Self-Approaching Graphs

CS 860 Fall 2014, Anna Lubiw

Papers

Self-Approaching Graphs.
Soroush Alamdari, Timothy M. Chan, Elyot Grant, Anna Lubiw, Vinayak Pathak.
Graph Drawing 2012.

On Self-Approaching and Increasing-Chord Drawings of 3-Connected Planar Graphs.
Martin Nollenburg, Roman Prutkin, and Ignaz Rutter.
Graph Drawing 2014.

Increasing-Chord Graphs On Point Sets.
Hooman Reisi Dehkordi, Fabrizio Frati, Joachim Gudmundsson.
Graph Drawing 2014.

Getting (closer?) to your destination

Greedy drawing

For every pair of vertices s and t, there is a greedy s, t path

A greedy drawing permits local greedy routing.
Any 3-connected planar graph has a greedy drawing [Leighton and Moitra, 2008; Angelini, Frati, and Grilli, 2009], with few bits [Goodrich and Strash, 2009].

A greedy s, t path can be long compared to $d(s, t)$.

Dilation and spanners

dilation: $\max _{\text {vertices } s, t}\{d(s, t) / D(s, t)\}$

spanner: remove many edges while keeping dilation small
detour: $\sup _{\text {points } p, q}\{d(p, q) / D(p, q)\}$ i.e. we care about points on edges too crossing edges \Rightarrow detour is infinite

Background

Questions:

- Given a graph, find a drawing that is greedy or ...
- Given a set of points, connect them with a graph that is a spanner or ...

The Delaunay triangulation is greedy and is a spanner, but greedy paths do not have good dilation.

Simon's presentation: Competitive routing in the half $-\theta_{6}$-graph, Bose, Fagerberg, van Renssen, Verdonschot, 2012 Alternative triangulation that allows local routing with bounded dilation

Self-approaching curve

self-approaching s,t curve: $\forall a, b, c$ (in order) $\quad \mathrm{D}(b, c) \leq \mathrm{D}(a, c)$

detour
5.3332
[Icking, Klein, Langetepe, 1995]
Equivalently, perpendiculars to the curve do not intersect the curve later on.
self-approaching in both directions = increasing-chord: $\forall a, b, c, d$ (in order) $\mathrm{D}(b, c) \leq \mathrm{D}(a, d)$

detour
2.094
[Rote 1994]

Self-approaching graph

For every pair of vertices s, t, there is a self-approaching s, t path.
increasing chord graph: For every pair of vertices s, t, there is an s, t path that is self-approaching in both directions.

Self-approaching graph

For every pair of vertices s, t, there is a self-approaching s, t path.
increasing chord graph: For every pair of vertices s, t, there is an s, t path that is self-approaching in both directions.

note that a greedy strategy fails

Questions

1. given a graph drawing, is it self-approaching?
2. given a graph, does it have a self-approaching drawing?
3. given points in the plane, connect them with a self-approaching network

Questions Results

1. given a graph drawing, is it self-approaching? open, but some partial results
2. given a graph, does it have a self-approaching drawing? open, but we can test trees
3. given points in the plane, connect them with a self-approaching network

$$
\text { yes, } \mathrm{O}(n)
$$

1. Given a graph drawing, is it self-approaching?

A natural (harder) problem:
(*) Given a graph and vertices s and t, is there a self-approaching s, t path?
Results:

- Can test a given 2D path in $\mathrm{O}(n)$ time.
- Can test a given 3D path in $\mathrm{O}(n$ polylog(n)) time.
- (*) is NP-complete in 3D.

Testing if a path is self-approaching

naive

Check each edge's slab with the convex hull of the points ahead. Use incremental convex hull algorithm: $\mathrm{O}(n)$.

2. Given a graph, does it have a self-approaching drawing?

Theorem. A tree has a self-approaching drawing iff it is
OR a subdivision of $\mathrm{K}_{1,4}$ a subdivision of a windmill (= crab-free)
This can be testing in time $\mathrm{O}(n)$.

a windmill

the crab

Open. Other graph classes, e.g. planar 3-connected.

Newer Results

On Self-Approaching and Increasing-Chord Drawings of 3-Connected Planar Graphs. Martin Nollenburg, Roman Prutkin, and Ignaz Rutter.
Graph Drawing 2014.
Theorem. Every triangulation has an increasing chord drawing. If the triangulation is a planar 3-tree, the increasing chord drawing can be planar.

Ideas:

- Draw a subgraph of a triangulation (skinny angles)
- for planar 3-trees use Schnyder drawings

Fig. 2: Drawing a triangulated binary cactus with increasing chords inductively. The drawings $\Gamma_{i, \varepsilon^{\prime}}$ of the subcactuses, $\varepsilon^{\prime}=\frac{\varepsilon}{4 k}$, are contained inside the gray cones.

3. Given points, construct a self-approaching network

Such a network will be a spanner.
Natural candidates:

- Delaunay triangulation no
- Manhattan network yes (an $x-y$ monotone path is self-approaching)

size $\Theta(n \log n)$ [Gudmundsson, Klein, Knauer, and Smid, 2007]

Theorem. Given a set P of n points in the plane, there exists an increasingchord Steiner network with $\mathrm{O}(n)$ vertices and edges.

3. Given points, construct a self-approaching network

Theorem. Given a set P of n points in the plane, there exists an increasingchord Steiner network with $\mathrm{O}(n)$ vertices and edges, and we can construct it in $\mathrm{O}(n \log n)$ time.
ingredients: compressed quad tree, well-separated pair decomposition construct union of two networks for pairs s, t depending on angle to x-axis.

final network is octilinear

3. Given points, construct a self-approaching network

 compressed quad tree

Every point can get to every corner of every enclosing square via an $x-y$ monotone path.

3. Given points, construct a self-approaching network

Given $\varepsilon>0$, a well-separated pair decomposition of P is a collection of pairs of sets $\left\{A_{1}, B_{1}\right\}, \ldots,\left\{A_{s}, B_{s}\right\}$, such that

1. $\forall p, q \in P \quad \exists$ unique i with (p, q) or $(q, p) \in A_{i} \times B_{i}$
2. A_{i} and B_{i} are well-separated: the diameters of A_{i} and B_{i} are $\leq \varepsilon d\left(A_{i,}, B_{i}\right)$

There is a well-separated pair decomposition with s in $\mathrm{O}\left(n / \varepsilon^{2}\right)$, and the A_{i} 's and B_{i} 's are squares of the compressed quad tree or points of P.

Final part of construction:

3. Given points, construct a self-approaching network well-separated pair decomposition

$$
\begin{gathered}
\{a, b\},\{c, d\},\{a, \widehat{c}, d\},\{b, \sqrt{\mathrm{c}, d}\} \\
\boldsymbol{V}
\end{gathered}
$$

3. Given points, construct a self-approaching network

Why does this work?
case 1

case 2

Newer Results

Increasing-Chord Graphs On Point Sets.
Hooman Reisi Dehkordi, Fabrizio Frati, Joachim Gudmundsson.
Graph Drawing 2014.

Theorem 1. Given a set P of n points in the plane, there exists a planar increasing-chord Steiner network with $\mathrm{O}(n)$ vertices and edges.

Theorem 2. Given a set P of n points in convex position in the plane, there exists an increasing-chord network without Steiner points with $\mathrm{O}(n \log n)$ vertices and edges.
(ideas on blackboard)

Open Problems

1. given a graph drawing, is it self-approaching?

- in P? NP-complete?
- in 2 D , given s, t, is there a self-approaching s, t path?

2. given a graph, does it have a self-approaching drawing?

- in P ?
- 3-connected planar graphs? (traingulations always do)
- drawing where local routing finds a self-approaching path?

3. given points in the plane, connect them with a self-approaching network

- planar without Steiner points (open even for points in convex position)

