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� Case study: Therac-25



� Linear accelerators used for medical purposes

� Created by Atomic Energy Canada Limited

(AECL)

� Earlier models: Therac-6 and Therac-20



� Previous models designed as stand-alone
machines

� Software functionality was limited

� Added convenience

� Used a PDP 11



� Designed to take advantage of software
monitoring and control mechanisms

� Removal of hardware safety mechanisms

� Faith in software reliability rather than
hardware

� Due to lack of complexity, and digital nature



� June 3, 1985 - first overdose in Marietta
Georgia

� Patient suffered serious radiation burn (est.
15,000 – 20, 000 rads)

� Breast removed, and lost use of shoulder and
arm

� Manufacturer response:
    - Improper scanning not possible



� July 26, 1985 – second overdose in Hamilton,
Ontario

� Patient dies November 3, 1985
� Manufacturer response:
    - Hardware micro-switch assumed to be cause
    - AECL makes changes and notifies users of
      increased safety of 5 orders of magnitude



� December, 1985 – Third overdose in Yakima,
Washington

� Abnormal skin reaction
� Manufacturer response:
    - Two page report ruling out operator and
       manufacturer error
    - Including statement indicating no previous
      occurrence of overdose



� March 21, 1986 – fourth overdose in Tyler,
Texas

� Lost function of legs, arms, and vocal cords
� Died 5 months after accident
� Manufacturer response:
    - Insistence that no prior accidents occurred
    - Suggestion issue is an electrical problem



� April 7, 1986 – machine put back in use
� April 11, 1986 – Fifth overdose occurs again in

Texas
� Severe overdose causes death 3 weeks later
� Manufacturer response:
    - Discovery of bug in user input entry routines
� FDA requires corrective action plan (CAP) and

notification of Therac-25 users



� Multiple CAP revisions necessary due to user
and FDA concern

Due to:
� Lack of redundant safety mechanisms
� Lack of proper error messages
� Lack of software evaluation
� Lack of software requirements, specifications,

documentation, and test plans



� January 17, 1987 – sixth overdose occurs
again at Washington

� FDA labels Therac-25 as defective under US
law

� Manufacturer response:
    - Issues fix for specific software errors
    - Adds additional hardware safety checks
      suggested by user groups and FDA
    - Fifth revision of CAP approved



� Hard to isolate specific bugs due to lack of
documentation of accidents

� User entry interface allowed for improper entry
� Increment roll-over which allowed safety

checks to be bypassed
� Software allowed concurrent access to shared

memory without synchronization.  Race
conditions emerged



� Particular coding error is not as important as
the general unsafe design of the system

� Look at overall contributing factors for failure



� Software considered trivial part of system
� Overconfidence in software
� Non-qualified person hired



� Unrealistic risk assessments

� Fault analysis did not include software

� Lack of independent software evaluation

� Little documentation on software specifications and
software test plans

� Lack of documentation on product and User error
messages

� Lack of software auditing



� Lack of formal management and quality control
processes

� Lack of procedures on following through on
reported accidents

� Bug fixes corrected only when occurred



� Accidents are seldom simple : usually involve a
complex web of interacting events with multiple
contributing technical, human, and organizational
factors

� Fixing a particular error never prevents further
accidents

� Software quality assurance standards should be
established

� Designs should be simple



� A significant amount of software for life-critical
systems come from small firms that fit the
profile of those resistant to principles of
software engineering



� Case study: Raytheon



� Software is a major element of products developed by
Raytheon

� Functionality of complex systems moving more towards
software

� Latter part of decade, software problems translated into
contract performance issues

� Lack of success in delivering projects on schedule and
within budget

� Customers using SEI process maturity framework as
selection criteria



� Three critical activities:
l establish a strong and effective infrastructure

and maintain enthusiasm over time
l identify risks and develop mitigation strategy
l measure and analyze project data to

determine benefits



� Measure return on investment (ROI) through
goal of reducing the amount of rework

� Analysis of software productivity on projects
� Used (cost at completion/budget) to measure

predictability
� Defect density analysis for measuring software

quality





� a) selected project uses organization process
to develop software development plan

� b) implementation occurs process is applied
� c) feedback for continual refinement of process





� Responsible for developing documents
describing process

� Based on “best-of-best” practices
� Existing standards like Capability Maturity

Model



� Responsible for developing the comprehensive
training program

� Take feedback and examine effectiveness of
training



� Responsible for implementing CASE tools
available to software development and
management team

� CASE tools aid in capturing requirements,
design data and publish resulting documents



� Responsible for Process Data Center
� Repository for project data and metrics used in

root cause analysis
� Gives feedback through improvement

recommendation to both projects and overall
process

� Previous projects can give pertinent
information to project manager



� Obstacles to the success of program:
- Sponsorship and Commitment
- Recruiting right personnel
- Resources
- Cultural issues



� Data collected monthly
� Data measurement:

– Progress metrics
data used to gauge progress or current status of
project

– System technical performance metrics
describes the current measured or estimated
utilization of software system resources



� Average cost of rework had decreased
� Two years prior rework averaged 41% of

project costs
� Reduced to 20%
� Largest reduction from fixing problems during

source code integration
� Second largest was cost of retesting



� Data measured by delivered source
instructions per person-month of development
effort

� Using staff size as weighting function, results
showed average productivity increasing



� Assessed through defect density in final software
product



� FAA Terminal Doppler Weather Radar
Program

� Using CMM Level 3 process delivered 6
months ahead of time

� Resulted in predictable development,
increased productivity and quality

� Increased business



� Software Engineering is less the code but more on the
process involved

� focusing on standardized software engineering
processes results in:

– increased reliability
– less debugging
– improved quality control
– less dead people!
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