


� 1. Phases in Detail
– Step-by-step of typical software project

� 2. Lifecycle Planning
� 3. Project plans



� PMI Fundamentals
� PMI Processes
� Project Organization

– Functional, Project, Matrix Orgs.
� Initial documents

– Statement of Work (SOW)
– Project Charter





� Remember the 40-20-40 Rule
� Specification-Implementation-Test

40%20%40%Defense
Systems

40%25%35%Real-time
Systems

30%15%55%Internet
Systems

35%40%25%Commercial
DP

Integration &
Test

Code &
Unit Test

Planning

Bennatan, E.M, “On Time Within Budget”



15%10%System test

20%15%Integration

5%20%Unit Test

10%25%Code

20%20%Design

30%10%Analysis

Large Project
(500K LOC)

Small Project
(2.5K LOC)

Activity

McConnell, Steve, “Rapid Development”



NASA’s “Manager’s Handbook for Software Development”





� The “Why” phase
� Not a “mandatory formal” phase
� Collecting and funneling project ideas
� Project Justification

– ROI
– Cost-benefit analysis
– Project Portfolio Matrix

� Initial planning and estimates



� Possibly includes Procurement Management:
– RFP Process
– Vendor selection
– Contract management

� Gathering the initial team
– Including PM if not already on-board

� Identify the project sponsor
– Primary contact for approval and decision making



� Potential Phase Outputs:
– Concept Document, Product Description,

Proposal, SOW, Project Charter
� Characteristics & Issues

– Lack of full commitment and leadership



– Some frustrations:
� Management getting rough estimates from development
� Development not getting specifics from customer
� Finding a balanced team

– Budget sign-off may be your first major task
– Achieved via:

� Good concept document or equivalent
� Demonstration of clear need (justification)
� Initial estimates



� The “What” phase
� Inputs: SOW, Proposal
� Outputs:

– Requirements Document (RD)
� a.k.a.Requirements Specification Document (RSD)
� Software Requirements Specification (SRS)

– First Project Baseline
– Software Project Management Plan (SPMP)
– Requirements Approval & Sign-Off

� Your most difficult task in this phase



� Perhaps most important & difficult phase
� Shortchanging it is a ‘classic mistake’
� Can begin with a Project Kickoff Meeting
� Can end with a Software Requirements

Review (SRR)
– For Sponsor and/or customer(s) approval





� Characteristics & Issues
– Conflict of interest: developer vs. customer
– Potential tug-of-war:

� Disagreement on Features & Estimates
� Especially in fixed-price contracts

– Frequent requirements changes
– Achieving sign-off

� Project planning occurs in parallel



� Requirements are capabilities and condition
to which the system – more broadly, the
project – must conform



– Functional (behavioral)
– Features and capabilities

– Non-functional (a.k.a. “technical”) (everything else)
– Usability

• Human factors, help, documentation
– Reliability

• Failure rates, recoverability, availability
– Performance

• Response times, throughput, resource usage
– Supportability

• Maintainability, internationalization
– Operations: systems management, installation
– Interface: integration with other systems
– Other: legal, packaging, hardware



� Other ways of categorizing
– Go-Ahead vs. Catch-up

� Relative to competition
– Backward-looking vs. Forward-looking

� Backward: address issues with previous version
� Forward: Anticipating future needs of customers

� Must be prioritized
� Must-have
� Should-have
� Could-have (Nice-to-have: NTH)

� Must be approved



� Project Kickoff Meeting
� Project Brainstorming Meeting

– Clarify goals, scope, assumptions
– Refine estimates

� WBS Meeting



� The “How” Phases
� Inputs: Requirements Document
� Outputs:

– Functional Specification
– Detailed Design Document
– User Interface Specification
– Data Model
– Prototype (can also be done with requirements)
– Updated Plan (improved estimates; new baseline)



� a.k.a. Top-level design & detailed design
� Continues process from Requirements

Document
� Ends with Critical Design Review (CDR)

– Formal sign-off
– Can also include earlier Preliminary Design

Review (PDR) for high level design



� Characteristics & Issues
– Enthusiasm via momentum
– Team structure and assignments finalized
– Delays due to requirements changes, new information

or late ideas
– Issues around personnel responsibilities
– Unfeasible requirements (technical complexity)
– Resource Issues

� Including inter-project contention



� The “Do It” phase
� Coding & Unit testing
� Often overlaps Design & Integration phases

– To shorten the overall schedule
– PM needs to coordinate this



� Other concurrent activities
– Design completion
– Integration begins
– Unit testing of individual components
– Test bed setup (environment and tools)
– Project plans updated
– Scope and Risk Management conducted



� Characteristics
– Pressure increases
– Staffing at highest levels
– Often a “heads-down” operation

� Issues
– Last-minute changes
– Team coordination (especially in large projects)
– Communication overhead
– Management of sub-contractors



� Evolves from Development Phase
� Often done as two parallel phases

– Partial integration & initial test
� Starts with integration of modules
� An initial, incomplete version constructed
� Progressively add more components



� Integration primarily a programmer task
� Test primarily a QA team task
� Integration:

– Top-down: Core functionality first, empty
shells for incomplete routines (stubs)

– Bottom up: gradually bind low-level modules
– Prefer top-down generally



� Tests
– Integration testing
– Black & White-box testing
– Load & Stress testing
– Alpha & Beta testing
– Acceptance testing

� Other activities
– Final budgeting; risk management; training; installation

preparation; team reduced



� Characteristics & Issues
– Increased pressure
– Overtime
– Customer conflicts over features
– Frustration over last-minute failures
– Budget overruns
– Motivation problems (such as burnout)
– Difficulty in customer acceptance

� Especially true for fixed-price contracts



� Installation depends on system type
– Web-based, CD-ROM, in-house, etc.

� Migration strategy
� How to get customers up on the system

– Parallel operation
� Deployment typically in your project plan,

maintenance not



� Maintenance
– Fix defects
– Add new features
– Improve performance

� Configuration control is very important here
� Documents need to be maintained also
� Sometimes a single team maintains multiple

products



� Characteristics & Issues
– Lack of enthusiasm
– Pressure for quick fixes
– Insufficient budget
– Too many patches
– Personnel turnover
– Regression testing is critical

� Preferably through automated tools



� a.k.a. Lifecycle Management or SDLC
� Greatly influences your chance of success
� Not choosing a lifecycle is a bad option
� Three primary lifecycle model components

– Phases and their order
– Intermediate products of each phase
– Reviews used in each phase



� Different projects require different approaches
� You do not need to know all models by name
� You should know which SDLC would be

appropriate in various situations
� There are more than covered here
� A lifecycle is not a design, modeling or

diagramming technique
– The same technique (UML, DFD, etc) can be used with

multiple lifecycles



� The “granddaddy” of models
� Linear sequence of phases

– “Pure” model: no phases overlap
� Document driven
� All planning done up-front



� Why does the waterfall model “invite risk”?
� Integration and testing occur at the end

– Often customer’s first chance to “see” the program



� Works well for projects with
– Stable product definition
– Well-understood technologies
– Quality constraints stronger than cost &

schedule
– Technically weak staff

� Provides structure
� Good for overseas projects



� Disadvantages
– Not flexible

� Rigid march from start to finish

– Difficult to fully define requirements up front
– Can produce excessive documentation
– Few visible signs of progress until the end



� “Code-like-Hell”
� Specification (maybe), Code (yes), Release

(maybe)
� Advantages

– No overhead
– Requires little expertise

� Disadvantages
– No process, quality control, etc.
– Highly risky

� Suitable for prototypes or throwaways





� Emphasizes risk analysis & management in each
phase

� A Series of Mini-projects
� Each addresses a set of “risks”

– Start small, explore risks, prototype, plan, repeat

� Early iterations are “cheapest”
� Number of spirals is variable

– Last set of steps are waterfall-like



� Advantages
– Can be combined with other models
– As costs increase, risks decrease
– Risk orientation provides early warning

� Disadvantages
– More complex
– Requires more management



� Overlapping phases
� Advantages

– Reduces overall schedule
– Reduces documentation
– Works well if personnel continuity

� Disadvantages
– Milestones more ambiguous
– Progress tracking more difficult
– Communication can be more difficult



� Design most prominent parts first
– Usually via a visual prototype

� Good for situations with:
– Rapidly changing requirements
– Non-committal customer
– Vague problem domain

� Provides steady, visible progress
� Disadvantages

– Time estimation is difficult
– Project completion date may be unknown
– An excuse to do “code-and-fix”



� Waterfall steps through architectural design
� Then detailed design, code, test, deliver in stages
� Advantages

� Customers get product much sooner
� Tangible signs of progress sooner
� Problems discovered earlier
� Increases flexibility
� Reduces: status reporting overhead & estimation error

� Disadvantages
� Requires more planning (for you, the PM)
� More releases increase effort (and possible feature creep)

� How’s this differ from Evolutionary Prototyping?





� Designed for testability
– Emphasizes Verification & Validation

� Variation of Waterfall
� Strengths

– Encourages V&V at all phases
� Weaknesses

– Does not handle iterations
– Changes can be more difficult to handle

� Good choice for systems that require high
reliability such as patient control systems



� Rapid Application Development
� Popular in the 80’s

– 1. Joint Requirements Planning (JRP)
– 2. Joint Application Design (JAD)
– 3. Construction

� Heavy use of tools: code generators
� Time-boxed; many prototypes

– 4. Cutover
� Good for systems with extensive user input

available



� Commercial Off-The-Shelf software
� Build-vs.-buy decision
� Advantages

– Available immediately
– Potentially lower cost

� Disadvantages
– Not as tailored to your requirements

� Remember: custom software rarely meets its ideal
(so compare that reality to COTS option)



� Not a Microsoft product
� Part of movement called “Agile Development”
� A “Lightweight” methodology
� A bit counter-culture
� Currently in vogue
� Motto: “Embrace Change”
� Highly Incremental / Iterative





� Suitable for small groups
� Attempts to minimize unnecessary work
� Uses an “on-site” customer
� Small releases
� Pair programming
� Refactoring
� Stories as requirements
� You want good developers if you use this



� Agile here means “lite”, reduced docs,
highly iterative

� Agile Software Development
– Alliance , their “manifesto”, their book

� SCRUM
– Features 30-day “Sprint” cycles

� Feature Driven Development (FDD)
– XP with more emphasis on docs and process



� Adaptive Software Development (ASD)
– Book, site

� Dynamic System Development Method
(DSDM)
– Popular in Europe

� Homegrown: developers often hide their
“agile adventures” from management



� Pros
– Similar to XP, can reduce process overhead
– Responsive to user feedback
– Amenable to change

� Cons
– Requires close monitoring by PM
– May not “scale” to large projects
– Often requires better quality developers



� RUP
� From Rational Corporation
� “Generic” version is the Unified Process
� Commercial
� Extensive tool support (expensive)
� Object-oriented
� Incremental
� Newer





� Develop Iteratively
� Manage Requirements
� Uses UML (Unified Modeling Language)
� Produces “artifacts”
� Use component-based architecture
� Visually model software
� Complex process
� A “framework”
� Suitable for large scale systems



� Varies by project
� Opt for “iterative” or “incremental”
� How well are requirements understood?
� What are the risks?
� Is there a fixed deadline?
� How experienced is the team or customer?



� A standard for developing software
processes
– Lifecycle model selection
– Project management process
– Predevelopment processes
– Development processes
– Post-development processes
– Integral process



� “Plans are nothing. But planning is
everything.” Gen. Dwight Eisenhower



� Preliminary planning starts on day one
� Even in the pre-project phase
� Should not be conducted “in secret”
� Need buy-in and approval

– Very important step
– Both from above and below



� Why
� Deliverable: ROI

� What
� SOW, Requirements

� How
� Design Specification, SDP, Lifecycle

� Do
� Execution

� Done
� PPR

Futrell, Shafer, Shafer, “Quality Software
Project Management”



� Identify project scope and objectives
� Identify project organizational environment
� Analyze project characteristics
� Identify project products and activities
� Estimate effort for each activity
� Identify risk
� Allocate resources
� Review and communicate plan



� Planning
� Product



� Software Development Plan (SDP)
� Software Quality Assurance Plan (SQAP)
� Software Configuration Management Plan

(SCMP)
� Risk Management Plan
� Software Process Improvement Plan
� Communications Management Plan
� Migration Plan
� Operations Plan



� You (the PM) need to choose which
documents are appropriate

� Docs do not have to be lengthy
� Small Set:

– Software Development Plan
– Risk Management Plan
– Software Quality Assurance Plan
– Software Configuration Management Plan



� Project ROI Analysis
� Statement of Work (SOW)
� Project Charter
� Software Project Management Plan (SPMP)
� Budget
� Responsibility Assignment Matrix (RAM)
� Risk Management Plan



� Statement of Need
� System Interface

Specification
� Software Requirements

Specification
� Software Design

Specification
� Software Validation &

Verification Plan
� User Documentation

� Support Plan
� Maintenance

Documentation



� Another McConnell book
� See construx.com’s SPSG section

– Good content online
– Documents
– Schedules
– Checklists
– Project web site template



� How much will it cost?
� How long will it take?
� How many people will it take?
� What might go wrong?



� Scoping
� Estimation
� Risk
� Schedule
� Control Strategy



� You want a fairly sophisticated process
without incurring much overhead

� Remember, projects are often larger than
they first appear

� Easier to loosen too much process than add
later



NASA’s “Manager’s Handbook for Software Development”



� Software Project Management Plan (SPMP)
� Some consider it the most important

document in the project (along with SRS)
– Can be seen as an aggregation of other core

documents
� Evolves over time as pieces come together



� Fundamental Sections
– Project overview
– Deliverables
– Project organization
– Managerial processes
– Technical processes
– Budget
– Schedule



� Often a section of SPMP
� Describes information flow to all parties

– Gathering and distributing information
� Status meetings

– Monthly, Weekly, Daily?
– Status reports are vital



� A great communications tool
� Reference all project resources here


	Software Project Planning
	Today
	Review
	Project Phases
	Time Allocation by Phase
	Time Allocation by Phase
	Activities by % of Total Effort
	Deliverables by Phase
	Concept Exploration
	Concept Exploration ..2
	Concept Exploration ..3
	Concept Exploration ..4
	Requirements
	Requirements
	Why are Requirements so Important?
	Requirements
	Requirements
	Two Types of Requirements
	Requirements
	Early Phase Meetings
	Analysis & Design
	Analysis & Design
	Analysis & Design
	Development
	Development
	Development
	Integration & Test
	Integration & Test ..2
	Integration & Test ..3
	Integration & Test ..4
	Deployment & Maintenance
	Deployment & Maintenance .2
	Deployment & Maintenance .3
	Lifecycle Planning
	Lifecycle Planning
	Pure Waterfall
	Waterfall Risk
	Pure Waterfall
	Pure Waterfall
	Code-and-Fix
	Spiral
	Spiral
	Spiral
	Modified Waterfall – Sashimi
	Evolutionary Prototyping
	Staged Delivery
	V Process Model
	V Process Model
	RAD
	COTS
	XP: eXtreme Programming
	eXtreme Programming
	eXtreme Programming
	Other “Agile” Methodologies
	Other “Agile” Methodologies
	Other “Agile” Methodologies
	Rational Unified Process
	Rational Unified Process
	Rational Unified Process
	Choosing Your Lifecycle
	IEEE 1074
	Planning
	Planning
	Your PM Process
	Primary Planning Steps
	Documents
	Planning Documents
	Planning Documents
	Planning Documents
	Product Documents
	Software Project Survival Guide
	Planning
	Planning
	Process Issues
	Plans Evolve Over Time
	Software Development Plan
	SDP / SPMP
	Communications Management Plan
	Create a Project Intranet

