Slogger: Scalable, Near-Zero Loss Disaster Recovery for Distributed Data Stores

Ahmed Alquraan¹, Alex Kogan², Virendra Marathe², Samer Al-Kiswany¹

¹University of Waterloo

²Oracle Labs

Main techniques

- Synchronous geo-replication
- Snapshotting

Q

117 💻

Synchronous Geo-Replication

+

—

Snapshotting

Backup site

- + Higher performance than synchronous geo-replication
- Large data loss window

Can we have a high performance DR system with small data loss window?

Slogger

A high performance disaster recovery approach that minimizes data loss

Main idea

- Asynchronous geo-replication \rightarrow improves performance
- Leverages modern data center synchronized clocks → guarantee consistency

Challenge: consistency across shards?

Evaluation

Alternatives

- Slogger on top of LogCabin
- Synchronous geo-replication
- Incremental snapshotting

Metrics

- Performance
- Backup site lag
- Fault tolerance
- Watermark service scalability

Testbed

- •Two CloudLab data centers (Clemson & Wisconsin)
- •16 machines for each site
 - Dual Socket CPU 10 cores/socket
 - Local network: 10Gbps
 - WAN: 1Gbps
 - RTT: 26 milliseconds

Performance Comparison

Slogger achieves optimal performance with a small data loss window

Conclusion

Slogger

- Exploits synchronized clocks within a data center
- Preserves consistency
- Achieves optimal performance with milliseconds data loss window

Thank you!