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Shortest Euclidean paths in the plane

Summary from last class

3 problem versions:  
Given s, t
Given s, query t
Query s, t

shortest paths in a polygon
funnel algorithm for fixed s,t.  O(n)
extension to query t  

shortest path map + planar point location
Preprocessing = O(n), Query time = O(log n + k), k = output size  

shortest path in a polygonal domain
for fixed s,t compute visibility graph and use Dijkstra’s algorithm.  

O(n log n + m), m = # edges in visibility graph, O(n2)

today: for query t, continuous Dijkstra, P= O(n log n), Q= O(log n + k)
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Basic geometric shortest path algorithms — shortest paths in 2D polygonal domain
Given a polygonal domain, two points S, T, find the shortest path from S to T 

Continuous Dijkstra approach

wavefront expands from S
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Basic geometric shortest path algorithms — shortest paths in 2D polygonal domain
Given a polygonal domain, two points S, T, find the shortest path from S to T 

geometric visualization of usual Dijkstra algorithm — imagine paint flowing along edges
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Basic geometric shortest path algorithms — shortest paths in 2D polygonal domain
Given a polygonal domain, two points S, T, find the shortest path from S to T 

Continuous Dijkstra approach

wavefront expands from S

Shortest paths among obstacles in the plane
JSB Mitchell - International Journal of Computational Geometry & …, 1996 - World Scientific
We give a subquadratic (O (n3/2+∊) time and O (n) space) algorithm for computing 
Euclidean shortest paths in the plane in the presence of polygonal obstacles; previous time 
bounds were at least quadratic in n, in the worst case. The method avoids use of visibility ...
Cited by 140 Related articles All 4 versions Cite Save

From: http://scholar.google.ca/scholar?hl=en&q=Shortest+Paths+Among+Obstacles+in+the+Plane&btnG=&as_sdt=1%2C5&as_sdtp=

An optimal algorithm for Euclidean shortest paths in the plane
J Hershberger, S Suri - SIAM Journal on Computing, 1999 - SIAM
We propose an optimal-time algorithm for a classical problem in plane computational 
geometry: computing a shortest path between two points in the presence of polygonal 
obstacles. Our algorithm runs in worst-case time O (n log n) and requires O (n log n) space ...
Cited by 219 Related articles All 10 versions Cite Save

From: http://scholar.google.ca/scholar?q=AN+OPTIMAL+ALGORITHM+FOR+EUCLIDEAN+SHORTEST+PATHS+IN+THE+PLANE&btnG=&hl=en&as_sdt=0%2C5
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Given a polygonal domain, two points S, T, find the shortest path from S to T 
Continuous Dijkstra approach wavefront expands from S
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Basic geometric shortest path algorithms — shortest paths in 2D polygonal domain
Given a polygonal domain, two points S, T, find the shortest path from S to T 
Continuous Dijkstra approach wavefront expands from S

shortest path map
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Basic geometric shortest path algorithms — shortest paths in 2D polygonal domain
Given a polygonal domain, two points S, T, find the shortest path from S to T 

Continuous Dijkstra approach wavefront expands from S

implementation issues

achieving O(n log n) preprocessing

query O(log n) to given shortest path length, O(log n + k) to give path, k = number of edges

502 Discrete Comput Geom (2008) 39: 500–579

and Han follow the general idea of Mount [28] to solve the problem of storing short-

est path information separately, for a general, possibly nonconvex polyhedral surface.

They obtain a tradeoff between query time O (d log n / logd ) and space complex-
ity O (n log n / logd ), where d is an adjustable parameter. Again, the question whether
this data structure can be constructed in subquadratic time, has been left open.

The problem has been more or less “stuck” after Chen and Han’s paper, and the

quadratic-time barrier seemed very difficult to break. For this and other reasons, sev-

eral works [2–4, 16, 17, 19, 24, 25, 38] presented approximate algorithms for the

3-dimensional shortest path problem. Nevertheless, the major problem of obtain-

ing a subquadratic, or even near-linear, exact algorithm remained open. In 1999,

Kapoor [21] announced such an algorithm for the shortest path problem on an ar-

bitrary polyhedral surface P (see also a review of the algorithm in O’Rourke’s col-

umn [29]). The algorithm follows the continuous Dijkstra paradigm, and claims to be

able to compute a shortest path between two given points in O (n log2 n) time (so it
does not preprocess the surface for answering shortest path queries). However, as far

as we know, the details of Kapoor’s algorithm have not yet been published.

The Algorithm of Hershberger and Suri for Polygonal Domains A dramatic break-

through on a loosely related problem took place in 1995,1 when Hershberger and

Suri [18] obtained an O (n log n)-time algorithm for computing shortest paths in the
plane in the presence of polygonal obstacles (where n is the number of obstacle ver-
tices). The algorithm actually computes a shortest path map from a fixed source point

to all other (non-obstacle) points of the plane, which can be used to answer single-

source shortest path queries in O (log n) time.
Our algorithm uses (adapted variants of) many of the ingredients of [18], includ-

ing the continuous Dijkstra method—in [18], the wavefront is propagated amid the

obstacles, where each wave emanates from some obstacle vertex already covered by

the wavefront; see Fig. 1(a).

The key new ingredient in [18] is a quad-tree-style subdivision of the plane, of

size O (n), on the vertices of the obstacles (temporarily ignoring the obstacle edges).

Fig. 1 The planar case: (a) The wavefront propagated from s, at some fixed time t . (b) The conforming
subdivision of the free space

1A preliminary (symposium) version has appeared in 1993; the last version was published in 1999.

Schreiber & Sharir
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Summary of shortest Euclidean paths in the plane

concepts
locally shortest paths
polygon vs polygonal domain
3 problem versions:  Given s, t; Given s, query t; Query s, t.
shortest path map

approaches
model as a graph (discretize)
wavefront expansion (continuous Dijkstra)
shortest path map + planar point location
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http://cs.smith.edu/~orourke/TOPP/P21.html

Open question: for polygonal domain, can we achieve O(n + h log h)?
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Further geometric shortest path algorithms (papers to present)

extensions of above:
homotopy given
dependence on number of holes
two-point query

geodesic diameter, center
link distance
L1 distance
curved obstacles

polyhedral surfaces
3D
weighted region, etc.
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Further geometric shortest path algorithms (papers to present)

homotopy given 

[HTML] Computing homotopic shortest paths efficiently
A Efrat, SG Kobourov, A Lubiw - Computational Geometry, 2006 - Elsevier
Cited by 33 Related articles All 5 versions Cite Save
From: http://scholar.google.ca/scholar?hl=en&q=Computing+homotopic+shortest+paths+efficiently&btnG=&as_sdt=1%2C5&as_sdtp=

[HTML] Computing minimum length paths of a given homotopy class
J Hershberger, J Snoeyink - Computational geometry, 1994 - Elsevier
Cited by 140 Related articles All 2 versions Web of Science: 62 Cite Save
From: http://scholar.google.ca/scholar?q=Computing+minimum+length+paths+of+a+given+homotopy+class&btnG=&hl=en&as_sdt=0%2C5

Two-point Euclidean shortest path queries in the plane
YJ Chiang, JSB Mitchell - Proceedings of the tenth annual ACM-SIAM …, 1999 - dl.acm.org
Cited by 44 Related articles All 8 versions Cite Save
From: http://scholar.google.ca/scholar?q=Two-point+Euclidean+shortest+path+queries+in+the+plane&btnG=&hl=en&as_sdt=0%2C5

two-point query

Fig. 1: Shortest path preserving homotopy type.
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Fig. 2: (a) Path ab, (b) Monotone paths, (c) Rectified paths.

We focus on two versions of SHP problem: (1)
simple input paths and (2) non-simple paths. For
simple paths we show that the shortest homotopic paths
can be computed in O(n log1+ε n + kin log n + kout)
time. For non-simple paths we design an implicit
funnel algorithm that computes the shortest paths in
O(n2+ε + kin log2 n + kout) time. We also show that for
relativly small k the running time can be improved to
O(n · polylogn + n2/3k2/3polylogk + k · polylogk) using
hierarchical cuttings [17].

We mention a related work on finding homotopic
paths amidst semi-algebraic obstacles [10, 11].

The paper is organized as follows. We consider
SHP for simple paths in Sections 2-4. In Section 2 we
reduce the problem to the case of monotone paths by
applying techniques from [3, 8]. In Section 3 we show
how to compute the shortest path in a simple polygon
with barriers in linear time. In Section 4 we develop
an algorithm for computing all the shortest paths. In

Section 5 we consider SHP for non-simple paths.

2 Reduction to Monotone Paths.

In this Section we briefly describe the construction of
the canonical paths [3] and the bundling [8]. The
canonical paths are x-monotone, i.e. monotone with
respect to the direction OX. A path is monotone with
respect to a direction d if any line orthogonal to d
intersects the path at most one time. One can partition
a path into x-monotone pieces by exploring its vertices
locally, i.e. we break the path in a vertex if two edges
incident to the vertex do not form a x-monotone path
as illustrated in Fig. 2 (b) (this partition might not
capture the shape of the shortest path, see Fig. ??). We
can treat these monotone paths as horizontal segments
and obtain rectified paths [3], see Fig. 2 (c).

To rectify the paths one needs “aboveness” relation
between the monotone paths and the barriers. A path is
represented as a sequence of points that it passes above

Bespamyatnikh

Shortest path queries in polygonal domains
H Guo, A Maheshwari, JR Sack - Algorithmic Aspects in Information and …, 2008 - Springer
Cited by 7 Related articles All 7 versions Cite Save
From: http://scholar.google.ca/scholar?q=Shortest+path+queries+in+polygonal+domains&btnG=&hl=en&as_sdt=2005&sciodt=0%2C5&cites=2172980975228742329&scipsc=
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Matrix searching with the shortest-path metric
J Hershberger, S Suri - SIAM Journal on Computing, 1997 - SIAM
We present an O (n) time algorithm for computing row-wise maxima or minima of an implicit, 
totally monotone n*n matrix whose entries represent shortest-path distances between pairs 
of vertices in a simple polygon. We apply this result to derive improved algorithms for ...
Cited by 20 Related articles All 4 versions Web of Science: 7 Cite Save

From: http://scholar.google.ca/scholar?hl=en&q=matrix+searching+with+the+shortest+path
+metric&btnG=&as_sdt=1%2C5&as_sdtp=

Computing the geodesic center of a simple polygon
R Pollack, M Sharir, G Rote - Discrete & Computational Geometry, 1989 - Springer
Abstract The geodesic center of a simple polygon is a point inside the polygon which 
minimizes the maximum internal distance to any point in the polygon. We present an 
algorithm which calculates the geodesic center of a simple polygon with n vertices in time ...
Cited by 51 Related articles All 13 versions Web of Science: 19 Cite Save

From: http://scholar.google.ca/scholar?q=computing+the+geodesic+center+of+a+simple+polygon&btnG=&hl=en&as_sdt=0%2C5

The geodesic diameter of polygonal domains
SW Bae, M Korman, Y Okamoto - Discrete & Computational Geometry, 2013 - Springer
Abstract This paper studies the geodesic diameter of polygonal domains having $ h $ holes 
and $ n $ corners. For simple polygons (ie, $ h= 0$), the geodesic diameter is determined by 
a pair of corners of a given polygon and can be computed in linear time, as shown by ...
Cited by 4 Related articles All 19 versions Cite Save

From: http://scholar.google.ca/scholar?q=The+geodesic+diameter+of+polygonal+domains&btnG=&hl=en&as_sdt=2005&sciodt=0%2C5&cites=16376144327624502384&scipsc=

Geodesic Diameter: Given a polygon / polygonal region, what is the maximum distance between two 
points?

Geodesic Center: Given a polygon / polygonal region, find the point that minimizes the maximum 
distance to any other point.  

612 R. Pollack, M. Sharir, and G. Rote 

rig. t 

emergency service on a polygonal island or a nurses station on a polygonal 
hospital floor. See Fig. 1 for an illustration of  the geodesic center problem. The 
standard Euclidean facility location problem can be solved in time O(n) [Mel ], 
[Dy2], but its extension to the problem of finding the geodesic center of  a simple 
polygon appears to be more difficult. 

The problem of computing the geodesic center of  a simple polygon has been 
considered by Asano and Toussaint [AT]. They show that the geodesic center is 
unique and present an algorithm to compute it in time O(n 4 log n), where n is 
the number of vertices in the given polygon. The main idea of  their algorithm is 
to construct the geodesic furthest-point Voronoi diagram of  the vertices of the 
polygon and then to locate the geodesic center at either a vertex of the Voronoi 
diagram or at the midpoint of  a geodesic diameter (i.e., a shortest path inside 
the polygon joining two vertices which has maximal length over all choices of 
pairs of vertices). We will also use the term "geodesic diameter" to denote the 
length of  that path. There have been many algorithms to find the geodesic diameter 
of  a simple polygon. The best result at the present time is an O(n log n)-time 
and O(n)-space  algorithm due to Suri [Sul] .  

A related problem is to compute the link diameter and the link center of a 
simple polygon, where the link distance between two points is the minimum 
number of  edges in a polygonal path joining them inside the polygon and where 
the link center and diameter are defined in an analogous manner to the definition 
of  geodesic center and diameter. In this case the link center is no longer unique 
but consists of  a polygon which may be as large as the entire given polygon. Suri 
[Su2] has an O(n log n)-time and O(n)-space algorithm which computes the 
link diameter o f  a simple polygon and Lenhart etal. [Lea] presents an O(n 2) 
algorithm for computing the link center of  a simple polygon. E1-Gindy (private 
communication) also reports similarly efficient algorithms for computing the link 
center. 

Our algorithm proceeds as follows. We start with a triangulation of the polygon 
P, then perform something like a binary search through the diagonals of the 
triangulation, determining at each tested diagonal, via the algorithm RELCEN 
to be described in Section 3 below, on which side of  that diagonal the geodesic 
center lies. In this way we locate a triangle which contains the geodesic center. 

308 Discrete Comput Geom (2013) 50:306–329

(a) (b) (c)

Fig. 1 Three polygonal domains where the geodesic diameter is determined by a pair (s∗, t∗) of non-corner
points; gray-shaded regions depict the interior of the holes and dark gray segments depict the boundary
∂P . Recall that P , as a set, contains its boundary ∂P . a Both s∗ and t∗ lie on ∂P . There are three shortest
paths between s∗ and t∗. In this domain, there are two (symmetric) diametral pairs (only one is depicted for
clarity). b s∗ ∈ ∂P and t∗ ∈ int P . Three triangular holes are placed in a symmetric way, obtaining four
shortest paths between s∗ and t∗. c Both s∗ and t∗ lie in the interior int P . Here, the five holes are packed
like jigsaw puzzle pieces, forming narrow corridors (dark gray paths) and two empty, regular triangles.
Observe that d(u1, v1) = d(u1, v2) = d(u2, v2) = d(u2, v3) = d(u3, v3) = d(u3, v1). The points s∗ and
t∗ lie at the centers of the triangles formed by the ui and the vi , respectively. There are six shortest paths
between s∗ and t∗.

for computing the geodesic center of a simple polygon (i.e., when h = 0), and Pollack
et al. [19] improved it to O(n log n) time. As with the diameter problem, there is no
known algorithm for domains with holes. See O’Rourke and Suri [18] and Mitchell [16]
for more references on the geodesic diameter/center problem.

Since the geodesic diameter/center of a simple polygon is determined by its corners,
one can exploit the geodesic farthest-site Voronoi diagram of the set V of corners to
compute the diameter/center, which can be built in O(n log n) time [2]. Recently,
Bae and Chwa [4] presented an O(nk log3(n + k))-time algorithm for computing the
geodesic farthest-site Voronoi diagram of k sites in polygonal domains with holes.
This result can be used to compute the geodesic diameter maxp,q∈S d(p, q) of a finite
set S of points in P . However, this approach cannot be directly used for computing
diam(P) without any characterization of the diameter. Moreover, when S = V , this
approach is no better than the brute-force O(n2 log n)-time algorithm for computing
the corner-to-corner diameter maxu,v∈V d(u, v).

In this paper, we present the first algorithms that compute the geodesic diameter
of a given polygonal domain in O(n7.73) or O(n7(log n + h)) time in the worst case.
Our new geometric results underlying the algorithms show that the existence of any
diametral pair consisting of non-corner points implies multiple shortest paths between
the pair; among other results, we show that if (s, t) is a diametral pair and both s and
t lie in the interior of P , then there are at least five shortest paths between s and t .

Some analogies between polygonal domains and convex polytopes in R3 can be
seen. O’Rourke and Schevon [17] proved that if the geodesic diameter on a con-
vex 3-polytope is realized by two non-corner points, then at least five shortest paths
exist between the two; see also Zalgaller [21] for simpler arguments. Based on this
observation, they presented an O(n14 log n)-time algorithm for computing the geo-
desic diameter on a convex 3-polytope. Afterwards, the time bound was improved
to O(n8 log n) by Agarwal et al. [1] and recently to O(n7 log n) by Cook IV and
Wenk [9].

123
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Aside: Nearest neighbour

Given a set S of n points in the plane, preprocess to handle query: Given a query point q, what is the 
closest point in S?
 Preprocessing O(n log n), Space O(n), Query O(log n) 

Vononoi diagram

David Austin
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Voronoi diagram of line segments

CGAL - Computational Geometry Algorithms Library

Stefan Huber

Voronoi diagram of edges and 
vertices of a polygon
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On some link distance problems in a simple polygon
S Suri - IEEE transactions on Robotics and Automation, 1990 - cat.inist.fr
Cited by 73
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=88124

Minimum-link paths among obstacles in the plane
JSB Mitchell, G Rote, G Woeginger - Algorithmica, 1992 - Springer
Cited by 79 

From: http://scholar.google.ca/scholar?hl=en&q=Minimum-Link+Paths+Among+Obstacles+in+the+Plane&btnG=&as_sdt=1%2C5&as_sdtp=

On the bit complexity of minimum link paths: Superquadratic algorithms for problem solvable in linear time
S Kahan, J Snoeyink - Computational Geometry, 1999 - Elsevier
All of the linear-time algorithms that have been developed for minimum-link paths use the 
real RAM model of computation. If one considers bit complexity, however, merely 
representing a minimum-link path may require a superquadratic number of bits. This ...

Logarithmic-time link path queries in a simple polygon
EM Arkin, JSB Mitchell, S Suri - International Journal of …, 1995 - World Scientific
We develop a data structure for answering link distance queries between two arbitrary points 
in a simple polygon. The data structure requires O (n3) time and space for its construction 
and answers link distance queries in O (log n) time, after which a minimum-link path can ...
Cited by 11 Related articles All 2 versions Cite Save

From: http://scholar.google.ca/scholar?hl=en&q=Logarithmic-time+link+path+queries+in+a+simple+polygon.&btnG=&as_sdt=1%2C5&as_sdtp=

Link distance

Minimum-Link Paths Among Obstacles in the Plane 433 

The ideas behind our algorithm are conceptually simple and admit a straightfor- 
ward implementation, applying directly several results from the existing literature. 

Overview of the Paper. The paper is organized as follows. Section 2 describes 
some notation and basic structural results. In Section 3 we give an outline of the 
algorithm. Section 4 considers the combinatorial complexities of the occurring 
configurations. Section 5 gives the algorithmic details and analyzes the running 
time. Section 6 proves the lower-bound result. Section 7 describes the algorithm 
for the SPT problem, while Section 8 describes its application to the query version 
of the problem. Finally, Section 9 concludes with remarks about various extensions 
and open problems. 

An earlier draft of this paper appeared as an extended abstract in [171. 

2. Preliminaries. A polygon (or, more clearly, a polygon with holes) is a subset of 
the plane whose boundary is the union of finitely many line segments or half-rays. 
A polygon that is simply connected or whose complement is simply connected is 
called a simple polygon. Note that this definition allows a polygon (with or without 
holes) to be unbounded. 

PROBLEM DEFINITION. We are given a polygon P (with holes), which we call the 
free space, and two points s (the source) and t (the target) inside it. We are to find 
a polygonal path from s to t that lies in the free space, and that consists of as few 
edges ("links") as possible. This number of edges is called the link distance between 
s and t. For example, in Figure 1 we show an instance in which the link distance 
from s to t is three. 

For simplicity of exposition, we assume that the free space P is bounded. The 
complement of the free space is called the set of obstacles (or holes). It consists of 
a finite number of simple polygons, one of which is unbounded and surrounds the 

k__A 

I 

I i 
Fig. 1. A polygon with holes, and a path from s to t with three links. 



CS 860 Fall 2014 Anna Lubiw, U. WaterlooLecture 3

link center 
652 J. O’Rourke

FIGURE 28.6.1
The link center is shown darkly shaded:
every point in the polygon can be
reached with no more than three links
from a point in the center. Several
key visibility chords are drawn.

28.6 VISIBILITY PATHS

A fruitful idea was introduced to visibility research in the mid-1980s: the notion
of “link distance” between two points, which represents the smallest number of
mutually visible relay stations needed to communicate from one point to another
(Sections 26.4 and 27.3). A related notion called “watchman tours” was introduced
a bit later, mixing shortest paths and visibility problems, and employing many of
the concepts developed for link-path problems (Section 26.4).

GLOSSARY

Link: A segment.
Link distance: The smallest number of links in a polygonal path connecting the

points.
Link diameter of P: The largest link distance between any two points in P .
Link center of P: The collection of points whose maximal link distance to any

point of P is as small as possible. See Figure 28.6.1.
Shortest watchman tour in P: A shortest closed path π in a polygon P such

that every point of P is visible from some point of π.

MAIN RESULTS

The main results for link centers are shown in Table 28.6.1. See Tables 27.4.2
and 27.3.1 and the related sections for further results.

TABLE 28.6.1 Algorithms for link centers.

LINK CENTER WITHIN TIME COMPLEXITY SOURCE

Polygon O(n log n) [DLS92]

Orthogonal polygon O(n) [NS91]

Polygon with holes NP-hard [AL93]

© 2004 by Chapman & Hall/CRC
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O’Rourke

AnO (n logn) algorithm for computing the link center of a simple polygon
HN Djidjev, A Lingas, JR Sack - Discrete & Computational Geometry, 1992 - Springer
Cited by 33 

From: http://scholar.google.ca/scholar?q=An+O%28n+log+n%29+algorithm+for+computing+the+link+center+of+a+simple+polygon.&btnG=&hl=en&as_sdt=0%2C5

faster for orthogonal polygon, NP-hard for polygonal domain



CS 860 Fall 2014 Anna Lubiw, U. WaterlooLecture 3

L1 metric

Danny Z. Chen, Haitao Wang: L_1 Shortest Path Queries among Polygonal Obstacles in the Plane. 
STACS 2013: 293-304

From: http://www.informatik.uni-trier.de/~ley/pers/hd/c/Chen:Danny_Ziyi
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curved obstacles

Computing shortest paths among curved obstacles in the plane
DZ Chen, H Wang - … annual symposium on Symposuim on computational …, 2013 - dl.acm.org
Abstract In this paper, we study the problem of finding Euclidean shortest paths among 
curved obstacles in the plane. We model curved obstacles as splinegons. A splinegon can 
be viewed as replacing each edge of a polygon by a convex curved edge, and each ...
Cited by 7 Related articles All 5 versions Cite Save

From: http://scholar.google.com/scholar?q=Computing+shortest+paths+among+curved+obstacles+in+the+plane.
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see Joe Mitchell’s survey for many more papers

J.S.B. Mitchell, Shortest Paths and Networks, Chapter 27 in Handbook of Discrete and 
Computational Geometry, 2nd edition, 2004
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Combining speed-up techniques for shortest-path computations
M Holzer, F Schulz, D Wagner, T Willhalm - Journal of Experimental …, 2005 - dl.acm.org
Abstract In practice, computing a shortest path from one node to another in a directed graph 
is a very common task. This problem is classically solved by Dijkstra's algorithm. Many 
techniques are known to speed up this algorithm heuristically, while optimality of the ...
Cited by 55 Related articles All 5 versions Cite Save

From: http://scholar.google.ca/scholar?hl=en&q=combining+speedup+techniques&btnG=&as_sdt=1%2C5&as_sdtp=

another paper about Dijkstra’s algorithm to present
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Combining speed-up techniques for shortest-path computations
M Holzer, F Schulz, D Wagner, T Willhalm - Journal of Experimental …, 2005 - dl.acm.org
Abstract In practice, computing a shortest path from one node to another in a directed graph 
is a very common task. This problem is classically solved by Dijkstra's algorithm. Many 
techniques are known to speed up this algorithm heuristically, while optimality of the ...
Cited by 55 Related articles All 5 versions Cite Save

From: http://scholar.google.ca/scholar?hl=en&q=combining+speedup+techniques&btnG=&as_sdt=1%2C5&as_sdtp=

another paper about Dijkstra’s algorithm to present


