
By Philip Liew
October 27, 2003

� Case study: Therac-25

� Linear accelerators used for medical purposes

� Created by Atomic Energy Canada Limited

(AECL)

� Earlier models: Therac-6 and Therac-20

� Previous models designed as stand-alone
machines

� Software functionality was limited

� Added convenience

� Used a PDP 11

� Designed to take advantage of software
monitoring and control mechanisms

� Removal of hardware safety mechanisms

� Faith in software reliability rather than
hardware

� Due to lack of complexity, and digital nature

� June 3, 1985 - first overdose in Marietta
Georgia

� Patient suffered serious radiation burn (est.
15,000 – 20, 000 rads)

� Breast removed, and lost use of shoulder and
arm

� Manufacturer response:
 - Improper scanning not possible

� July 26, 1985 – second overdose in Hamilton,
Ontario

� Patient dies November 3, 1985
� Manufacturer response:
 - Hardware micro-switch assumed to be cause
 - AECL makes changes and notifies users of
 increased safety of 5 orders of magnitude

� December, 1985 – Third overdose in Yakima,
Washington

� Abnormal skin reaction
� Manufacturer response:
 - Two page report ruling out operator and
 manufacturer error
 - Including statement indicating no previous
 occurrence of overdose

� March 21, 1986 – fourth overdose in Tyler,
Texas

� Lost function of legs, arms, and vocal cords
� Died 5 months after accident
� Manufacturer response:
 - Insistence that no prior accidents occurred
 - Suggestion issue is an electrical problem

� April 7, 1986 – machine put back in use
� April 11, 1986 – Fifth overdose occurs again in

Texas
� Severe overdose causes death 3 weeks later
� Manufacturer response:
 - Discovery of bug in user input entry routines
� FDA requires corrective action plan (CAP) and

notification of Therac-25 users

� Multiple CAP revisions necessary due to user
and FDA concern

Due to:
� Lack of redundant safety mechanisms
� Lack of proper error messages
� Lack of software evaluation
� Lack of software requirements, specifications,

documentation, and test plans

� January 17, 1987 – sixth overdose occurs
again at Washington

� FDA labels Therac-25 as defective under US
law

� Manufacturer response:
 - Issues fix for specific software errors
 - Adds additional hardware safety checks
 suggested by user groups and FDA
 - Fifth revision of CAP approved

� Hard to isolate specific bugs due to lack of
documentation of accidents

� User entry interface allowed for improper entry
� Increment roll-over which allowed safety

checks to be bypassed
� Software allowed concurrent access to shared

memory without synchronization. Race
conditions emerged

� Particular coding error is not as important as
the general unsafe design of the system

� Look at overall contributing factors for failure

� Software considered trivial part of system
� Overconfidence in software
� Non-qualified person hired

� Unrealistic risk assessments

� Fault analysis did not include software

� Lack of independent software evaluation

� Little documentation on software specifications and
software test plans

� Lack of documentation on product and User error
messages

� Lack of software auditing

� Lack of formal management and quality control
processes

� Lack of procedures on following through on
reported accidents

� Bug fixes corrected only when occurred

� Accidents are seldom simple : usually involve a
complex web of interacting events with multiple
contributing technical, human, and organizational
factors

� Fixing a particular error never prevents further
accidents

� Software quality assurance standards should be
established

� Designs should be simple

� A significant amount of software for life-critical
systems come from small firms that fit the
profile of those resistant to principles of
software engineering

� Case study: Raytheon

� Software is a major element of products developed by
Raytheon

� Functionality of complex systems moving more towards
software

� Latter part of decade, software problems translated into
contract performance issues

� Lack of success in delivering projects on schedule and
within budget

� Customers using SEI process maturity framework as
selection criteria

� Three critical activities:
l establish a strong and effective infrastructure

and maintain enthusiasm over time
l identify risks and develop mitigation strategy
l measure and analyze project data to

determine benefits

� Measure return on investment (ROI) through
goal of reducing the amount of rework

� Analysis of software productivity on projects
� Used (cost at completion/budget) to measure

predictability
� Defect density analysis for measuring software

quality

� a) selected project uses organization process
to develop software development plan

� b) implementation occurs process is applied
� c) feedback for continual refinement of process

� Responsible for developing documents
describing process

� Based on “best-of-best” practices
� Existing standards like Capability Maturity

Model

� Responsible for developing the comprehensive
training program

� Take feedback and examine effectiveness of
training

� Responsible for implementing CASE tools
available to software development and
management team

� CASE tools aid in capturing requirements,
design data and publish resulting documents

� Responsible for Process Data Center
� Repository for project data and metrics used in

root cause analysis
� Gives feedback through improvement

recommendation to both projects and overall
process

� Previous projects can give pertinent
information to project manager

� Obstacles to the success of program:
- Sponsorship and Commitment
- Recruiting right personnel
- Resources
- Cultural issues

� Data collected monthly
� Data measurement:

– Progress metrics
data used to gauge progress or current status of
project

– System technical performance metrics
describes the current measured or estimated
utilization of software system resources

� Average cost of rework had decreased
� Two years prior rework averaged 41% of

project costs
� Reduced to 20%
� Largest reduction from fixing problems during

source code integration
� Second largest was cost of retesting

� Data measured by delivered source
instructions per person-month of development
effort

� Using staff size as weighting function, results
showed average productivity increasing

� Assessed through defect density in final software
product

� FAA Terminal Doppler Weather Radar
Program

� Using CMM Level 3 process delivered 6
months ahead of time

� Resulted in predictable development,
increased productivity and quality

� Increased business

� Software Engineering is less the code but more on the
process involved

� focusing on standardized software engineering
processes results in:

– increased reliability
– less debugging
– improved quality control
– less dead people!

	Case Studies:Examples of Good and Bad Software Projects
	Software Project Gone Bad!
	What Is a Therac-25?
	Older Models
	Therac-25 Features
	Accident Timeline
	Accident Timeline
	Accident Timeline
	Accident Timeline
	Accident Timeline
	Accident Timeline
	Accident Timeline
	Specific Bugs
	Overall Issues
	Attitudes
	Software Engineering Practices
	Management Process
	Lessons Learned
	Reality
	Software Engineering Gone Well
	Case for Improvement
	Process Improvement
	Measurement of Improvement
	Process Improvement Model
	Process Improvement Model
	Infrastructure
	Policy and Procedures Group
	Training Group
	Tools and Methods Group
	Process Database Group
	Process Binding
	Measurement and Analysis
	Impact - Cost of Quality
	Impact - Software Productivity
	Impact - Overall Product Quality
	Results
	Summary

