Given points in \(d \)-dimensional space, find a good "container" = convex polyhedron

Applications: collision detection, pattern recognition, motion planning.

2D - rubber band around pts — see slides.

More formally:

A set \(S \) is **convex** if \(\forall \) pts \(p, q \in S \), all pts on line segment \(pq \) are also in \(S \).

Def: Convex hull \((P) = CH(P) = \)

intersection of all convex sets containing \(P \)

Note: \(CH(P) \) is convex.

The fact that \(CH(P) \) is a convex polyhedron with vertices in \(P \) needs proof — LATER

Convex hull algorithms in 2D

- almost any algorithmic paradigm will work, so this problem is great for algorithm courses.

Incremental Algorithm — add pts in \(x \)-order

general situation:

- We have \(CH(\{p_1, \ldots, p_{i-1}\}) = H_{i-1} \) — convex hull
- as a doubly linked list
- \(p_{i-1} \) is a vertex of \(H_{i-1} \)

Want \(H_i = CH(\{p_1, \ldots, p_i\}) \)

Must find upper & lower bridge — edges incident to \(p_i \) in \(H_i \)

and their other endpoints \(p_u \& p_e \).
Scan forward (clockwise) around \(H_{i-1} \) from \(p_{i-1} \) to find lower bridge to \(p_e \)

Scan backward around \(H_{i-1} \) from \(p_{i-1} \) to find upper bridge to \(p_u \)

Note that segment \(p_i p_{i-1} \) is outside \(H_{i-1} \) because \(p_{i-1} \) is rightmost pt of \(H_{i-1} \).

As we scan forward around \(H_{i-1} \), how do we identify \(p_e \)?

Test: is \(p_s \) above/below line \(p_i p_r \)

Timing Analysis

Adding one point can take \(\Theta(n) \) time, so total is \(O(n^2) \). Is that bad?

Amortized Analysis: each input point is deleted from the \(\mathcal{H} \) at most once at \(O(1) \) cost.
So total time is \(O(n) + \text{time to sort} = O(n \log n) \)
Graham's Algorithm (another sorting-based alg.)
sort pts. radially around some point X inside
the convex hull. (how to compute X ?)

Then start from \(p_1 = \min x \) coordinate
and add the points in sorted order,
repeatedly removing the 2nd last point
if it forms a reflex angle

e.g. here we remove \(p_1 \), then \(q \)

Note: to find \(X \), take avg. of 3 pts not on line.
Note: to sort radially, do not compute angles, use sidedness.

Divide and Conquer.
- divide pts in two by vertical line (sort(once!) by x coord)
- recurse on each side
- combine ?

To combine:
Find upper and lower
bridges.
Start with line segment
from max pt on left
to min pt on right.
Walk up/down triangle
by triangle
(similar to incremental)
Combine step takes $O(n)$.

Total time $T(n) = 2T\left(\frac{n}{2}\right) + c \cdot n$
+ time for initial sort

Solves to $O(n \log n)$
(prove by induction).

Lower Bound

$\Omega(n \log n)$ to compute ordered convex hull in 2D
on a RAM with $+, -, \times$

Proof: Reduce sorting to finding the convex hull

map points to parabola
$x \rightarrow x^2$

convex hull gives sorted order

input points we want to sort

Note: Even finding the CH vertices (unsorted)
takes $\Omega(n \log n)$ - different pf.
Output-sensitive algorithm

Idea:

Express runtime as function of n, input size

Gift-wrapping (Jarvis's March) $- h$, output size

$p_1 = \min x$ then $\max y$

$l_i = \text{vertical line through } p_i$

"wrap" line (rotate thru p_i) until it hits the first point p_2

Each "wrap" is like finding a max

Compare p_k, p_e by testing:

is p_e above/below $p_i p_k$

Time for wrap $O(n)$

Total time $O(n^2)$ in worst case

But as a function of n and h, size of CH:

$O(n \cdot h)$
What is the best alg. in terms of \(n \) and \(h \) ?
\(O(n \log h) \) - first developed in '86, Kirkpatrick & Seidel improved by Timothy Chan '96

Chan's Algorithm
Assume \(h \) is known (will fix this later)
\(m = h \)
Partition the points into \(\lceil \frac{n}{m} \rceil \) subsets of \(\leq m \) points each (arbitrarily)
Find CH of each subset using, e.g. Graham's Alg.

Time so far \(O(\frac{n}{m} \cdot m \log m) = O(n \log m) \)

Now run Gift Wrapping, but for the wrap step, don't check all \(n \) points

We only need to check the most extreme pt. (wrt rotating line thru \(p_i \)) of each of the \(\lceil \frac{n}{m} \rceil \) convex hulls

How to find the most extreme pt of a convex hull:

Use binary search
Have subchain of candidates
Test midpoint to cut chain in half
Use sidedness tests
Time for wrap step: \(O\left(\frac{n}{m} \log m \right) \)
If we do all \(h \) wrap steps we find the CH total time is \(O\left(\frac{h}{m} \frac{n}{m} \log m \right) + O\left(n \log m \right) \)
good if \(h = m \) — get \(O\left(n \log h \right) \)

How do we find the right \(m \)?
we will try out values of \(m \).

Careful: if \(m \) is small \(O\left(\frac{h}{m} \frac{n}{m} \log m \right) \) is too big (more than \(O(hn) \))
So stop gift-wrapping after \(m \) steps.
Then time to try \(m \) is \(O(m \frac{n}{m} \log m) = O(n \log m) \)
If \(m > h \) we compute the CH

How do we find the right \(m \)?
Related problem
Search in a sorted but unbounded array of distinct natural numbers
(in bounded array \(A[1..k] \) can search in \(\log k \) steps)

use doubling technique:
Try \(i = 1, 2, 4, 8 \ldots \)
will find \(A(2^i) \leq x \leq A(2^{i+1}) \)
\(k \)-value we want
\[\log x + 1 \text{ steps.} \]
Then use binary search — another \(\log x \)
So the idea is to try an increasing seq. of m values $m = 2, 4, 8, 16, \ldots, 2^i, \ldots$ until we get one bigger than h.

First try

Time $\geq \sum_{i=1}^{\log h} n \log 2^i = n \sum_{i=1}^{\log h} i = n \log h \cdot i$. Too big!

Second try

Time $\geq \sum_{i=1}^{\log h} n \log 2^{2^i} = n \sum_{i=1}^{\log h} 2^i = n \log h$.

$2^i \geq h \Rightarrow i \geq \log h$. This works!

Next: Convex hull in higher dimensions.