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Abstract. A path from s to t on a polyhedral terrain is descending if the
height of a point p never increases while we move p along the path from
s to t. We introduce a generalization of the shortest descending path
problem, called the shortest gently descending path (SGDP) problem,
where a path descends, but not too steeply. The additional constraint to
disallow a very steep descent makes the paths more realistic in practice.
We give two approximation algorithms (more precisely, FPTASs) to solve
the SGDP problem on general terrains.

1 Introduction

A well-studied problem in computational geometry is to compute a shortest path
on a polyhedral terrain. One variant of the problem for which good approxima-
tion algorithms have recently been found [3, 14] is the shortest descending path
(SDP) problem: given a polyhedral terrain, and points s and t on the surface,
find a shortest path on the surface from s to t such that, as a point travels along
the path, its elevation, or z-coordinate, never increases. In many applications of
SDPs, we want a path that descends, but not too steeply. For example, when we
ski down a mountain we avoid a too steep descent. In such cases, a very steep
segment of a descending path should be replaced by “switchbacks” that go back
and forth at a gentler slope, like the hairpin bends on a mountain road (Figure 1).
The shortest gently descending path (SGDP) problem combines two previously-
studied problems: (i) to find SDPs; and (ii) to find shortest anisotropic paths,
where there are different costs associated with traveling in different directions in
a face. Our constraint that forbids a steep descent is an anisotropic constraint.
At first glance it would seem that the entire SGDP problem is a special case
of anisotropic paths, but results on anisotropic paths assume (e.g., Sun and
Reif [17]) that there is a feasible path between any two points in a common face,
a property that is violated when ascending paths are forbidden.

In this paper we combine techniques used for SDPs and for anisotropic paths
and present two fully polynomial time approximation schemes (FPTASs) to solve
the SGDP problem on a general terrain. We model the problem as a shortest
path problem in a graph whose nodes are Steiner points added along the edges

! Research supported by NSERC



t

s

(a)

s

t

(b)

Fig. 1. Descending gently towards a steep direction.

of the terrain, with directed edges from higher to lower points in a common
face, and edge weights corresponding to gently descending distances. Both the
algorithms are simple, robust and easy to implement. We measure performance
in terms of the number n of vertices of the terrain, the largest degree d of a
vertex, the desired approximation factor ε, and a parameter X that depends on
the geometry of the terrain and the measure of steepness (see Section 3). In our
first algorithm, given a vertex s, we place Steiner points uniformly along terrain

edges during an O
(

n2X
ε

log
(

nX
ε

)

)

-time preprocessing so that we can determine

a (1 + ε)-approximate SDP from s to any point v in O(nd) time if v is either
a vertex of the terrain or a Steiner point, and in O

(

n
(

d + X
ε

))

time otherwise.
Our second algorithm places Steiner points in geometric progression along the
edges to make the algorithm less dependent (than the first algorithm) on the
slopes of the edges at the cost of slightly more dependency on n, see Theorem 2
for details. We can easily combine these two algorithms into a “hybrid” one: first
check the edge inclinations of the input terrain, and then run whichever of these
two algorithms ensures a better running time for that particular terrain.

The paper is organized as follows. In Sections 2 and 3 we mention related
results and define a few terms. Section 4 establishes a few properties of an SGDP.
Sections 5 and 6 give our approximation algorithms.

2 Related Work

The SDP problem was introduced by de Berg and van Kreveld [8], who gave
an O(n log n) time algorithm to decide existence of a descending path between
two points. Until recently the SDP problem has been studied in different re-
stricted settings [2, 13]. Two recent papers [3, 14] give approximation algorithms
for the problem on general terrains. Both papers use the Steiner point approach,
i.e., the approach of discretizing the continuous space by adding Steiner points
and approximating a shortest path through the space by a shortest path in the
graph of Steiner points. Details of these algorithms appear in Ahmed et al. [1].
Another recent work on SDP [4] gives a full characterization of the bend angles



of an SDP, and points out the difficulty of finding an exact SDP on a general
terrain.

The Steiner point approach has been used for other variants of shortest paths
on terrains. One of them is the weighted region problem [11]. See Aleksandrov
et al. [6] for a brief survey of Steiner point algorithms for the problem, and Sun
and Reif [18] for more recent work. One generalization of the Weighted Region
Problem is finding a shortest anisotropic path [12], where the weight assigned to
a region depends on the direction of travel. The weights in this problem capture,
for example, the effect the gravity and friction on a vehicle moving on a slope.
All the papers on this problem use the Steiner point approach [7, 10, 15, 17]. As
we mentioned before, these algorithms for anisotropic paths assume that every
face f is totally traversable, i.e., there is a feasible path from any point to any
other point in f . To be precise, Cheng et al. [7] assumes that the (anisotropic)
weight associated with a direction of travel is bounded by constants from both
above and below, thus any direction of travel is feasible. (Moreover, the algorithm
of Cheng et al. is for a planar subdivision, not for a terrain.) The rest of the
papers [10, 15, 17] use the anisotropic weight model of Rowe and Ross [12] which
allows switchback paths to “cover” any direction in f . The assumption that every
face is totally traversable allows placing Steiner points in a face independently
from all other faces. Sun and Reif [17, Section V] relax this assumption (i.e. the
assumption that every face is totally traversable) but only in isolated faces. Thus,
they can still rely on independent placement of Steiner points in a face. For both
the SDP and the SGDP problems, ascending directions are unreachable in every
face, which necessitates the use of a non-local strategy of placing Steiner points.

To obtain a better running time our algorithms use a variant of Dijkstra’s al-
gorithm, called the Bushwhack algorithm [16], to compute a shortest path in the
graph of Steiner points. In such a graph, the Bushwhack algorithm improves the
running time of Dijkstra’s algorithm from O(|V | log |V |+ |E|) to O(|V | log |V |).

3 Terminology

A terrain is a 2D surface in 3D space with the property that every vertical line
intersects it in at most one point. For any point p in the terrain, h(p) denotes
the height of p, i.e., the z-coordinate of p. We consider a triangulated terrain,
and add s as a vertex. The terrain has n vertices, and hence at most 3n edges
and 2n faces by Euler’s formula [9]. Let L be the length of the longest edge, h
be the smallest distance of a vertex from a non-adjacent edge in the same face
(i.e. the smallest 2D height of a triangular face), d be the largest degree of a
vertex, and θ be the largest acute angle between a non-level edge and a vertical
line.

In this paper, “edge” and “vertex” denote respectively a line segment of the
terrain and an endpoint of an edge, “segment” and “node” denote respectively
a line segment of a path and an endpoint of a segment, and “node” and “link”
denote the corresponding entities in a graph. We assume that all paths are
directed. In our figures dotted lines denote level lines.



A path P from s to t on the terrain is descending if the z-coordinate of a
point p never increases while we move p along the path from s to t. Given an
angle ψ ∈ [0, π

2 ), a line segment pq is steep if it makes an angle less than ψ with
a vertical line. A path P is gently descending if P is descending, and no segment
of P is steep. A downward direction in a face is called a critical direction if the
direction makes an angle equal to ψ with a vertical line. A gently descending
path is called a critical path if each of its segments is in a critical direction. A
critical path may travel through more than one face; inside a face it will zig-zag
back and forth. We would like to replace steep descending segments by critical
paths. This is sometimes possible, e.g. for a steep segment starting and ending
at points interior to a face, but is not possible in general. The details are in
Lemma 3, which uses the following terms. A vertex v in face f is locally sharp in
f if v is either the higher endpoint of two steep edges or the lower endpoint of
two steep edges of f . A vertex v is sharp if it is locally sharp in all its incident
faces. Note that a sharp vertex is either the higher endpoint of all the edges
incident to it, or the lower endpoint of all such edges. A sharp vertex is like a
pinnacle from which you cannot descend gently.

4 Properties of an SGDP

Because our approximation algorithms use the Bushwhack algorithm which relies
on the optimality of subpaths of a shortest path, we need to establish a similar
property of an SGDP:

Lemma 1. Any subpath of an SGDP is an SGDP.

Another property that is crucial for our algorithm (and perhaps for any
SGDP algorithm) is that any critical path in the terrain is an SGDP:

Lemma 2. Any critical path from a point a to a point b in the terrain is an
SGDP of length (h(a) − h(b)) secψ.

Proof. Any critical path P is a gently descending path. Since each segment of
P makes an angle ψ with a vertical line, the length of P is (h(a) − h(b)) secψ.
Ignoring the terrain, any gently descending path from a to any point at height
h(b) has length at least (h(a) − h(b)) secψ. So, P is an SGDP. #$

We will now define the following notation to simplify our expressions involv-
ing the length of an SGDP. For any two points p and q in a common f , let
‖pq‖ = |(h(p) − h(q))| secψ when line pq is steep, and ‖pq‖ = |pq| otherwise.
Thus ‖pq‖ is the length of an SGDP from p to q if one exists.

Observation 1. For any three points p, q and r in a face f : (i) ‖pq‖ = ‖qp‖,
(ii) ‖pr‖ ≤ ‖pq‖ + ‖qr‖, and (iii) |pq| ≤‖ pq‖ ≤ |pq| secψ.

Proof. The proof is obvious except for the second inequality of Case (iii), which
follows from the inequalities secψ ≥ 1 and |pq| ≥| h(p) − h(q)|. #$



Like other Steiner point approaches, our graph of Steiner points has a directed
link (of appropriate cost) between two Steiner points a and b in a common face
f such that the link represents an SGDP from a to b. However, unlike other well-
studied shortest paths in terrains (e.g., SDPs and shortest paths in the weighted
region problem) where the shortest path represented by the link lies completely
in f , the SGDP in our case may go through many other faces. For example, the
critical path in Figure 1(a) is an SGDP by Lemma 2, and it goes through four
faces even though both s and t lie on a common face. It is not straightforward
to determine if such an SGDP exists at all—we need this information during the
construction of the graph. Moreover, in case an SGDP exists, we want to know
the number of faces used by the path because our algorithm has to return the
path in the terrain that corresponds to the shortest path in the graph. Lemma 3
below handles these issues:

Lemma 3. Let a and b be two points in a face f with h(a) ≥ h(b).

(i) If any of a and b is a sharp vertex, no gently descending path exists from
a to b.

(ii) If neither a nor b is a locally sharp vertex in f , there exists an SGDP from
a to b lying completely in f . Moreover, the SGDP is a critical path if ab is
steep.

(iii) Otherwise, there exists an SGDP from a to b that uses at most d+1 faces,
and is a critical path.

Proof. (i) If a [or b] is a sharp vertex, the segment ap [respectively pb] is steep
for any point p in any face incident to a [respectively b]. So, no gently
descending path exists from a to b.

(ii) If ab is not a steep segment, this is the SGDP. If ab is a steep segment,
observe that there is a point a′ ∈ f such that aa′ is a critical path, and a′b
is a steep segment. Moreover, h(a′) < h(a), and therefore, ‖a′b‖ < ‖ab‖ by
definition. Thus by going from a to a′, we move closer (in terms of gently
descending distances) to b along a critical direction from a. We can use
the same argument for a critical direction from a′ since a′b is steep. By
repeating this argument, we get a critical path from a to b, which is an
SGDP by Lemma 2.

(iii) In this case, at least one of a and b is a locally sharp vertex in f , and
therefore, ab is a steep line segment. If a is not a locally sharp vertex in f ,
let a′ = a. Otherwise, let a′ be an interior point of line segment ab such
that no vertex of the terrain lies strictly in between the planes z = h(a) and
z = h(a′). We similarly define a point b′, and make sure that h(a′) > h(b′).
Clearly h(a) > h(a′) > h(b′) > h(b), and a′b′ is a steep line segment. By
Case (ii) of the lemma there exists a critical path from a′ to b′ in f . We
claim that there exists a critical path from a to a′ through at most (d

2)+1
faces when a *= a′, and that there exists a critical path from b′ to b through
at most (d

2)+1 faces when b *= b′. Because face f is used by all these three
subpaths, the whole path uses at most d + 1 faces. The proof then follows
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Fig. 2. (a) A critical path from a vertex a that is locally sharp in f = f0, but not in
fk. (b) An SGDP between two locally sharp vertices a and b in f that goes through
Θ(d) other faces.

from Lemma 2. We will now prove the first claim. The proof for the second
claim is similar, and hence omitted.
Since a is not a sharp vertex, it must have some incident face in which it
is not locally sharp. Let (f = f0, f1, f2, . . . , fk) be (one of) the shortest
sequence of faces around vertex a such that a is not a locally sharp vertex
in fk (Figure 2(a)). Clearly, k ≤ (d

2)+ 1. We will build as follows a critical
path backwards from a′. Let a′

0 = a′. For each i ∈ [0, k − 1] in this order,
since a is a locally sharp vertex in fi, there is a point a′

i+1 ∈ fi ∩ fi+1

such that a′
i+1a

′
i is a critical direction in fi. The final point ak lies on the

edge between fk and fk−1 which is a steep edge. Because a is not a locally
sharp vertex in fk, we can ensure by making a′ sufficiently close to a that
there exists an interior point a′

k+1 ∈ fk such that both aa′
k+1 and a′

k+1a
′
k

are critical directions. (If a′ is not sufficiently close to a, there still exists
a critical path from a to a′

k but the path may have more than one bends.)
Clearly the path (a, a′

k+1, a
′
k, . . . , a′

0 = a′) is a critical path through at most

(d
2) + 1 faces. #$

It is easy to construct a terrain in which the number of faces in Case (iii) of
the above lemma is exactly d, see Figure 2(b) for an example. In fact, we can
prove that such a path through d+1 faces is impossible. We omit the proof here.

Another property of an SGDP we would like to utilize is that an SGDP visits
a face at most once, because our method of approximating a path introduces
some error each time the path crosses an edge. But unlike SDPs and shortest
paths in the weighted region problem, this property does not hold for an SGDP.
For example, the two SGDPs in Figure 1 visit a face twice. We can even make
the SGDP in Figure 1(b) visit a face infinitely many times, e.g., by making angle
ψ arbitrarily close to π

2 so that the path spirals around the pyramid. We call an
SGDP ideal if it crosses the interior of each face at most once. The good news



is that we can “convert” any non-ideal SGDP into an ideal one—we will prove
this claim in the following lemma:

Lemma 4. If there is a gently descending path from s to t, there exists an ideal
SGDP from s to t.

Proof. Let P be an SGDP from s to t. Such a path exists because one gently
descending path from s to t must be the shortest one. It suffices to show that if P
visits the interior of a face f more than once, we can replace the portion between
the first and the last visit by a shortcut that is gently descending, remains in
face f , and has length no greater than the original. Let Pa [Pb] be the first
[respectively last] path in P ∩ f that crosses the interior of face f . Let a [b] be
the first [respectively last] point of Pa [respectively Pb]. Note that a and b are
not locally sharp vertices in f . If segment ab is not steep, then it provides the
shortcut. If segment ab is steep, then by Lemma 3(ii) there is an SGDP from a
to b lying inside f . #$

5 Approximation using Uniform Steiner Points

5.1 Algorithm

In our first approximation algorithm, we preprocess the terrain by adding uni-
formly spaced Steiner points as follows. We take a set of level planes such that
the distance between any two consecutive planes is at most δ = εh

4n
cos θ cosψ.

We make sure that there is a level plane through every vertex. We then put
Steiner points at all the intersection points of these planes with the non-level
edges of the terrain. On the level edges, we add enough Steiner points so that
consecutive points are at most δ sec θ units apart. We then construct a weighted
directed graph G(V,E) in which each node in V represents either a Steiner point
or a vertex, and there is a directed link pq ∈ E if and only if all of the following
are true:

(i) p and q lie in a common face,
(ii) h(p) ≥ h(q), and
(iii) neither p nor q is a sharp vertex.

By Lemma 3, there is an SGDP from p to q. The weight of link pq is the length
of such an SGDP, i.e., ‖pq‖. In the final step of our preprocessing we make a
shortest path tree T rooted at s using the Bushwhack algorithm. The Bushwack
algorithm works for any distance metric that satisfies the following property:
if e and e′ are two edges of one face, and a and b are two points on edge e,
then edge e′ can be divided into two sub-intervals A and B, where points in A
have a shorter path from a than from b and points in B have a shorter path
from b than from a. This property holds for our distance metric, even though
an SGDP connecting two points in face f may leave f . The proof follows from
Sun and Reif [17], Lemmas 3 and 4, where they prove that the property holds
for anisotropic paths.



Note that we are mentioning set E only to make the discussion easy. In
practice, we do not construct E explicitly because the neighbors of a node x ∈ V
in the graph is determined during the execution of the Bushwhack algorithm.

To answer a query, we simply return the path from s to query point v in T if
v ∈ V and v is not a sharp vertex. If v is a sharp vertex, we return nothing since
there is no SGDP from s to v. Otherwise, v *∈ V . In this case, we find the node
u among those in V lying in the face(s) containing v such that h(u) ≥ h(v), and
the sum of ‖uv‖ and the length of the path from s to u in T is minimum. Finally
we return the corresponding path from s to v as an approximate SGDP.

a

f

b

Fig. 3. Two of the infinitely many SGDPs from a to b in f .

There is an important issue regarding the path returned by our algorithm. It
is a path in the graph augmented by vertex v. To obtain an actual path on the
terrain we must replace each link ab in the path by an SGDP of the same length,
which is possible by the definition of the links of the graph. Such an SGDP is not
unique if ab is steep, (Figure 3) but it is easy to compute one such path. In the
case where neither a nor b is locally sharp in their common face f , we can even
compute an SGDP with a minimum number of bends. Note, however, that the
problem of minimizing the total number of bends in an SGDP is NP-hard [5].

5.2 Correctness and Analysis

For the proof of correctness, we show that an ideal SGDP P from s to any point
v in the terrain is approximated by a path P ′ such that all the segments of P ′,
except possibly the last one, exist in G. For ease of discussion, we will say that
a path Q in G represents a gently descending path in the terrain if for each
directed link ab of Q there exists a gently descending path in the terrain from a
to b.

Let σP = (s = p0, p1, p2, . . . , pk, v = pk+1) be an ordered subsequence of the
nodes in P such that (a) for each i ∈ [0, k], the segments in-between pi and pi+1

lie in a common face fi, and (b) for each i ∈ [0, k − 1], the segment exiting from
pi+1 does not lie in fi. Note that pi and pi+1 are two different boundary points
of face fi for all i ∈ [0, k − 1], and pk and pk+1 are two different points of face
fk (pk+1 can be an interior point of fk). For all i ∈ [0, k], the part of P between
pi and pi+1 remains in fi. Let ei be an edge of the terrain through pi for all
i ∈ [1, k] (ei can be any edge through pi if pi is a vertex).



We construct a graph path P ′ with node sequence (s = p′0, p
′
1, p

′
2, . . . , p

′
k, v =

p′k+1) as follows: for each i ∈ [1, k], let p′i = pi if pi is a vertex of the terrain;
otherwise, let p′i be the nearest point from pi in V ∩ ei such that h(p′i) ≥ h(pi).

Lemma 5. For all i ∈ [0, k], h(p′i) ≥ h(p′i+1).

Proof. We first claim that h(p′i) ≥ h(pi+1). This claim follows from the facts that
h(p′i) ≥ h(pi) by the definition of p′i, and h(pi) ≥ h(pi+1) as P is descending.
Now consider the following two cases:

Case 1: p′i+1 = pi+1 or ei+1 is a level edge. In this case, h(p′i+1) = h(pi+1). It
follows from the inequality h(p′i) ≥ h(pi+1) that h(p′i) ≥ h(p′i+1).

Case 2: p′i+1 *= pi+1 and ei+1 is a non-level edge. In this case, there is either one
or no point in ei+1 at any particular height. Let p′′i+1 be the point in ei+1 such
that h(p′′i+1) = h(p′i), or if no such point exists, let p′′i+1 be the upper vertex
of ei+1. In the latter case, we can infer from the inequality h(p′i) ≥ h(pi+1)
that h(p′i) > h(p′′i+1). Therefore we have h(p′i) ≥ h(p′′i+1) in both cases. Since
p′′i+1 ∈ V ∩ ei+1, the definition of p′i+1 implies that h(p′′i+1) ≥ h(p′i+1). So,
h(p′i) ≥ h(p′i+1).

Therefore, h(p′i) ≥ h(p′i+1) for all i ∈ [0, k]. #$

Lemma 6. For all i ∈ [0, k + 1], p′i is not a sharp vertex.

Proof. None of p′0 = s and p′k+1 = v are sharp vertices because both the segments
sp1 and pkv are gently descending. For each i ∈ [1, k], if p′i is a sharp vertex,
then p′i is either the unique topmost vertex or the unique bottommost vertex in
all incident faces. Therefore, either

h(p′i−1) < h(p′i) > h(p′i+1) ,

or
h(p′i−1) > h(p′i) < h(p′i+1) .

Both of these are impossible by Lemma 5. So p′i is a not sharp vertex. #$

Lemma 7. The part of P ′ from s to p′k exists in G. Path P ′ represents a gently
descending path.

Proof. To show that the part of P ′ from s to p′k exists in G, it is sufficient to
prove that p′ip

′
i+1 ∈ E for all i ∈ [0, k − 1], because both p′i and p′i+1 are in V

by definition. Since p′i and p′i+1 are boundary points of face fi by definition, and
h(p′i) ≥ h(p′i+1) by Lemma 5, p′ip

′
i+1 *∈ E only in the case that any of p′i and p′i+1

is a sharp vertex. By Lemma 6 this is impossible. So, p′ip
′
i+1 ∈ E. This proves

the first part of the lemma.
For all i ∈ [0, k], h(p′i) ≥ h(p′i+1) (Lemma 5), and neither p′i nor p′i+1 is a

sharp vertex (Lemma 6). Therefore, by Lemma 3, there exists a gently descending
path (more precisely, an SGDP) from p′i to p′i+1. Clearly P ′ represents the gently
descending path formed by concatenating all these “smaller” paths. #$



Lemma 8. Path P ′ represents a (1 + ε)-SGDP.

Proof. We first show that
∑k

i=1 ‖pip
′
i‖ < εh

2 . If pi *= p′i, and ei is a non-level

edge, we have: |h(pi) − h(p′i)| ≤ δ by construction, and |h(pi)−h(p′

i
)|

|pip
′

i
| ≥ cos θ,

which implies that |pip
′
i| ≤ δ sec θ. If pi = p′i, or ei is a level edge, |pip

′
i| ≤ δ sec θ

in a trivial manner. Therefore,
∑k

i=1 |pip
′
i| ≤ kδ sec θ. Since P is an ideal SGDP,

k < 2n (the number of faces), and hence,
∑k

i=1 |pip
′
i| < 2nδ sec θ = εh cos ψ

2 .

Observation 1(iii) implies
∑k

i=1 ‖pip
′
i‖ ≤

∑k
i=1 (|pip

′
i| secψ) < εh cos ψ sec ψ

2 = εh
2 .

The length of P ′ is equal to:

k
∑

i=0

‖p′ip
′
i+1‖ ≤

k
∑

i=0

(

‖p′ipi‖ + ‖pipi+1‖ + ‖pi+1p
′
i+1‖

)

(Observation 1(ii))

=
k

∑

i=0

‖pipi+1‖ + 2
k

∑

i=1

‖pip
′
i‖ (Observation 1(i))

<

k
∑

i=0

‖pipi+1‖ + εh .

Assuming that P crosses at least one edge of the terrain (otherwise, both P ′

and P will have length ‖sv‖), h ≤
∑k

i=0 |pipi+1| ≤
∑k

i=0 ‖pipi+1‖ (Observa-

tion 1(iii)), and therefore,
∑k

i=0 ‖p
′
ip

′
i+1‖ < (1 + ε)

∑k
i=0 ‖pipi+1‖. The proof

then follows from Lemma 7. #$

Lemma 9. Let X = L
h

sec θ secψ. Graph G has O
(

n2X
ε

)

nodes in total, and

O
(

nX
ε

)

nodes along any edge of the terrain.

Proof. (Idea) The proof is the same as that of Lemma 7 in Ahmed et al. [1],
except that we use δ and X defined here. #$

Theorem 1. Let X = L
h

sec θ secψ. Given a vertex s, we can preprocess the

terrain in O
(

n2X
ε

log
(

nX
ε

)

)

time after which we can determine a (1 + ε)-

approximate SGDP from s to any query point v in: (i) O(nd) time if v is a
vertex or a Steiner point, and (ii) O

(

n
(

d + X
ε

))

time otherwise.

Proof. We first show that the path P ′′ returned by our algorithm represents a
(1+ε)-approximation of P . Path P ′′ represents a gently descending path because
any path in G is represents a gently descending path in the terrain, and also the
last segment of P ′′ represents a gently descending path. It follows from the
construction of P ′′ that the length of P ′′ is at most that of P ′, and hence by
Lemma 8, P ′′ is a (1 + ε)-approximation of P .

The preprocessing time of our algorithm is the same as the running time

of the Bushwhack algorithm, which is O(|V | log |V |) = O
(

n2X
ε

log
(

nX
ε

)

)

by

Lemma 9.



During the query phase, if v is a vertex or a Steiner point, the approximate
path is in the tree T . Because the tree has height O(n), it takes O(n) time to
trace the path in the tree. Tracing the corresponding path in the terrain takes
O(nd) time by Lemma 3. The total query time is thus O(nd) in this case. If v is
neither a vertex nor a Steiner point, v is an interior point of a face or an edge
of the terrain. The last intermediate node u on the path to v is a vertex or a
Steiner point that lies on the boundary of a face containing v. If v is interior to a
face [an edge], there are 3 [respectively 4] edges of the terrain on which u can lie.
Thus there are O

(

nX
ε

)

choices for u by Lemma 9, and we try all of them to find
the shortest approximate distance from s to v. Finally tracing the corresponding
path in the terrain takes O(nd) time by Lemma 3. The total query time in this
case is O

(

nX
ε

)

+ O(nd) = O
(

n
(

d + X
ε

))

. #$

Corollary 1. If the answer to a query is the length of an SGDP (rather than
the SGDP itself), the query times for Cases (i) and (ii) of Theorem 1 become
O(1) and O

(

nX
ε

)

respectively.

6 Approximation using Non-uniform Steiner Points

Our second approximation algorithm differs from the first one only in the way
Steiner points are placed. We now place Steiner points in two phases. First, on
every edge e = v1v2 we place Steiner points at points p ∈ e such that |pq| =
δ1(1 + δ2)i for q ∈ {v1, v2} and i ∈ {0, 1, 2, . . .}, where δ1 = εh

6n
cosψ and

δ2 = εh
6L

cosψ. In the second phase we slice the terrain with a level plane through
every Phase 1 Steiner point and every vertex, and add Steiner points at the points
where these planes intersect the terrain.

Theorem 2. Let X ′ = L
h

secψ. Given a vertex s, we can preprocess the terrain

in O
(

n2X′

ε
log2(nX′

ε
)
)

time after which we can determine a (1+ ε)-approximate

SGDP from s to any point v in: (i) O(nd) time if v is a vertex or a Steiner

point, and (ii) O
(

nd + nX′

ε
log(nX′

ε
)
)

time otherwise.

Proof. (Idea) The proof is similar to that of Theorem 1, but we use slightly
different versions of Lemmas 8 and 9, as is done in the proof of Theorem 2 in
Ahmed et al. [1]. #$

Corollary 2. If the answer to a query is the length of an SGDP, the query

times for Cases (i) and (ii) of Theorem 2 become O(1) and O
(

nX′

ε
log(nX′

ε
)
)

respectively.
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