

Basic geometric shortest path algorithms — shortest paths in 2D polygonal domain Given a polygonal domain, two points S, T, find the shortest path from S to T

Continuous Dijkstra approach

wavefront expands from S

Shortest paths among obstacles in the plane

JSB Mitchell - International Journal of Computational Geometry & ..., 1996 - World Scientific We give a subquadratic (O (n3/2+e) time and O (n) space) algorithm for computing Euclidean **shortest paths** in the **plane** in the presence of polygonal **obstacles**; previous time bounds were at least quadratic in n, in the worst case. The method avoids use of visibility ... Cited by 140Related articlesAll 4 versionsCiteSave

$$P = O(n^{3/2} + \epsilon)$$

From: http://scholar.google.ca/scholar?hl=en&g=Shortest+Paths+Among+Obstacles+in+the+Plane&btnG=&as sdt=1%2C5&as sdtp=

An optimal algorithm for Euclidean shortest paths in the plane

J Hershberger, S Suri - SIAM Journal on Computing, 1999 - SIAM
We propose an **optimal**-time **algorithm** for a classical problem in **plane** computational
geometry: computing a **shortest path** between two points in the presence of polygonal
obstacles. Our **algorithm** runs in worst-case time O (n log n) and requires O (n log n) space ...
Cited by 219Related articlesAll 10 versionsCiteSave

$$P = O(n \log n)$$

From: http://scholar.google.ca/scholar?q=AN+OPTIMAL+ALGORITHM+FOR+EUCLIDEAN+SHORTEST+PATHS+IN+THE+PLANE&btnG=&hl=en&as_sdt=0%2C5_0.

Basic geometric shortest path algorithms — shortest paths in 2D polygonal domain Given a polygonal domain, two points S, T, find the shortest path from S to T

Continuous Dijkstra approach

wavefront expands from S

implementation issues - keep track of future events where wave front changes combinatorially

-need to know - what are events, time -need to update wave front

achieving $O(n \log n)$ preprocessing

Complicated
Subdivide Space into cells

approximate wavefront cell by cell (but exact algorithm)

Schreiber & Sharir

query $O(\log n)$ to given shortest path length, $O(\log n + k)$ to give path, k = number of edges

use planar point location (with curves)

860 Fall 2014	Lecture 3	Anna Lubiw, U. Waterloo
Summary of shortest Euclid	ean paths in the plane	
concepts		
locally shortest paths		
polygon vs polygonal	domain	
3 problem versions:	Given s, t; Given s, query t; Query s, t.	
shortest path map		
approaches		
model as a graph (dis	cretize)	
wavefront expansion	(continuous Dijkstra)	
shortest path map +	planar point location	

CS 860 Fall 2014	Lecture 3	Anna Lubiw, U. Waterloo
Open question: for poly	/gonal domain, can we achieve O(r	h = # holes h = # vertices Have (n logn) would match lower bound.
is achi	revable for L1 metric	would match lower bound.

CS 860 Fall 2014	Lecture 3	Anna Lubiw, U. Waterloo
Further geometric shortest path	algorithms (papers to present)	
extensions of above: homotopy given dependence on number two-point query	r of holes	
geodesic diameter, center link distance L1 distance curved obstacles		
polyhedral surfaces 3D weighted region, etc.		

Geodesic Diameter: Given a polygon / polygonal region, what is the maximum distance between two points?

Geodesic Center: Given a polygon / polygonal region, find the point that minimizes the maximum

distance to any other point.

Matrix searching with the shortest-path metric

J Hershberger, S Suri - SIAM Journal on Computing, 1997 - SIAM We present an O (n) time algorithm for computing row-wise maxima or minima of an implicit, totally monotone n*n matrix whose entries represent shortest-path distances between pairs of vertices in a simple polygon. We apply this result to derive improved algorithms for ... Cited by 20Related articlesAll 4 versionsWeb of Science: 7CiteSave

From: http://scholar.google.ca/scholar?hl=en&g=matrix+searching+with+the+shortest+path

Computing the geodesic center of a simple polygon

O(nlogn) R Pollack, M Sharir, G Rote - Discrete & Computational Geometry, 1989 - Springer Abstract The geodesic center of a simple polygon is a point inside the polygon which minimizes the maximum internal distance to any point in the **polygon**. We present an algorithm which calculates the geodesic center of a simple polygon with n vertices in time ... Cited by 51Related articles All 13 versions Web of Science: 19CiteSave

OPEN: 0(n)

The geodesic diameter of polygonal domains

SW Bae, M Korman, Y Okamoto - Discrete & Computational Geometry, 2013 - Springer Abstract This paper studies the **geodesic diameter** of **polygonal domains** having \$ h \$ holes and \$ n \$ corners. For simple polygons (ie, \$ h= 0\$), the geodesic diameter is determined by a pair of corners of a given polygon and can be computed in linear time, as shown by ... Cited by 4Related articlesAll 19 versionsCiteSave

diameter not realized at vertices (in general)

From: http://scholar.google.ca/scholar?q=The+geodesic+diameter+of+polygonal+domains&btnG=&hl=en&as_sdt=2005&sciodt=0%2C5&cites=16376144327624502384&scipsc=

? center of pelygonal domain

Aside: Nearest neighbour

Given a set S of n points in the plane, preprocess to handle query: Given a query point q, what is the

closest point in S?

Preprocessing $O(n \log n)$, Space O(n), Query $O(\log n)$

- this matches solu in 1D (sort + binary search)

Vononoi diagram

- set of all points whose closest neighbour is p.

Compute Voronoi diagram size O(n)

+ Planar Point Location

See Comp. geom. texts

	Lecture 3	Anna Lubiw, U. Waterloo
Link distance counts # segments on path	? shortest Euclid	ist lean touth lest link path
On some link distance pressure - IEEE transactions on Robo Cited by 73 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&ar	ng obstacles in the plane Poฟ ริลทร์ไ	domain
On the bit complexity of mi S Kahan, J Snoeyink - Computatio All of the linear-time algorithms tha real RAM model of computation. If	nimum link paths: Superquadratic algorithms for property, 1999 - Elsevier thave been developed for minimum-link paths bit complexity, however, merely may require a superquadratic number of bits. This	
EM Arkin, JSB Mitchell, S Suri - Int	th queries in a simple polygon ernational Journal of, 1995 - World Scientific swering link distance queries between two arbitrary points acture requires O (n3) time and space for its construction	

STACS 2013: 293-304

From: http://www.informatik.uni-trier.de/~ley/pers/hd/c/Chen:Danny_Ziyi

60 Fall 2014	Lecture 3	Anna Lubiw, U. Waterloo
rved obstacles		
Computing shortest paths ar	nong curved obstacles in the plane	
DZ Chen, H Wang annual symposiu Abstract In this paper, we study the prob curved obstacles in the plane. We mod	n on Symposuim on computational, 2013 - dl.acm.org em of finding Euclidean shortest paths among el curved obstacles as splinegons. A splinegon can olygon by a convex curved edge, and each	
From: http://scholar.google.com/scholar?q=Computi	g+shortest+paths+among+curved+obstacles+in+the+plane.	

CS 860 Fall 2014	Lecture 3	Anna Lubiw, U. Waterloo
another paper about Dijkstra'	s algorithm to present	
M Holzer, F Schulz, <u>D Wagner</u> , T Willhalm Abstract In practice, computing a shortest is a very common task. This problem is cla	es for shortest-path computations - Journal of Experimental, 2005 - dl.acm.org path from one node to another in a directed graph ssically solved by Dijkstra's algorithm. Many Igorithm heuristically, while optimality of the iteSave	
From: http://scholar.google.ca/scholar?hl=en&q=combi	ning+speedup+techniques&btnG=&as_sdt=1%2C5&as_sdtp=	

CS 860 Fall 2014	Lecture 3	Anna Lubiw, U. Waterloo
another paper about Dijkstra'	s algorithm to present	
M Holzer, F Schulz, <u>D Wagner</u> , T Willhalm Abstract In practice, computing a shortest is a very common task. This problem is cla	es for shortest-path computations - Journal of Experimental, 2005 - dl.acm.org path from one node to another in a directed graph ssically solved by Dijkstra's algorithm. Many Igorithm heuristically, while optimality of the iteSave	
From: http://scholar.google.ca/scholar?hl=en&q=combi	ning+speedup+techniques&btnG=&as_sdt=1%2C5&as_sdtp=	