ASSIGNMENT 2

ACKNOWLEDGE YOUR SOURCES.

1. [10 marks] Give a linear-time algorithm to find the convex hull of the union of two convex polygons in the plane. Your algorithm should handle any pair of convex polygons, disjoint, nested, etc.

 Hint. Think about which of the convex hull algorithms we covered in class can be used for this purpose.

2. [10 marks] Steinitz's theorem from 1922 is a fundamental result about the combinatorics of 3-dimensional convex polyhedra. It says that a graph is the graph of a 3D convex polyhedron if and only if the graph is planar and 3-connected. Note that a triangle is a degenerate polyhedron but it's really better to start with the complete graph on 4 vertices.

 The easy direction of the proof is that a convex polyhedron yields a planar 3-connected graph. (Think about it.)

 (a) [7 marks] Prove the hard direction for the special case of a graph that is an “Apollonian network” or “planar 3-tree” defined as follows: start with a triangle and repeatedly choose a triangular face abc and subdivide it into 3 triangles by adding one new vertex x with edges to a, b, and c. Please draw some examples, or see the wikipedia definition of “Apollonian network”.

 Your proof should provide an efficient algorithm to construct the convex polyhedron for any planar 3-tree. (Note: Looking on the internet may lead you astray into the realm of “lifting algorithms”—you don’t need anything so complicated. I recommend trying the problem yourself before searching.)

 (b) [3 marks] What model of computation does your algorithm assume? Do you need a real RAM?

 Hint 1. You may use the following fact. Define the size of a rational number $\frac{a}{b}$ to be the number of bits in a and b. Define the size of a linear equation to be the sum of the sizes of all coefficients. Let A be a system of linear equations. Then there is a polynomial time algorithm (counting bit operations) to find a solution to A if one exists. In particular, if there is a solution, there is one of polynomial size. The algorithm is a careful version of Gaussian elimination, and Schrijver’s book, “Theory of Linear and Integer Programming,” is a good source.

 Hint 2. This fact may be slightly less useful than it first appears.