Johnston's algorithm

To find p(v) s.f. wp(u,v) = 0 V(u,v) EE

add new vertex s

define w(s, v) = 0 + v

Use Bellmon-Ford to find d(s,v) y v O(m·n)

OR find neg weight cycle and STOP.

Define p(v) = d(s,v)

Claim wp (a,v) ≥0

u bok at edge (n,v)

 $d(s,u) + \omega(u,v) \geq d(s,v)$

 $w_p(u,v) = w(u,v) + p(u) - p(v) \ge 0$

CS 860 Fall 2014	Lecture 5	Anna Lubiw, U. Waterloo
all pairs shortest path algorithms		
min-plus matrix multiplication		
Speed up — use r W W 2	repeated squaring 1 W4, , , W	
	overshoot but	
	overshoot but ok since wan!	$=$ $w^n = w^{n+1} \cdots$
	if no neg. weig	nt cycle
$O(n^3 \log n)$		
note: neg. weight a	yde offears as no	29. no. on main diagonal
Can we use ideas	like Strassen fo	eg. no. on main diagonal ast matrix mult.?
no - they co but see Ahe Ho	rucially use subtrapproff Ullman fo	rction. r O(n3)

0 Fall 2014	Lecture 5	Anna Lubiw, U. Waterloo
rd RAM		
Sorting and searching on the v	word PAM	
T Hagerup - STACS 98, 1998 - Springer	m-access machine with a word length of w bits, for	
some w, and with an instruction repertoire. The simple lower bounds for the problems	similar to that found in present-day computers. of sorting and searching valid in the	
Cited by 128Related articles All 6 versions		
From: http://scholar.google.ca/scholar?hl=en&q=Sortir	g+and+searching+on+the+word+RAM&btnG=&as sdt=1%2C5&as sdtp=	

CS 860 Fall 2014	Lecture 5	Anna Lubiw, U. Waterloo
papers to present		
more papers on single source	version	
networks with n vertices, m edges, and edg	gramming, 2000 - Springer e-source shortest-paths problems in undirected be weights drawn from 0,, 2 w-1 can be solved in dom-access machine with a word length of w	
From: http://scholar.google.ca/scholar?hl=en&q=Improve	ed+Shortest+Paths+on+the+Word+RAM&btnG=&as_sdt=1%2C5&as_sdtp=	
uniformly distributed, the algorithm runs in algorithm is O (m+ n log C), where n and r Cited by 95Related articlesAll 21 versionsC	01 - Springer th algorithm. If the input lengths are positive and linear time. The worst-case running time of the m are the number of vertices and arcs of the	C5
JB Orlin, K Madduri, K Subramani of In this paper, we propose an efficient metho Single Source Shortest Path Problem (S	od for implementing Dijkstra's algorithm for the SSPP) in a graph whose edges have positive dge lengths . The SSSPP is one of the most	v distinct positive lengths
From: http://scholar.google.ca/scholar?hl=en&q=A+faste	er+algorithm+for+the+single+source+shortest+path+problem+with+few+distinct+	positive+lengths&btnG=&as_sdt=1%2C5&as_sdtp=

CS 860 F	all 2014	Lecture	5		Anna	Lubiw, U. Wat	erloo
all pa	irs shortest paths						
Absi path verti	ndomized Speedup of the Bell Bannister, D Eppstein - ANALCO, 2012 - tract We describe a variant of the Bellmas in graphs with negative edges but no nices and uses this randomized order to pid by 5Related articles All 8 versions Cites and the by 5Related articles All 8 versions Cites are the by 5Related articles All 8 versions Cites All 8 versions Cites All 8 versions Cites All 8 versions Cites	SIAM n–Ford algorithm for single-sou egative cycles that randomly per rocess the vertices within each p ave	mutes the pass of the	tnG=&as sdt=1%2C5&as	sdto=		
Timot	hy will present pairs shortest paths with real Chan - Algorithmica, 2008 - Springer by 23Related articlesAll 7 versionsCite	weights in O (n 3/log n			mini.	- revie	W
	: http://scholar.google.ca/scholar?q=All-Pairs+Shorte		%2F+log+n%29+Tin	ne&btnG=&hl=en&as_sdt=	=0%2C5		
DR Cite	ding the hidden path: Time be Karger, D Koller, SJ Phillips - SIAM Journ d by 130Related articles All 17 versions C	al on Computing, 1993 - SIAM teSave			(M·N) m Som	lower ve cases	bound?
R Se Cite	on the all-pairs-shortest-pate idel - Journal of computer and system so by 168Related articles All 6 versions Cite http://scholar.google.ca/scholar?q=On+the+all-pairs	ciences, 1995 - Elsevier eSave			- nice!		

60 Fall 2014	Lecture 5	Anna Lubiw, U. Waterloo
Zwick's survey — source		
approximate distances, and correspon	cent results related to the computation of exact and ding shortest, or almost shortest, paths in graphs . We dels and try to identify some remaining open	- hot to present
From: http://scholar.google.ca/scholar?hl=en&q=Exa	ct+and+Approximate+Distances+in+Graphs+%E2%80%93+A+Survey&btn0	G=&as_sdt=1%2C5&as_sdtp=
that computing all distances in G with ar Boolean matrix multiplication. Building o	a graph on n vertices. A simple argument shows additive one-sided error of at most 1 is as hard as a recent work of Aingworth et al. SIAM J. Comput.,	- approximate
D Dor, S Halperin, <u>U Zwick</u> - SIAM Journ Let G=(V, E) be an unweighted undirecte that computing all distances in G with an Boolean matrix multiplication. Building o <u>Cited by 192Related articlesAll 18 version</u>	a graph on n vertices. A simple argument shows additive one-sided error of at most 1 is as hard as a recent work of Aingworth et al. SIAM J. Comput.,	- approximate
D Dor, S Halperin, <u>U Zwick</u> - SIAM Journ Let G=(V, E) be an unweighted undirecte that computing all distances in G with an Boolean matrix multiplication. Building o <u>Cited by 192Related articlesAll 18 version</u>	a additive one-sided error of at most 1 is as hard as n recent work of Aingworth et al. SIAM J. Comput.,	- approximate
D Dor, S Halperin, <u>U Zwick</u> - SIAM Journ Let G=(V, E) be an unweighted undirecte that computing all distances in G with an Boolean matrix multiplication. Building o <u>Cited by 192Related articlesAll 18 version</u>	a additive one-sided error of at most 1 is as hard as n recent work of Aingworth et al. SIAM J. Comput.,	- approximate
D Dor, S Halperin, <u>U Zwick</u> - SIAM Journ Let G=(V, E) be an unweighted undirecte that computing all distances in G with an Boolean matrix multiplication. Building o <u>Cited by 192Related articlesAll 18 version</u>	a additive one-sided error of at most 1 is as hard as n recent work of Aingworth et al. SIAM J. Comput.,	- approximate
D Dor, S Halperin, <u>U Zwick</u> - SIAM Journ Let G=(V, E) be an unweighted undirecte that computing all distances in G with an Boolean matrix multiplication. Building o <u>Cited by 192Related articlesAll 18 version</u>	a additive one-sided error of at most 1 is as hard as n recent work of Aingworth et al. SIAM J. Comput.,	- approximate
D Dor, S Halperin, <u>U Zwick</u> - SIAM Journ Let G=(V, E) be an unweighted undirecte that computing all distances in G with an Boolean matrix multiplication. Building o <u>Cited by 192Related articlesAll 18 version</u>	a additive one-sided error of at most 1 is as hard as n recent work of Aingworth et al. SIAM J. Comput.,	- approximate
D Dor, S Halperin, <u>U Zwick</u> - SIAM Journ Let G=(V, E) be an unweighted undirecte that computing all distances in G with an Boolean matrix multiplication. Building o <u>Cited by 192Related articlesAll 18 version</u>	a additive one-sided error of at most 1 is as hard as n recent work of Aingworth et al. SIAM J. Comput.,	- approximate
D Dor, S Halperin, <u>U Zwick</u> - SIAM Journ Let G=(V, E) be an unweighted undirecte that computing all distances in G with an Boolean matrix multiplication. Building o <u>Cited by 192Related articlesAll 18 version</u>	a additive one-sided error of at most 1 is as hard as n recent work of Aingworth et al. SIAM J. Comput.,	- approximate
D Dor, S Halperin, <u>U Zwick</u> - SIAM Journ Let G=(V, E) be an unweighted undirecte that computing all distances in G with an Boolean matrix multiplication. Building o <u>Cited by 192Related articlesAll 18 version</u>	a additive one-sided error of at most 1 is as hard as n recent work of Aingworth et al. SIAM J. Comput.,	- approximate

Center and diameter basic: Compute All Paws shortest paks Fast approximation algorithms for the diameter and radius of sparse graphs L Rovity, V Vassilevska Williams - Proceedings of the forty-fifth annual .1., 2013/ dl.acm.org Abstract The diameter and the radius of a graph are fundamental topological parameters that have many important practical applications in real world networks. The fastest combinatorial algorithm for both parameters works by solving the all-pairs shortest paths Cited by 15Related articlesAll 6 versionsCiteSave From: http://scholar.google.ca/scholar?hl=en&q=Fast+Approximation+Algorithms+for+the+Diameter+and+Radius+of+Sparse+Graphs&binG=&as_sct=1%2C5&as_sct=	
L Robitty, Vassilevska Williams - Proceedings of the forty-fifth annual, 2013 dl.acm.org Abstract The diameter and the radius of a graph are fundamental topological parameters that have many important practical applications in real world networks. The fastest combinatorial algorithm for both parameters works by solving the all-pairs shortest paths Cited by 15Related articlesAll 6 versionsCiteSave From: http://scholar.google.ca/scholar?hl=en&q=Fast+Approximation+Algorithms+for+the+Diameter+and+Radius+of+Sparse+Graphs&btnG=&as sdt=1%2C5&as sdtp= Diameter determination on restricted graph families DG Corneil, FF Dragan, M Habib, C Paul - Discrete Applied Mathematics, 2001 - Elsevier Determining the diameter of a graph is a fundamental graph operation, yet no efficient (ie	
Determining the diameter of a graph is a fundamental graph operation, yet no efficient (ie	
on chordal graphs and AT-free graphs and show that a very simple (linear time) 2-sweep <u>Cited by 22Related articlesAll 12 versions</u> CiteSave	
From: http://scholar.google.ca/scholar?hl=en&q=Diameter+determination+on+restricted+graph +families&btnG=&as_sdt=1%2C5&as_sdtp=	
Center and diameter problems in plane triangulations and quadrangulations V Chepoi, <u>F Dragan</u> , Y Vaxès of the thirteenth annual ACM-SIAM, 2002 - dl.acm.org Abstract In this note, we present first linear time algorithms for computing the center and the diameter of several classes of face regular plane graphs: triangulations with inner vertices of degree≥ 6, quadrangulations with inner vertices of degree≥ 4 and the subgraphs of the Cited by 24Related articlesAll 9 versionsCiteSave	try
From: http://scholar.google.ca/scholar?hl=en&q=Center+and+diameter+problems+in+plane+triangulations+and+quadrangulations&btnG=&as_sdt=1%2C5&as_sdtp=	
Scale-free characteristics of random networks: the topology of the world-wide web AL Barabási, R Albert, H Jeong - Physica A: Statistical Mechanics and its, 2000 - Elsevier The world-wide web forms a large directed graph, whose vertices are documents and edges are links pointing from one document to another. Here we demonstrate that despite its apparent random character, the topology of this graph has a number of universal scale	v19
Cited by 1192Related articlesAll 28 versionsCiteSave From: http://scholar.google.ca/scholar?q=Scale-free+characteristics+of+random+networks%3A+the+topology+of+the+world-wide+web&btnG=&hl=en&as sdt=0%2C5	

CS 860) Fall 2014	Lecture 5	Anna Lubiw, U. Waterloo
sho	rtest paths in planar gra	phs	
X	MR Henzinger, P Klein, S Rao We give a linear-time algorithm for nonnegative edge-lengths. Our alg flow in a planar graph with the sou Cited by 295Related articlesAll 15	h algorithms for planar graphs journal of computer and, 1997 - Elsevier r single-source shortest paths in planar graphs with porithm also yields a linear-time algorithm for maximum urce and sink on the same face. For the case where versionsCiteSave ster+Shortest-Path+Algorithms+for+Planar+Graphs&btnG=&hl=en&as_sdt=0%2C5	
	J Fakcharoenphol, S Rao - Journa In this paper, we present an O (nlo planar graph with real weights. T	ative weight edges, shortest paths, and near linear	ar time
		&q=Planar+graphs%2C+negative+weight+edges%2C+shortest+paths%2C+and+near+lin	
	M Thorup - Journal of the ACM (JA Abstract It is shown that a planar of producing a near-linear space orac	digraph can be preprocessed in near-linear time, cle that can answer reachability queries in constant time. n O (log n) space label for each vertex and then we can	<u>rapns</u>
	From: http://scholar.google.ca/scholar?q=Cor	mpact+oracles+for+reachability+and+approximate+distances+in+planar+digraphs&btnG=	=&hl=en&as_sdt=0%2C5

CS 860 Fall 2014	Lecture 5	Anna Lubiw, U. Waterloo
hierarchical approaches for ro	ad networks	
R Geisberger, P Sanders, D Schultes Contraction hierarchies are a simple apprealgorithm calculates exact shortest paths During a preprocessing step, we exploit th Cited by 50Related articlesAll 6 versionsC	Transportation, 2012 - pubsonline.informs.org bach for fast routing in road networks. Our and handles road networks of whole continents. e inherent hierarchical structure of road biteSave	
R Bauer, <u>D Delling</u> , <u>P Sanders</u> - Journa Abstract In recent years, highly effective h for routing in large road networks have be study of combinations of such techniques. <u>Cited by 85Related articlesAll 6 versions</u> C	ierarchical and goal-directed speed-up techniques en developed. This article makes a systematic These combinations turn out to give the best	algorithm
Abstract We study hierarchical hub label theoretical insights into the structure of hie	erneck - Algorithms–ESA 2012, 2012 - Springer lings for computing shortest paths. Our new erarchical labels lead to faster preprocessing practical for a wider class of graphs. We also	
From: http://scholar.google.ca/scholar?q=Hierarchical+	Hub+Labelings+for+Shortest+Paths&btnG=&hl=en&as_sdt=2005&sciodt=0%2C	C5&cites=12496478965946049336&scipsc≡

S 860 Fall 2014	Lecture 5	Anna Lubiw, U. Waterloo
k-th shortest paths		
pair of vertices in a digraph. Our algorithin a digraph with n vertices and m edges Cited by 1301Related articlesAll 20 version	rtest paths (not required to be simple) connecting a ns output an implicit representation of these paths in time O (m+ n log n+ k). We can also find the k	- Nathan
J Hershberger, M Maxel, S Suri - ACM Tr	paths: A new algorithm and its implementation ansactions on Algorithms (, 2007 - dl.acm.org benumerate the k shortest simple (loopless) paths in	
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n)	hl=en&as_sdt=0%2C5
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	nl=en&as_sdt=0%2C5
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	hl=en&as_sdt=0%2C5
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	hl=en&as_sdt=0%2C5
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	hl=en&as_sdt=0%2C5
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	nl=en&as_sdt=0%2C5
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	hl=en&as_sdt=0%2C5
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	hl=en&as_sdt=0%2C5
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	nl=en&as_sdt=0%2C5
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	nl=en&as_sdt=0%2C5
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	hl=en&as_sdt=0%2C5
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	hl=en&as sdt=0%2C5
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	nl=en&as_sdt=0%2C5
a directed graph and report on its impler paths algorithm proposed by Hershberg Cited by 109Related articles All 9 version	nentation. Our algorithm is based on a replacement er and Suri [2001], and can yield a factor Θ (n) sCiteSave	hl=en&as_sdt=0%2C5

CS 860 Fall 2014	Lecture 5	Anna Lubiw, U. Waterloo
dynamic shortest path algori	thms — maintain shortest paths as the	graph is updated
V King - Foundations of Computer Scien Abstract This paper presents the first ful shortest paths in digraphs with positive paths with an error factor of (2+), for any Cited by 151Related articles All 11 version	maintaining all-pairs shortest paths and transce, 1999. 40th Annual, 1999 - ieeexplore.ieee.org ly dynamic algorithms for maintaining all-pairs e integer weights less than b. For approximate shortest y positive constant, the amortized update time isO (onsCiteSave y+Dynamic+Algorithms+for+Maintaining+All-Pairs+Shortest+Paths+and+Transitive	
completely new approach to dynamic a fully dynamic algorithm for general dir Cited by 200Related articlesAll 14 version	ne ACM (JACM), 2004 - dl.acm.org roperties of graphs that allow us to devise a all pairs shortest paths problems. Our approach yields ected graphs with non-negative real-valued edge	
C Demetrescu, GF Italiano - ACM Trans: Abstract We present the results of an ex for all pairs shortest path problems. We	amic all pairs shortest path algorithms actions on Algorithms (TALG), 2006 - dl.acm.org tensive computational study on dynamic algorithms e describe our implementations of the recent dynamic rescu and Italiano [2006], and compare them to the sciteSave	
From: http://scholar.google.ca/scholar?q=Experimen	tal+analysis+of+dynamic+all+pairs+shortest+path+algorithms&btnG=&hl=en&as	sdt=0%2C5

CS 860 Fall 2014	Lecture 5	Anna Lubiw, U. Waterloo
dynamic shortest path algo	orithms — maintain shortest paths as the	e graph is updated
M Patrascu - Proceedings of the 42nd Abstract We consider a number of dy bounds, and show that they require n	bounds for dynamic problems ACM symposium on Theory of, 2010 - dl.acm.org namic problems with no known poly-logarithmic upper Ω (1) time per operation, unless 3SUM has strongly modular:(1) We describe a carefully-chosen onsCiteSave	
From: http://scholar.google.ca/scholar?q=Toward	s+polynomial+lower+bounds+for+dynamic+problems&btnG=&hl=en&as sdt=2005&	&sciodt=0%2C5&cites=11369852506014706065&scipsc=
three sum to zero. We prove that the log n}) \$, that there is a randomized 3 Cited by 2Related articlesAll 2 version	and Love Triangles arXiv:1404.0799, 2014 - arxiv.org cide, given a set of \$ n \$ real numbers, whether any decision tree complexity of 3SUM is \$ O (n^{3/2}\ sqrt {\ SUM algorithm running in \$ O (n^ 2 (\ log\ log n)^ 2\/ asCiteSave Threesomes%2C+Degenerates%2C+and+Love+Triangles&btnG=&as_sdt=1%2C5.	- subquadratic ag, -for 3 SUM

widest path problem (bottleneck shortest path problem)

find out hest alg. for this

In this graph, the widest path from Maldon to Feering has bandwidth 29, and passes through Clacton, Tiptree, Harwich, and Blaxhall.

wikipedia

CS 860 Fall 2014	Lecture 5	Anna Lubiw, U. Waterloo
bicriteria and constraints		
Resource constrained shortest pa K Mehlhorn, M Ziegelmann - Algorithms-ESA 20 Abstract The resource constrained shortest p a least cost path obeying a set of resource con give theoretical and experimental results for CSI Cited by 104Related articlesAll 24 versionsCiteS From: http://scholar.google.ca/scholar?hl=en&q=Resource+cor	200, 2000 - Springer ath problem (CSP) asks for the computation of straints. The problem is NP-complete. We In the theoretical part we present the save	
Tion: inspirational google constant in Strage 1 social of sol	Strained Str	