
with Focus on
Extreme Programming

Presented by:
Davor Svetinovic
Date: September 15, 2003



• XP Intro
• Comparison of development processes
• Design issues
• People issues
• Should one go lightweight?
• Conclusion
• Q&A



• CCCCCFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFCFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFF…….



Requ irem en ts

Analys is

Des ign

Cod ing

Testing



• Early freezing of the requirements
• Late integration and deployment
• Late risk resolution
• Documentation overhead



• Iterative and incremental
• Architecture-centric
• Object-oriented and component

development based
• Managed and controlled
• Highly automated





• Individuals and interactions over processes
and tools

• Working software over comprehensive
documentation

• Customer collaboration over contract
negotiation

• Responding to change over following a plan



Our highest priority is to satisfy the customer
through early and continuous delivery

of valuable software.
Welcome changing requirements, even late in
development. Agile processes harness change for

the customer's competitive advantage.
Deliver working software frequently, from a
couple of weeks to a couple of months, with a

preference to the shorter timescale.
Business people and developers must work

together daily throughout the project.



Build projects around motivated individuals.
Give them the environment and support they need,

and trust them to get the job done.
The most efficient and effective method of

conveying information to and within a
development team is face-to-face conversation.
Working software is the primary measure of

progress.
Agile processes promote sustainable development.

The sponsors, developers, and users should be
able to maintain a constant pace indefinitely.



Continuous attention to technical excellence
and good design enhances agility.

Simplicity--the art of maximizing the amount
of work not done--is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts

its behavior accordingly.



• Communication
• Feedback
• Simplicity
• Courage
• Quality Work



• The planning game
• Small releases
• Metaphor
• Simple design
• Refactoring
• Testing



• Pair programming
• Collective ownership
• Continuous integration
• 40-hour week
• On-site customer
• Coding standards



• Extreme Programming, Jim Highsmith,
http://www.cutter.com/ead/ead0002.html

• A Rational Development Process, Philippe Kruchten,
http://www.rational.com/products/whitepapers/334.jsp

• Software Project Management – A Unified Framework,
Walker Royce

• Rational Unified Process: Best Practices for Software
Development Teams, http://www.rational.com/

• http://agilemanifesto.org/


	Lightweight Processeswith Focus onExtreme Programming
	Outline
	First Process
	Waterfall Model
	Waterfall Model - Problems
	Rational Unified Process
	Rational Unified Process
	Manifesto for Agile Software Development [5]
	Principles behind the Agile Manifesto [5]
	Principles behind the Agile Manifesto [5] cont.
	Principles behind the Agile Manifesto [5] cont.
	XP Principles
	XP Practices
	XP Practices (cont.)
	References

