


� 1. Phases in Detail
– Step-by-step of typical software project

� 2. Lifecycle Planning
� 3. Project plans



� PMI Fundamentals
� PMI Processes
� Project Organization

– Functional, Project, Matrix Orgs.
� Initial documents

– Statement of Work (SOW)
– Project Charter





� Remember the 40-20-40 Rule
� Specification-Implementation-Test
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NASA’s “Manager’s Handbook for Software Development”





� The “Why” phase
� Not a “mandatory formal” phase
� Collecting and funneling project ideas
� Project Justification

– ROI
– Cost-benefit analysis
– Project Portfolio Matrix

� Initial planning and estimates



� Possibly includes Procurement Management:
– RFP Process
– Vendor selection
– Contract management

� Gathering the initial team
– Including PM if not already on-board

� Identify the project sponsor
– Primary contact for approval and decision making



� Potential Phase Outputs:
– Concept Document, Product Description,

Proposal, SOW, Project Charter
� Characteristics & Issues

– Lack of full commitment and leadership



– Some frustrations:
� Management getting rough estimates from development
� Development not getting specifics from customer
� Finding a balanced team

– Budget sign-off may be your first major task
– Achieved via:

� Good concept document or equivalent
� Demonstration of clear need (justification)
� Initial estimates



� The “What” phase
� Inputs: SOW, Proposal
� Outputs:

– Requirements Document (RD)
� a.k.a.Requirements Specification Document (RSD)
� Software Requirements Specification (SRS)

– First Project Baseline
– Software Project Management Plan (SPMP)
– Requirements Approval & Sign-Off

� Your most difficult task in this phase



� Perhaps most important & difficult phase
� Shortchanging it is a ‘classic mistake’
� Can begin with a Project Kickoff Meeting
� Can end with a Software Requirements

Review (SRR)
– For Sponsor and/or customer(s) approval





� Characteristics & Issues
– Conflict of interest: developer vs. customer
– Potential tug-of-war:

� Disagreement on Features & Estimates
� Especially in fixed-price contracts

– Frequent requirements changes
– Achieving sign-off

� Project planning occurs in parallel



� Requirements are capabilities and condition
to which the system – more broadly, the
project – must conform



– Functional (behavioral)
– Features and capabilities

– Non-functional (a.k.a. “technical”) (everything else)
– Usability

• Human factors, help, documentation
– Reliability

• Failure rates, recoverability, availability
– Performance

• Response times, throughput, resource usage
– Supportability

• Maintainability, internationalization
– Operations: systems management, installation
– Interface: integration with other systems
– Other: legal, packaging, hardware



� Other ways of categorizing
– Go-Ahead vs. Catch-up

� Relative to competition
– Backward-looking vs. Forward-looking

� Backward: address issues with previous version
� Forward: Anticipating future needs of customers

� Must be prioritized
� Must-have
� Should-have
� Could-have (Nice-to-have: NTH)

� Must be approved



� Project Kickoff Meeting
� Project Brainstorming Meeting

– Clarify goals, scope, assumptions
– Refine estimates

� WBS Meeting



� The “How” Phases
� Inputs: Requirements Document
� Outputs:

– Functional Specification
– Detailed Design Document
– User Interface Specification
– Data Model
– Prototype (can also be done with requirements)
– Updated Plan (improved estimates; new baseline)



� a.k.a. Top-level design & detailed design
� Continues process from Requirements

Document
� Ends with Critical Design Review (CDR)

– Formal sign-off
– Can also include earlier Preliminary Design

Review (PDR) for high level design



� Characteristics & Issues
– Enthusiasm via momentum
– Team structure and assignments finalized
– Delays due to requirements changes, new information

or late ideas
– Issues around personnel responsibilities
– Unfeasible requirements (technical complexity)
– Resource Issues

� Including inter-project contention



� The “Do It” phase
� Coding & Unit testing
� Often overlaps Design & Integration phases

– To shorten the overall schedule
– PM needs to coordinate this



� Other concurrent activities
– Design completion
– Integration begins
– Unit testing of individual components
– Test bed setup (environment and tools)
– Project plans updated
– Scope and Risk Management conducted



� Characteristics
– Pressure increases
– Staffing at highest levels
– Often a “heads-down” operation

� Issues
– Last-minute changes
– Team coordination (especially in large projects)
– Communication overhead
– Management of sub-contractors



� Evolves from Development Phase
� Often done as two parallel phases

– Partial integration & initial test
� Starts with integration of modules
� An initial, incomplete version constructed
� Progressively add more components



� Integration primarily a programmer task
� Test primarily a QA team task
� Integration:

– Top-down: Core functionality first, empty
shells for incomplete routines (stubs)

– Bottom up: gradually bind low-level modules
– Prefer top-down generally



� Tests
– Integration testing
– Black & White-box testing
– Load & Stress testing
– Alpha & Beta testing
– Acceptance testing

� Other activities
– Final budgeting; risk management; training; installation

preparation; team reduced



� Characteristics & Issues
– Increased pressure
– Overtime
– Customer conflicts over features
– Frustration over last-minute failures
– Budget overruns
– Motivation problems (such as burnout)
– Difficulty in customer acceptance

� Especially true for fixed-price contracts



� Installation depends on system type
– Web-based, CD-ROM, in-house, etc.

� Migration strategy
� How to get customers up on the system

– Parallel operation
� Deployment typically in your project plan,

maintenance not



� Maintenance
– Fix defects
– Add new features
– Improve performance

� Configuration control is very important here
� Documents need to be maintained also
� Sometimes a single team maintains multiple

products



� Characteristics & Issues
– Lack of enthusiasm
– Pressure for quick fixes
– Insufficient budget
– Too many patches
– Personnel turnover
– Regression testing is critical

� Preferably through automated tools



� a.k.a. Lifecycle Management or SDLC
� Greatly influences your chance of success
� Not choosing a lifecycle is a bad option
� Three primary lifecycle model components

– Phases and their order
– Intermediate products of each phase
– Reviews used in each phase



� Different projects require different approaches
� You do not need to know all models by name
� You should know which SDLC would be

appropriate in various situations
� There are more than covered here
� A lifecycle is not a design, modeling or

diagramming technique
– The same technique (UML, DFD, etc) can be used with

multiple lifecycles



� The “granddaddy” of models
� Linear sequence of phases

– “Pure” model: no phases overlap
� Document driven
� All planning done up-front



� Why does the waterfall model “invite risk”?
� Integration and testing occur at the end

– Often customer’s first chance to “see” the program



� Works well for projects with
– Stable product definition
– Well-understood technologies
– Quality constraints stronger than cost &

schedule
– Technically weak staff

� Provides structure
� Good for overseas projects



� Disadvantages
– Not flexible

� Rigid march from start to finish

– Difficult to fully define requirements up front
– Can produce excessive documentation
– Few visible signs of progress until the end



� “Code-like-Hell”
� Specification (maybe), Code (yes), Release

(maybe)
� Advantages

– No overhead
– Requires little expertise

� Disadvantages
– No process, quality control, etc.
– Highly risky

� Suitable for prototypes or throwaways





� Emphasizes risk analysis & management in each
phase

� A Series of Mini-projects
� Each addresses a set of “risks”

– Start small, explore risks, prototype, plan, repeat

� Early iterations are “cheapest”
� Number of spirals is variable

– Last set of steps are waterfall-like



� Advantages
– Can be combined with other models
– As costs increase, risks decrease
– Risk orientation provides early warning

� Disadvantages
– More complex
– Requires more management



� Overlapping phases
� Advantages

– Reduces overall schedule
– Reduces documentation
– Works well if personnel continuity

� Disadvantages
– Milestones more ambiguous
– Progress tracking more difficult
– Communication can be more difficult



� Design most prominent parts first
– Usually via a visual prototype

� Good for situations with:
– Rapidly changing requirements
– Non-committal customer
– Vague problem domain

� Provides steady, visible progress
� Disadvantages

– Time estimation is difficult
– Project completion date may be unknown
– An excuse to do “code-and-fix”



� Waterfall steps through architectural design
� Then detailed design, code, test, deliver in stages
� Advantages

� Customers get product much sooner
� Tangible signs of progress sooner
� Problems discovered earlier
� Increases flexibility
� Reduces: status reporting overhead & estimation error

� Disadvantages
� Requires more planning (for you, the PM)
� More releases increase effort (and possible feature creep)

� How’s this differ from Evolutionary Prototyping?





� Designed for testability
– Emphasizes Verification & Validation

� Variation of Waterfall
� Strengths

– Encourages V&V at all phases
� Weaknesses

– Does not handle iterations
– Changes can be more difficult to handle

� Good choice for systems that require high
reliability such as patient control systems



� Rapid Application Development
� Popular in the 80’s

– 1. Joint Requirements Planning (JRP)
– 2. Joint Application Design (JAD)
– 3. Construction

� Heavy use of tools: code generators
� Time-boxed; many prototypes

– 4. Cutover
� Good for systems with extensive user input

available



� Commercial Off-The-Shelf software
� Build-vs.-buy decision
� Advantages

– Available immediately
– Potentially lower cost

� Disadvantages
– Not as tailored to your requirements

� Remember: custom software rarely meets its ideal
(so compare that reality to COTS option)



� Not a Microsoft product
� Part of movement called “Agile Development”
� A “Lightweight” methodology
� A bit counter-culture
� Currently in vogue
� Motto: “Embrace Change”
� Highly Incremental / Iterative





� Suitable for small groups
� Attempts to minimize unnecessary work
� Uses an “on-site” customer
� Small releases
� Pair programming
� Refactoring
� Stories as requirements
� You want good developers if you use this



� Agile here means “lite”, reduced docs,
highly iterative

� Agile Software Development
– Alliance , their “manifesto”, their book

� SCRUM
– Features 30-day “Sprint” cycles

� Feature Driven Development (FDD)
– XP with more emphasis on docs and process



� Adaptive Software Development (ASD)
– Book, site

� Dynamic System Development Method
(DSDM)
– Popular in Europe

� Homegrown: developers often hide their
“agile adventures” from management



� Pros
– Similar to XP, can reduce process overhead
– Responsive to user feedback
– Amenable to change

� Cons
– Requires close monitoring by PM
– May not “scale” to large projects
– Often requires better quality developers



� RUP
� From Rational Corporation
� “Generic” version is the Unified Process
� Commercial
� Extensive tool support (expensive)
� Object-oriented
� Incremental
� Newer





� Develop Iteratively
� Manage Requirements
� Uses UML (Unified Modeling Language)
� Produces “artifacts”
� Use component-based architecture
� Visually model software
� Complex process
� A “framework”
� Suitable for large scale systems



� Varies by project
� Opt for “iterative” or “incremental”
� How well are requirements understood?
� What are the risks?
� Is there a fixed deadline?
� How experienced is the team or customer?



� A standard for developing software
processes
– Lifecycle model selection
– Project management process
– Predevelopment processes
– Development processes
– Post-development processes
– Integral process



� “Plans are nothing. But planning is
everything.” Gen. Dwight Eisenhower



� Preliminary planning starts on day one
� Even in the pre-project phase
� Should not be conducted “in secret”
� Need buy-in and approval

– Very important step
– Both from above and below



� Why
� Deliverable: ROI

� What
� SOW, Requirements

� How
� Design Specification, SDP, Lifecycle

� Do
� Execution

� Done
� PPR

Futrell, Shafer, Shafer, “Quality Software
Project Management”



� Identify project scope and objectives
� Identify project organizational environment
� Analyze project characteristics
� Identify project products and activities
� Estimate effort for each activity
� Identify risk
� Allocate resources
� Review and communicate plan



� Planning
� Product



� Software Development Plan (SDP)
� Software Quality Assurance Plan (SQAP)
� Software Configuration Management Plan

(SCMP)
� Risk Management Plan
� Software Process Improvement Plan
� Communications Management Plan
� Migration Plan
� Operations Plan



� You (the PM) need to choose which
documents are appropriate

� Docs do not have to be lengthy
� Small Set:

– Software Development Plan
– Risk Management Plan
– Software Quality Assurance Plan
– Software Configuration Management Plan



� Project ROI Analysis
� Statement of Work (SOW)
� Project Charter
� Software Project Management Plan (SPMP)
� Budget
� Responsibility Assignment Matrix (RAM)
� Risk Management Plan



� Statement of Need
� System Interface

Specification
� Software Requirements

Specification
� Software Design

Specification
� Software Validation &

Verification Plan
� User Documentation

� Support Plan
� Maintenance

Documentation



� Another McConnell book
� See construx.com’s SPSG section

– Good content online
– Documents
– Schedules
– Checklists
– Project web site template



� How much will it cost?
� How long will it take?
� How many people will it take?
� What might go wrong?



� Scoping
� Estimation
� Risk
� Schedule
� Control Strategy



� You want a fairly sophisticated process
without incurring much overhead

� Remember, projects are often larger than
they first appear

� Easier to loosen too much process than add
later



NASA’s “Manager’s Handbook for Software Development”



� Software Project Management Plan (SPMP)
� Some consider it the most important

document in the project (along with SRS)
– Can be seen as an aggregation of other core

documents
� Evolves over time as pieces come together



� Fundamental Sections
– Project overview
– Deliverables
– Project organization
– Managerial processes
– Technical processes
– Budget
– Schedule



� Often a section of SPMP
� Describes information flow to all parties

– Gathering and distributing information
� Status meetings

– Monthly, Weekly, Daily?
– Status reports are vital



� A great communications tool
� Reference all project resources here
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