Given points in d-dimensional space, find a good “container” = convex polytope. Many applications, e.g. collision detection, pattern recognition, motion planning . . .

In 2D, imagine putting a rubber band around the points
In 3D, wrap with shrink-wrap

More formally:

A set is **convex** if for every two points \(p, q \) in the set, all points on the line segment \(pq \) are also in the set.

The **convex hull** of set \(S \) is the intersection of all convex sets that contain \(S \).

Note that the convex hull of \(S \) is convex. The fact that the convex hull of a set of points \(S \) is a convex polytope whose vertices are points of \(S \) requires a proof, which we will do later.

https://brilliant.org/wiki/convex-hull/
Convex Hull Algorithms in 2D

Almost any algorithmic paradigm will work, so this problem is a great one for Algorithms courses. See [Zurich notes, Chapter 4].

Incremental Algorithm — add points one by one in sorted order by x coordinate

Example
Incremental Algorithm — add points one by one in sorted order by x coordinate

general situation

We have:
- \(H_{i-1} = \text{CH}(p_1, \ldots, p_{i-1}) \)
 as a doubly linked list
- \(p_{i-1} \) is a vertex of \(H_{i-1} \)

We want:
- add \(p_i \) to get \(H_i \)
- \(p_i \) is joined to:
 - \(p_u \) by upper bridge
 - \(p_l \) by lower bridge
Incremental Algorithm — add points one by one in sorted order by x coordinate

- starting from p_{i-1} scan forward (clockwise) to find p_l

- starting from p_{i-1} scan backward (counterclockwise) to find p_u

invariant: the line segment from p_i to the current vertex is outside the CH (true initially for line segment p_ip_{i-1})

How to stop the scan

If p_s is above line p_ip_r, then $p_e < p_r$ and lower bridge is p_ip_e

else scan moves to p_s and p_r will be removed.
Run time

Adding one point

amount of work is like # vertices we remove
could be $\Theta(n)$

So is it $O(n^2)$?

Amortized analysis

we delete a vertex at most once through the course of the algorithm

So total is $\Theta(n)$

+ sorting $\Theta(n \log n)$

Total: $\Theta(n \log n)$.
Graham’s Algorithm

Another sorting-base approach.
1. Sort the points radially around some point X inside the convex hull.

2. Let $p_i =$ point of min x-coordinate (then max y)

 add the points in the (cyclic) sorted order

 repeatedly remove the 2nd last point if it is not convex

To find X: take average of 3 input points not collinear.

To sort the points radially around X: Do not compute angles, use sidedness test.

Runtime: $O(n \log n) + O(n)$
Divide and Conquer Algorithm

Divide the points in two by a vertical line (easy if we sort by x coordinate).
Recurse on each side.
Then combine the two sides.

To combine
Find upper & lower bridge
Start with line segment e
from max x on left
to min x on right
Walk up triangle by triangle
to find upper bridge
Walk down lower
Divide and Conquer Algorithm

Runtime

\[T(n) = 2T\left(\frac{n}{2}\right) + cn \]

solves \(T(n) = O(n \log n) \)

+ initial sort \(O(n \log n) \)

Total: \(O(n \log n) \).

Exercise: can you get \(O(n \log n) \) by dividing arbitrarily? (into sets of size \(\frac{n}{2} \))

don't do it by cases!
Lower Bound

There is an \(\Omega(n \log n) \) lower bound on computing the ordered convex hull in 2D on a RAM (Random Access Machine) with +,-,x.

Proof. Reduce sorting to finding the convex hull.

map points to parabola
\[x \rightarrow (x, x^2) \]

Convex Hull of these points (in order) gives sorted order.

input points we want to sort

Note: even finding the (unsorted) CH vertices takes \(n \log n \) (needs different proof)
Output sensitive algorithm

Idea:

Express the run time as a function of input size, n, and output size, h.

Gift-Wrapping (or “Jarvis’s March”)

$p_1 := \text{min } x \text{ then max } y$

$l_1 := \text{vertical ray through } p_1$

“wrap” line (or ray) l_1 by rotating through p_1 until it hits first point p_2
How to “wrap”

Each “wrap” is like finding a min

Compare \(P_k \) and \(P_e \) by testing is \(P_e \) above/below \(P_k \)

Time for one wrap step is \(O(n) \) (like finding min)

Runtime of Gift Wrapping Algorithm:

How many wrap steps? \(h \) until we wrap around to \(P_i \)

Total time is \(O(n \cdot h) \)

Worst case \(h = n \) this is \(O(n^2) \)

Worse than \(O(n \log n) \)

But if \(h \) is small \(O(n \cdot h) \) is better than \(O(n \log n) \)
So, what is the best algorithm in terms of n and h?

$O(n \log h)$ algorithm — first developed by Kirkpatrick and Seidel 1986, uses linear time median finding.

improved by Timothy Chan, 1996.

Chan’s Algorithm

Assume h is known (will fix this later)

$m \leftarrow h$

Partition points in \(\lceil \frac{n}{m} \rceil \) subsets of \(\leq m \) points (arbitrarily)

Find CH of each subset, use e.g. Graham or incremental

Time so far \(O \left(\frac{n}{m} \cdot m \log m \right) = O(n \log m) \)
Next run Gift Wrapping, but for the wrap step, don’t check all n points.

We only need to check the most extreme (= min. radially) point of each of the $\lceil \frac{n}{m} \rceil$ convex hulls.

How to find the most extreme point of a convex hull:

- Use binary search on $a \rightarrow b$
- Have a subchain containing extreme pt.
- Test midpoint c
- Decide which subchain a, c versus c, b.

Runtime: $O(\log m)$
Time for one wrap step: \(O\left(\frac{n}{m} \log m\right) \)

- find extreme in one set
- look at all \(\frac{n}{m} \) sets.

How many wrap steps should we do?

If we did \(h \) wrap steps, we’d have CH

- cost \(O(h \frac{n}{m} \log m) + O(n \log m) \)

- good if \(h = m \) but bad if \(m \) is too small \(O(n \cdot h) \).

How do we find the right \(m \)?

Try different values of \(m \).

- do \(m \) wrap steps \(O(m \frac{n}{m} \log m) + O(n \log m) \)

If we don’t get back = \(O(n \log m) \)

- to \(P \), we know \(m \) was too small.

If we try any \(m \geq h \) we get the CH.
How do we find the right m? And don't try too many values of m.

A related problem:

Search in a sorted but unbounded array of distinct natural numbers. (in a bounded array $A[1 \ldots k]$ we can search in log k steps.)

use doubling trick

try $i=1, 2, 4, 8, \ldots$

$A[2^i] < x < A[2^{i+1}]$

$log x + 1$ steps to do this

Then use binary search in $A[2^i, 2^{i+1}]$

another $log x$.
How do we find the right m?

Try an increasing sequence of values of m until we get one bigger than h (i.e., one where the algorithm finds the CH)

```
try m = 2, 4, 8, 16 ...

m = 2^i

work to do this

2^i \geq h \quad i \geq \log h
```

```
\text{log h}
\sum_{i=1}^{\log h} n \log 2^i = n \sum_{i=1}^{\log h} i = n \left(\frac{\log h \cdot (\log h + 1)}{2}\right) \quad \text{Too big, want } n \log h
```

```
\text{log log h}
\sum_{i=1}^{\log \log h} n \log (2^{2^i}) = n \sum_{i=1}^{\log \log h} 2^i = n \sum_{i=1}^{\log \log h} \log \log h

= n \log h \quad \text{Right bound}
```

Summary

- algorithms for Convex Hull in the plane

References

- [CGAA] Section 1.1
- [Zurich notes] Chapter 4
- [O’Rourke] Chapter 3

Next: convex hull in higher dimensions.