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When can a net fold to a polyhedron?✩

Therese Biedl∗, Anna Lubiw, Julie Sun

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Available online 25 January 2005

Communicated by J. Snoeyink

Abstract

In this paper, we study the problem of whether a polyhedron can be obtained from a net by folding al
creases. We show that this problem can be solved in polynomial time if the dihedral angle at each crease
and it becomes NP-hard if these angles are unknown. We also study the case when the net has rigid
should not intersect during the folding process.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Folding a polyhedron from a paper pattern has been studied at least since the 15th centur
Albrecht Dürer showed how to fold all regular solids and Archimedian solids [13]. In this pape
study the case where we are given anet, i.e., a polygon and a set of creases, and want to know whet
polyhedron can be obtained by folding along the creases.

We consider two cases, depending on whether we are given the dihedral angle at each crease
dihedral angles are given, then we show in Section 3 that the problem can be solved in polynom
by the simple expedient of performing the folding. If the dihedral angles are not given, then we p
Section 4 that the problem is NP-hard. We note that an early version of this paper [8] had an in
NP-hardness reduction. We then turn to the actual folding process, and give in Section 5 an exa
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a net with rigid faces that can, in the sense above, be folded to form a polyhedron, but only by a
faces to intersect each other during the folding process.

In the existing literature, a few related problems have been studied. Shephard [20] wrote an ear
on convex nets. Lubiw and O’Rourke showed how to test in O(n2) time whether ann-vertex polygon with
no creases specified can be folded into a convex polyhedron [18]. Another problem is the reverse
Given a polyhedron, can one obtain a net? This can be done for all convex polyhedra [3], as
for some classes of orthogonal polyhedra [6]. A fundamental open problem in this area is whe
any convex polyhedron there exists a net such that the edges of the net are also edges of th
polyhedron, a so-called unfolding with edge cuts only. See [14] for some negative results on non-
polyhedra, and [4] for some positive results for a weaker notion of nets.

Related to our problem of folding a rigid net is the problem of straightening rigid linkages in
which has been studied in [7]. In fact, our proof that some rigid net cannot be folded without inters
faces is based on the fact that there exists a linkage in 3D that cannot be straightened withou
links intersect [7,9].

2. Definitions

A (polygonal) chainis a sequence of line segments[ai, bi], i = 0, . . . , n−1, that are mutually disjoint
except thatbi = ai+1 for i = 0, . . . , n−2, and possiblebn−1 = a0. If bn−1 = a0, the chain is calledclosed,
otherwise it is calledopen. The segments are callededgesand the endpoints of the edges are ca
vertices. A finite region in the plane bounded by a closed chain is called apolygon. A chordof a polygon
is a line segment inside the polygon where both endpoints are vertices of the polygon. Anet is a polygon
together with a set of chords of the polygon that do not intersect each other except possibly at en
These chords are called thecreasesof the net.

A net can also be viewed as a graph; in fact, it is an embeddedouter-planar graphsince no two edge
cross and all vertices are on the unbounded face (theouter face). It is known that ann-vertex outer-
planar graph has at most 2n − 3 edges. The faces that are not the outer face are calledinterior faces. For
an outer-planar graph, the incidences between interior faces form a tree.

In a net, for each crease we may or may not specify thedihedral angle, i.e., the angle that the tw
faces incident to the crease will form inside the finished polyhedron. The dihedral angle cannot
2π , because faces are not allowed to overlap. We study two models; in one all folds must actu
folded (so the dihedral angle cannot beπ ), while in the other there is no such restriction. As it turns o
both models are equal with respect to the complexity of the folding problem.

To be able to test whether a net folds into a polyhedron, we must establish a clear definitio
polyhedron. See [11] for a history of such definitions. We use the following definition, based on C
[10]: A polyhedronis a finite connected set of plane polygons, calledfaces, such that (1) if two face
intersect, it is only at a common vertex or a common edge, (2) every edge of every face is a
of exactly one other face, and (3) the faces surrounding each vertex form a single circuit (to e
anomalies such as two pyramids with a common apex).

A face of a polyhedron that is parallel to thexy-plane is called anxy-face; xz-facesandyz-facesare
defined similarly. Anorthogonal polyhedronis a polyhedron each of whose faces is anxy-face,xz-face
or yz-face.
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3. Known dihedral angles

In this section, we show that if dihedral angles are given, we can determine in polynomial time w
folding the net yields a polyhedron. Our model of computation here is the real RAM; for the ca
dihedral angles that are multiples ofπ/2, basic arithmetic suffices. Our algorithm is straightforward
takes time O(n2), which is probably not optimal, but suffices to show that the case of unknown ortho
dihedral angles lies in NP (see Theorem 3).

First, we show how to find the coordinates of the vertices in 3D after the creases have been
Compute the tree of adjacencies between the interior faces of the net. Traverse this treeT in depth-first-
search order, starting at an arbitrary leaf in an arbitrary position. For each face, the positions of
of this face can then be computed using the positions of the vertices of the parent of this face inT , and
the dihedral angle that connects the two faces. This takes O(n) time, wheren is the number of vertice
of the net, because the number of edges and faces of the net is proportional to the number of ver

Now we must verify the three properties of polyhedra. We do so in four steps, not for efficienc
for clarity of presentation: (1) We reject the input if we can find two faces that intersect in a point
interior to one or both of the faces; (2) We add additional vertices along the edges of the faces,
any two collinear edges that intersect are equal; (3) For each edge of each face we find all equal
other faces, simultaneously building up theincidence graph, a data structure to store a polyhedron [1
(4) We use the incidence graph to test that the faces surrounding each vertex form a circuit.

For step 1 we consider each pair of faces of the net. The running time of our algorithm is then a
�(n2), so we will not worry about making other steps of the algorithm faster than this. LetF1, . . . ,Ff be
the interior faces of the net, and letmi be the number of edge ofFi . For anyi < j , if Fi andFj lie in the
same plane, we can test in O(mimj) time how they intersect by testing every pair of edges, and doi
final inclusion test. IfFi andFj lie in different planes, we compute the line of intersection of these pl
and compute the intersections of this line withFi andFj , forming two sets of disjoint intervals. We ca
certainly test in O(mimj ) time how these intervals intersect.

The total running time of this step is proportional to

∑
1�i<j�f

mimj � 1

2

(
f∑

i=1

mi

)(
f∑

i=1

mi

)
� 1

2
(2m)2,

wherem is the number of edges of the net. Since the net is an outer-planar graph,m � 2n − 3, so this
step takes O(n2) time.

The addition of extra vertices in the second step is necessitated by the polyhedron property th
edge of every face must be an edge (not just part of an edge) of another face. We need to be care
add too many vertices. To implement this step, we gather the edges of faces into collinear groups
each group, we sort the endpoints of edges. If there is a point internal to more than two edges
group, we can reject this input because it violates the second polyhedron property; and if each
internal to at most two edges then the number of vertices added is linear. The second step can
implemented in O(n2) time, and we end up with O(n) vertices and edges.

In the third step, we test every pair of edges to see whether they are identical. If we ever find a
that does not have exactly one identical mate, we reject this input. As we match up edges we b
incidence graph that records the incidences of vertices, edges and faces of the polyhedron. This
be performed in O(n2) time.
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Finally, in the fourth step we use the incidence graph to walk around the faces incident wit
vertex and verify that they form a circuit. This can be done in time proportional to the degree
vertex, and therefore in O(n) time overall.

Our total time therefore is O(n2). We believe that this time bound can be improved to O(n logn) by
using 3D sweep techniques, rather than the brute-force approach.

4. Unknown dihedral angles

In this section, we show that if dihedral angles are not specified, then the problem of whethe
folds to a polyhedron (from now on referred to as the 3D Folding Problem) becomes NP-hard. Fo
our reductions, we use the NP-complete problem PARTITION [17]: Can a setS of positive integers be
partitioned intoS = S1 ∪ S2, such that the sum of the elements inS1 equals the sum of the elements
S2? We calls such a partition abalanced partition. We begin with a 2D folding problem that is NP-har

4.1. 2D foldings

In 2D, the folding problem is the following: Given a sequence of straight line segments with
between the segments, determine if we can bend some or all of the joints such that we obtain a p
i.e. a closed chain. This problem is solvable in polynomial time, because the answer is positive if a
if no link is longer than all other links together [19]. We study here the2D orthogonal folding problem,
which is the same problem, except that all joints have to be bent at angles that are a multipleπ/2.
Surprisingly, this makes the problem NP-complete.

Given an orthogonal polygon directed clockwise, the horizontal edges fall into two classes
directed to the right and those directed to the left; furthermore, the sum of the lengths in each cla
same. This observation is the heart of our reduction of PARTITION to the 2D orthogonal folding problem

Let S = {x1, . . . , xn} be an instance of PARTITION. SetL = ∑n
i=1 xi + 1, and letS ′ = (L,x1,L, x2,L,

. . . ,L, xn,L,L, (n + 1)L,L) be an instance of the 2D folding problem, where the numbers deno
lengths of the links in order along the chain.1 The sequence formed by deleting the last 3 segments
be called thejagged sequence; these segments encode the partition problem. The segments of lenL

of the jagged sequence will be called theseparation links. The last three links will be called theC-links;
these serve to complete the polygon.

Assume the instanceS of PARTITION has a solutionS = S1∪S2. We construct a solution to the foldin
problemS ′ as follows: Working clockwise, the link of lengthxi points left ifxi ∈ S1 and right otherwise
all separation-links point down, and the remaining links form a “C”. See also Fig. 1. No two links
resulting closed chain intersect because from the right ends of the horizontal C-links, we can r
most

∑
xi∈S1

xi = 1
2

∑n
i=1 xi units to the left, soL > 1

2

∑n
i=1 xi is big enough to prevent any of the link

of the jagged sequence from reaching the link of length(n + 1)L. Observe that no angle isπ .
Conversely, assume thatS ′ can be folded into an orthogonal polygon allowing angles ofπ . Orient the

polygon clockwise and defineH+/H− to be the set of links pointing right/left, andV +/V − to be the
set of links point up/down. Denote by|H+| the sum of the lengths of the links belonging toH+, and

1 A smaller value ofL would suffice for the 2D case, but this value ofL is needed for the 3D case.
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Fig. 1. ConstructingS′ from the instance{1,2,1} of PARTITION.

similarly for the other sets. Since we have a closed chain, therefore|H+| = |H−| and|V +| = |V −|, and
|S ′| = |H+| + |H−| + |V +| + |V −| = 2|H+| + 2|V +|. Also,

|S ′| = (n + 1)L +
n∑

i=1

xi + L + (n + 1)L + L = (2n + 5)L − 1 (1)

by the definition ofL.

Claim. No two C-links belong to the same set ofH+, H−, V +, V −.

Proof. Assume two C-links belong to, say,H+. The third C-link does not belong toH+, because oth
erwise|S ′| � 2|H+| = 2((n + 3)L) = (2n + 6)L, which contradicts Eq. (1). The third C-link also do
not belong toH− by simplicity because it is incident to another C-link. Thus, the third C-link belo
to V + or V −, say toV +. Then |S ′| = 2|H+| + 2|V +| � 2((n + 3)L) = (2n + 6)L, which contradicts
Eq. (1). �

Thus, after possible rotation, assume that the three C-links belong toH−, V +, H+ in this order. Thus
they form the desired “C”.

Claim. Every separation link belongs toV −.

Proof. Assume that one separation link belongs to, say,H+ (the other cases are similar). Then|S ′| =
2|H+| + 2|V +| � 2(L + L) + 2(n + 1)L = (2n + 6)L, which contradicts Eq. (1). Thus the separat
links belong toV − ∪ V +. Now |V +| � (n + 1)L, and|V −| is equal to|V +| and can only achieve thi
size ifV − contains all the separation links.�
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Finally, by simplicity, no link of lengthxi can be inV +, and thusV + consists only of the longC link,
andV − must consist only of the separation links. ThusH− ∪ H+ consists exactly of the links of lengt
xi , i = 1, . . . , n, and the two C-links of lengthL, one in each set. Since|H−| = |H+|, we get the desire
balanced partition.

Theorem 1. The2D orthogonal folding problem is NP-complete, whether angles ofπ are allowed or
not.

Proof. It is easy to verify that a given assignment of angles ofπ , π/2 or −π/2 forms a polygon, so
the problem is in NP. To show that it is NP-hard, assume that an instanceS of PARTITION is given and
construct the instanceS ′ of the 2D orthogonal folding problem as described above. We have show
if S has a solution, thenS ′ folds to a polygon where no angle isπ . Conversely, we have shown that
S ′ folds to a polygon, then we can recover a solution toS from the polygon. Hence, PARTITION reduces
to 2D orthogonal folding (in both models, i.e., regardless of whether angles ofπ are allowed), and thes
problems are both NP-hard.�
4.2. 3D foldings

Now we show that in 3D, both the folding problem and the orthogonal folding problem (where dih
angles are multiples ofπ/2) are NP-hard. The reduction is again from PARTITION, and uses the 2D
construction. In our reduction, we construct the net of an orthogonal polyhedron. In order to g
hardness of the non-orthogonal 3D folding problem, we show that a balanced partition can be re
from any polyhedron formed by folding this net. We note that the construction in an earlier vers
this paper [8] was flawed.

Let S = {x1, . . . , xn} be an instance of PARTITION. We describe the construction of an instance of
3D folding problem in successively more correct refinements. We illustrate these using the PARTITION

instanceS = {1,2,1}.
The first step is to extrude the polygon formed in Section 4.1 in thez-direction byK units, whereK

will be specified later. The sequence of links becomes in the net a sequence of rectangles all of hK ;
see the right hand picture in Fig. 2.

However, the problem then arises of how to cover the front face, see the left hand picture in
Note that the right boundary of the front face abuts the (extruded) jagged sequence, and thus the
this face depends upon the partition ofS into S1 andS2. Even cutting the front face into strips attach
to the separation faces as shown in Fig. 2 does not resolve the problem, because the lengths of
still depend on the partition.

Our next step is to make the strips that form the front face equally long, which can be ac
by replicating the jagged sequence. We set the width of the faces marked top and bottom to bL′ =
(n+1)L+2. The resulting polyhedron looks like a staggered pile of bricks. Its net is independent
particular partition ofS. We also setK = 2L′ + 1. See Fig. 3 (not drawn to scale).

Unfortunately, this construction is too general: for any input the resulting net folds into a polyhe
The proof from the two-dimensional case does not transfer because we cannot force the top
bottom face to bealigned, i.e., to have the samexz-projection. See Fig. 4.

To force an alignment of the top and the bottom face, we add an extruded rectangle withx-dimension
1 andy-dimension 1 down the middle of the top face. We call this extruded rectangle themiddle notch.
2
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Fig. 2. The construction in 2D extruded and its net. The edges of the polyhedron that result from glueing are dashed. T
side of the net is the inside of the polyhedron. For clarity, in this and the following pictures, the proportions of the con
polyhedron and its net are not accurate.

Fig. 3. Replicate the jagged sequence to form a pile of bricks.

Fig. 4. Unfortunately, now top and bottom face need not align.

We also add aframe, attached to the bottom face via another middle notch that will force the two m
notches to be aligned. The frame lies in a rectangle of heightL′ = (n+ 1)L+ 2, and width 2T + 2 where
T = (n + 1)(2L′ + L) + 3; the gap in the top of the frame has width 1, the notch has width1

2 and height
1, and the frame has thickness1

2. See Fig. 5 (which is not drawn to scale). We call the resulting netS ′′.
Following the steps of our construction, we obtain:
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Fig. 5. Introducing middle notches and a frame.

Lemma 1. If S has a solution, thenS ′′ folds into a polyhedron. Specifically,S ′′ folds into an orthogona
polyhedron without dihedral angles ofπ .

Now we want to show the converse.

Lemma 2. If S ′′ folds into a polyhedron, thenS has a balanced partitionS = S1 ∪ S2.

Proof. AssumeS ′′ folds into a polyhedronP ; we do not assume thatP is orthogonal.
Let the rectangle labelled “bottom of frame” in Fig. 5 beB, and define thespineto be the rectangle

in the horizontal row includingB. OrientP so thatB lies in thexz-plane with its top and bottom edge
parallel to thex-axis atz = 0 andz = K respectively. Regardless of the dihedral angles chosen fo
creases of the spine (the ones that are vertical in Fig. 5), those edges will all be parallel to thez axis inP .
We claim that the exposed left and right edges of the spine in Fig. 5 must glue together. This is b
none of the other faces can reachz-coordinateK/2: the back faces, which consist ofn + 1 strips, the
back of the frame, and the back of the middle notch, all have an edge atz = 0, and have height at mo
L′ which is less thanK/2. The same argument applies to the front faces.

The spine therefore forms a “tube” or cycle of faces inP . We now explore how the back and fro
faces fill in the open back and front ends of this tube, respectively. We concentrate on the back.

The back of the spine has 6 edges of lengthT or more. These edges cannot glue to each other. The
exposed perimeter of the back rectangles (i.e., excluding the frame) is(n+1)(2L′ +L)+21

2. This counts
the lengths of the 3 exposed edges of each of then + 1 strips, and the 3 exposed edges of the mid
notch. Because this total perimeter is less thanT , thus all the exposed edges of the back rectangle
not sufficient to cover even one of the 6 long edges of the back of the spine. These long edg
therefore be glued to the corresponding long edges of the back of the frame. Thus the frame rea
glue together as shown in Fig. 5.
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We now claim that all the back strips lie in the planez = 0. Any back strip has one short edge attac
to the spine and lying in the planez = 0 and thus the other short edge must also be parallel to thxy

plane. Suppose the long edges of a back strip lie in directiond . If d is not parallel to thexy plane, then the
long edges cannot glue to short edges of back strips, but only to other long edges of back strips.
every back strip has a short edge in thez = 0 plane, this is only possible ifd is parallel to thez axis. But
then the short edge at the end of the strip can only glue to another short edge whose strip must
coincident with the first one, contradiction. Thus all back strips lie in the planez = 0. Because the bac
of the frame is oriented with edges parallel to thex andy axes, thus all back rectangles are simila
oriented. This implies that the rectangles of the spine must also be oriented orthogonally.

The back rectangles must then lie inside the frame (the only exit has width1
2) and, since they are to

tall to lie vertically (the inner height of the frame is less thanL′), they must lie horizontally as in Figs.
or 3. Finally, the presence of the middle notch forces alignment, and thereforeP provides a solution to
the partition problem, as argued for the 2D case.�

The two lemmas together imply the main theorem.

Theorem 2. The3D folding problem is NP-hard, whether angles ofπ are allowed or not.

We do not know whether this problem is NP-complete. Note that Section 3 relies on a real
for arbitrary dihedral angles, thus it does not imply a polynomial time verification step. Howeve
orthogonal version of the problem is NP-complete, because verification with basic arithmetic
possible.

Theorem 3. The 3D orthogonal folding problem is NP-complete, whether angles ofπ are allowed or
not.

5. Rigid nets

In this section, we show that if the net is made from stiff material, i.e., its faces are rigid, the
cannot always execute the folding process—from net to polyhedron—while keeping faces disjoin

Theorem 4. There exists a net and a polyhedron it can be folded to with the property that the fo
cannot be performed while keeping faces rigid and their interiors disjoint.

Proof. Consider the net shown on the left side in Fig. 6, which can be folded to the orthogonal p
dron shown in Fig. 7. The ends of this “extruded chain” are supposed to be very long.

Imagine placing a chain on the faces that are shaded, as in the right picture of Fig. 6. Now, if w
fold this net of rigid faces without self-intersections, then we could also fold the chain without
intersections into the position that it takes on the polyhedron (see the right picture of Fig. 7). C
3-dimensional chainK . It follows thatK can bestraightened, i.e., transformed without self-intersectio
into a straight chain: we first reverse the folding of the net to unfoldK to the planar chain in Fig. 6, an
then straighten it link by link. However, this leads to a contradiction because, using a proof very sim
the one in [7], we can show that if the end-links ofK are sufficiently long, then it cannot be straighten
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Fig. 6. The rigid net shown on the left cannot be folded without intersections.

Fig. 7. The polyhedron for the rigid net, and the chain embedded on it.

even allowing arbitrary rotations of links, rather than just the one degree of freedom rotations p
for the chain on the net.�

6. Conclusions

In this paper, we studied the problem of determining whether a net folds into a polyhedron. We s
that if the dihedral angle at each crease is given, the question can be answered in polynomial tim
ever, if the dihedral angles are not given, the problem becomes NP-hard, and NP-complete for ort
polyhedra. Finally, we gave an example of a net (with dihedral angles given) that folds into a polyh
but where the folding cannot be performed if the net is made of stiff material (i.e., no extra crea
allowed) and faces may not intersect.

The fact that our NP-hardness result is based on an argument that a certain orthogonal poly
fold only to an orthogonal polyhedron prompted us, in an earlier version of this paper [8], to po
following question: Can a net where all faces are orthogonal ever fold to a non-orthogonal polyh
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More generally, is it true that if all faces of a polyhedron are orthogonal, then (after a suitable rot
all faces of the polyhedron are perpendicular to a coordinate axis? We conjectured that the answ
This has since been proved for polyhedra of genus� 2, and disproved for genus� 6. See [12] and [5].

We are also interested in other types of folding problems. For example, frequently with a net one
given whether each crease is for amountain foldor avalley fold, i.e., for a fold that bends away/towar
the viewer. If this additional information is given, does the problem remain NP-hard? See [2] for r
work on map folding.

Concerning rigid nets, we only gave one example. We do not know the complexity of the pro
given a net with rigid faces and dihedral angles for the creases, can the net be folded while keepi
disjoint. It has recently been proved that the analogous problem for linkages in 3D is PSPACE-ha

We mention one other problem concerning rigidity: can any feasible folding process for a
accomplished with rigid non-intersecting faces if a finite number of extra creases (of dihedral anπ )
may be introduced? See [15] for related results.
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