Algorithms for Shortest Paths

course web page: https://cs.uwaterloo.ca/~alubiw/CS860.html

piazza: P https://piazza.com/uwaterloo.ca/fall2014/cs860/home

Learn - for marks

desire path

5 860 Fall 2014	Lecture 1	Anna Lubiw, U. Waterloo
Topics		
 Intro and Dijkstra's a 	algorithm	
	geometric shortest paths	
 basic algorithms for 		
 more graph shortest etc. 	path algorithms: all pairs, kth shortest	t, planar graphs, forbidden pairs,
more geometric short	test path algorithms: link distance, po	olyhedral surfaces, 3D, weighted
region, etc.		
• further topics		
o spanners		
network routing		
 reconfiguration p 	problems	
o touring (TSP)		
o and etc.		

Topics

basic algorithms for graph shortest paths

Dijkstra, Bellman-Ford

more graph shortest path algorithms:

Camil Demetrescu and Giuseppe F. Italiano

all pairs

- Timothy Chan
- kth shortest

- David Eppstein, Finding the k shortest paths, cited by 1293
- planar graphs
- highway graphs
- forbidden pairs
- etc. maybe disjoint paths

computing tiameter

Topics

- more geometric shortest path algorithms:
 - link distance

- polyhedral surfaces

- 3D

- etc.

CS 860 Fall 2014	Lecture 1	Anna Lubiw, U. Waterloo				
Credit requirements						
• 2 assignments (20%)						
 presentation of 1 paper 	 presentation of 1 paper (30%) - 30 minutes + discussion exploration of open question (20%) - written report, approx. 2 pages. Formulate a good open question and suggest how to tackle it. BONUS if you succeed. 					
mini reviews of present	ed papers (30%) - half page reports,	submitted through Piazza.				

CS 860 Fall 2014	Lecture 1	Anna Lubiw, U. Waterloo
Shortest Paths in Graphs	cted $ V =n$ $ E =$	- m
Find the shortest [simple] patl	veights w:E —> R on edges, verti h from s to t. not repeat vertice S	ces s, t
	eduction from $fam. path$ ghts to -1 of weight $\leq -(n-1)$	from s to t
Difficulty is neg	ative weight cycles.	
polynomial time for - directed acyclic graphs	— topological sort	
- non-negative weights	- Dijkstra	
- graphs with no negative v —Bellman-For	veight cycle d. dynamic programi	ming.

CS 860 Fall 2014	Lecture 1	Anna Lubiw, U. Waterloo		
other implementations of Dijkstra's algo				
Dial's method — for integr	er weights in	((o, C)		
DIAL, R. Algorithm 360: Shortest path forest with topological ordering. Commun. ACM 12 (1969), 632-633. USe buckets O . n C max length of shortest paths to store d(u)				
use buckets o	• • n C			
	max length	of shortest paths		
to store d(u)				
just scan once to	hrough backets	O(nC+m) lwork for updates.		
J	Hota	lwork for updates.		
	finat	ilg min		

CS 860 Fall 2014 Lecture 1 Anna Lubiw, U. Waterloo other implementations of Dijkstra's algorithm Dial's method reducing space from nC to C+1 At any point in alg. d(u) values, u ∈ V\S lie in range min. on min+ C - not counting u with d(u)=∞ So use cyclic buckets - space C+1

> Pf. true initially when S' = \(\xi \) 37

update increases min u with finite d(u) - decreases, so still $\leq \min C$ u with $d(u) = \infty$ $d(u) = \min \{d(u), d(v) + w(v, u)\} \leq \min C$ u with $d(u) = \infty$ $d(u) = \min \{d(u), d(v) + w(v, u)\} \leq \min C$ time: O(m+nC)

CS 860 Fall 2014	Lecture 1	Anna Lubiw, U. Waterloo
related papers to present		
Faster algorithms for the s RK Ahuja, K Mehlhorn, J Orlin, RE Ta Cited by 551 Related articles All 19 ve	arjan - Journal of the ACM (JACM), 1990 - dl.acm.org	- radix heaps for Dijkstra
From: http://scholar.google.ca/scholar?q=%EF%	BF%BCFaster+Algorithms+for+the+Shortest+Path+Problem&btnG=&hl=en&	kas sdt=0%2C5
Undirected single-source s M Thorug - Journal of the ACM (JAC) Cited by 307Related articlesAll 11 ve		s in linear time
From: http://scholar.google.ca/scholar?q=Undire +Time&btnG=&hl=en&as_sdt=0%2C5	cted+Single-Source+Shortest+Paths+with+Positive+Integer+Weights+in+Line	ear
	: Theory and experimental evaluation zik - Mathematical programming, 1996 - Springer rsionsCiteSave	- bucket methods can be better than heaps
From: http://scholar.google.ca/scholar?q=Shorte	st+paths+algorithms%3A+Theory+and+experimental+evaluation&btnG=&hl=	
Computing the shortest pa AV Goldberg, C Harrelson - Proceed Cited by 462Related articlesAll 20 ve	th: A* search meets graph theory ngs of the sixteenth annual ACM, 2005 - dl.acm.org	- builds on bi-directional Dijkstra
From: http://scholar.google.ca/scholar?q=Comp	uting+the+Shortest+Path%3A+A%E2%88%97+Search+Meets+Graph+Theor	
	algorithms for minimum spanning trees ar of Computer and System Sciences, 1994 - Elsevier ersionsCiteSave	nd shortest paths — data structure — beyond RAM model.
From: http://scholar.google.ca/scholar?q=Trar	is-dichotomous+Algorithms+for+Minimum+Spanning+Trees+and+Shortest+P	Paths&btnG=&hl=en&as_sdt=0%2C5

