality?
(Measures)

� Some Measurable Factors
Functionality, Reliability, Usability, Efficiency, Maintainability,

Portability

� BUT !!
� Some factors are more important or detract from others
� There is no straight forward approach to measure these
� No matter how each of these factors is taken into account a single

BUG may negate everything else that is working right
� FACT: “The Client” can never know the Quality of the Project…
� They make Perceptions about Quality based on skill level,

past experience and profile of use and we can not control
any of these basis

How much Software Quality?

� SINCE
� Creating products of the best possible quality is very expensive
� The Client may not even notice the difference between the best

possible quality and pretty good quality

� 3 Critical Questions
� How much of which quality factor be adequate?
� How do we measure it adequately?
� How do we control it adequately?

� The Solution
� Instead of creating a universal metric of quality and

then optimizing it, rather consider the problems directly
what quality is supposed to solve

The Utilitarian Model

Quality
Observed

Problems
(perceived risk)

Products
(perceived quality)

Utilitarian SQA
(risk assessment)

Problems
Observed

Quality is the optimum set of solutions to a given set of problems

The Utilitarian Model (The
Mechanics)

� Predict, measure and control the Consequences
of
� Employing the Product: Lies within the Product Quality
� Creating the Product: Lies within the Process, Staff and

Resources

� Operate on a Chosen Metric
� For example, we might decide that a reasonable quality metric

is the number of known defects in the Product
 Examine the consequences of each problem, and decide on a case-

by-case basis which are important to fix. The quality metric would
then either take care of itself or else become irrelevant.

It isn't the number of bugs that matters, it's the effect of
each bug

The Utilitarian Model

� Problems
� We can cut too many corners while studying the problem trade-offs

and matching them with appropriate processes
� We lose sight of the full spectrum of the product, project, and

customer if we are focusing on one chosen metric, however this can be
prevented by working on the consequences side

� FACT
� We all use utilitarian approach
� The issue is “How effectively we access and control

risk”.
We can do better by admitting what we are doing and
do it directly rather than playing around with slogans
like “Quality without compromises”

The Double-Cycle Project
Model

Project

Staff

ResourcesProcesses

ProductsProblems

New
 Problem

s New Product

The Double-Cycle Project
Model

� Problems
� Motivators of the Projects
� To do a project well enough is to be left with an acceptable set

of problems at the end
� Products

� Total output of the Project
� Inverse relationship between Product quality and problems

� Project
� The entire means by which risks are managed and products

are created
� Start with nothing but problems, and we finish with a new

more livable set of problems and a new set of products and by-
products.

� The "good" of a project should be judged by the total output of
all that transpires: the problems, solutions, and resulting
capability.

The Double-Cycle Project
Model

� Project (contd.)
� Staff

� Agents that solve all hard problems
� Most critical and versatile part of the Project

� Resources
� Any thing that money can buy and support the Project staff
� Can create problems or contribute directly to Products

� Processes
� Patterns for solving Problems, the result of problem-solving is the

Product
� Distinct from Staff and Resources
� They are just concepts and manifest solutions in concert with staff

and resources

5 KPI s of GOOD ENOUGH
Software

Project

Staff

ResourcesProcesses ProductsProblems
New Problems New Product

Dynamic Processes
Portable and scalable processes
that support effective human
judgment in an evolving,
collaborative environment.

Heroic Teams
Recruiting, training, leadership, and
incentives to assure both individual
and team achievement.

Dynamic Infrastructure
Organizational commitment to take
risks. Organizational responsiveness
to the needs of the project. Anti-
bureaucratic culture.

Utilitarian Strategy
Problems: Adequate knowledge of problems.
Project: Adequate capability to create and
evaluate the product.
Products: Adequate knowledge of the
product.

Evolutionary Strategy
Problems: Evolving knowledge of problems.
Project: Evolving capability to create and
evaluate the product.
Products: Evolving knowledge of the product.

5 KPI s of GOOD ENOUGH
Software (contd.)

� Utilitarian Strategy
� The art of qualitatively analyzing and maximizing net positive

consequences in an ambiguous situation
� There is no right or wrong project estimate, just an integrated,

dynamic estimation process
� Efficient software development necessitates risk taking: The real

question is whether we take calculated risks or accidental risks.
� One way to avoid accidents is through a habit of integrated,

structured risk management.

5 KPI s of GOOD ENOUGH
Software (contd.)

� Evolutionary Strategy
� On the Project Level: Ongoing process education, experimentation

and adjustment, rather than clinging to a notion of the “One Right Way
to develop software”

� On the Product Level: Planning and building the product in layers,
which allows concurrent design, coding, and testing.

� On the Problem Level: Keeping track of history, and learning about
failure and success over time.

� Elements
� Don't even try to plan everything up front.
� Converge on good enough in successive, self-contained stages.
� Integrate early and often.
� Encourage disciplined evolution of feature set and schedule over

the course of the project.
� Salvage, reuse, or purchase components where feasible.
� Record and review your experience.

5 KPI s of GOOD ENOUGH
Software (contd.)

� Heroic Teams
� Ordinary skillful people working in effective collaboration
� Programmers must exercise initiative
� Bored People don’t work hard. If there is an exciting

environment that fosters responsible heroism, good software
will follow

� Dynamic Infrastructure
� Upper management pays attention to projects.
� Upper management pays attention to the market.
� The organization identifies and resolves conflicts between projects.
� In conflicts between projects and organizational bureaucracy, projects

win.
� Project experience is incorporated into the organizational memory

5 KPI s of GOOD ENOUGH
Software (contd.)

� Dynamic Processes
� "clarify and delegate" strategy
� Portability

How the process lends itself to being carried into meetings,
shared with others, and applied to new problems.

� Scalability
How readily the process may be expanded or contracted in

scope. A highly scalable process is one that can be operated
by one person, manually, or by a hundred people, with tool
support, without dramatic redesign.

� Durability
How well the process tolerates neglect and misuse.

GOOD ENOUGH to be the
Best

� The Guiding Principle
“Solve the Problem”

� If we
� develop and empower teams who
� use dynamic processes within a dynamic infrastructure

to
� employ utilitarian and evolutionary strategies, then we

will produce good enough software.

Good enough, even, to be the best.

Reference

� James Bach
Chief Scientist
Software Testing Laboratories
http://www.satisfice.com/articles/gooden2
.pdf

	The Challenge of “GOOD ENOUGH” Software
	The Game Plan
	What is Software Quality? (The Model)
	What is Software Quality? (Various Views)
	How much Software Quality? (Measures)
	How much Software Quality?
	The Utilitarian Model
	The Utilitarian Model (The Mechanics)
	The Utilitarian Model
	The Double-Cycle Project Model
	The Double-Cycle Project Model
	The Double-Cycle Project Model
	5 KPI s of GOOD ENOUGH Software
	5 KPI s of GOOD ENOUGH Software (contd.)
	5 KPI s of GOOD ENOUGH Software (contd.)
	5 KPI s of GOOD ENOUGH Software (contd.)
	5 KPI s of GOOD ENOUGH Software (contd.)
	GOOD ENOUGH to be the Best
	Reference

