Recall

Every simple polygon can be triangulated.

Following the proof yields an obvious $O(n^4)$ time algorithm, which can be improved to $O(n^2)$.

Today: practical $O(n \log n)$ time algorithm.

History:

- 1978. First $O(n \log n)$ algorithm. Garey, Johnson, Preparata, Tarjan.
- 1984. Simpler. Fournier and Montuno. this is what we'll study
- . . . $O(n \log \log n)$. . . $O(n \log^* n)$. . .
- 1991. O(n) algorithm. Chazelle. But it is too complicated to implement. (Uses polygon-cutting theorem, planar separator theorem, but no fancy data structures.)

There is also an $O(n \log^* n)$ randomized algorithm by Seidel.

Triangulation Algorithm

Assume points have distinct y coordinates (else imagine tipping slightly).

Note: degeneracy and precision are big topics — we may cover some.

Step 1. Find a *trapezoidization* of the polygon — from each vertex shoot a horizontal line inside the polygon until it hits the boundary.

Step 2. From the trapezoidization, compute a triangulation.

Step 2 takes O(n) time.

Step 1, using plane-sweep, takes $O(n \log n)$.

Other algorithms make step 1 faster.

Step 2. From trapezoids to triangles.

First join trapezoids to form *unimonotone* polygons.

Every trapezoid has a vertex on the bottom and on the top (exactly one, since we assumed distinct y-coordinates).

If these are not joined by an edge, then add a chord.

Step 2. From trapezoids to triangles.

Resulting pieces are *unimonotone* polygons — with vertices in order of y-coordinate.

So every trapezoid is (or on left)
and the trapezoids above
and below must be of the same type.

Triangulating a unimonotone polygon in linear time.

Any convex vertex (except p_1 , p_n) provides an ear, and cutting off the ear leaves a unimonotone polygon. Note that there is such a convex vertex.


```
v := p3
loop
  while prev(v) ≠ p1 and prev(v) convex
  cut off the ear at prev(v)
   update prev(), next() pointers
  EXIT if the polygon is now empty
v := next(v)
```

Correctness:

RunTime: (v)

Step 1. Trapezoidization.

Use Plane-Sweep, a basic technique in planar computational geometry. First used by Bentley and Ottman, 1979 to find intersections of line segments in the plane.

Plane Sweep (as a general paradigm)

Sweep a horizontal scan line across the plane, from bottom to top, analyzing the sequence of 1-dimensional cross-sections and the changes to them.

Cross-section = list of edges that cross the scan line (left to right)

The cross section only changes at vertices. — and when line segments cross.

Plane Sweep Algorithm (for non crossing segments)

order vertices by y coordinate (assume distinct)

initialize cross-section = \emptyset (at y = $-\infty$)

for each vertex p in order

update cross-section at p

possible updates:

one edge (e) is replaced by another (f)

two edges are deleted two edges appear.

Plane Sweep Algorithm (for non crossing segments)

how to update the cross-section at p

locate p in the current cross section

determine which situation (1, 2, or 3) applies and perform appropriate update

how to locate p in the current cross section

the cross section contains edges ordered by x

Just need an elementary test:

Does p lie left/right of edge e

Elementary test needed by Plane Sweep:

Sidedness Test: Input: 3 points, A, B, P. Is P on/left/right of line through A and B?

$$P=(P_2,P_y)$$

$$A=(A_2,A_y)$$

How to solve this:

? compute equation of line through
$$A,B$$
 — careful, division by 0 or E .

Test signed area of $\triangle PAB = A$
 $2A = \text{cross product of } B-A \text{ and } P-A$
 $= (B_z - A_z)(P_y - A_y) - (P_z - A_z)(B_y - A_y)$

Note: integer arithmetic (if input is integer)

 P is to left P
 P is to left P
 P is P and P integer P
 P is P and P in P in P and P in P in P in P in P and P in P i

Elementary test needed by Plane Sweep:

Sidedness Test: Input: 3 points, A, B, P. Is P on/left/right of line through A and B?

$$P=(P_{x},P_{y})$$

$$A=(A_{x},A_{y})$$

Exercise: Use the sidedness test to test if two line segments intersect. Note how this avoids special cases for vertical lines, parallel lines, etc.

Data structure for Plane Sweep

maintain ordered list (the list of edges crossing the scan line) to allow find, insert, delete

Timing for Plane Sweep

Details of plane-sweep for trapezoidization.

As the cross section is updated, collect information on each trapezoid

- left & right polygon edges, bottom and top coordinates
- bottom and top neighbours (note 0, 1, or 2 of each)

one trapezoidends, one starts P one trapezoid ends two trapezoids end, one starts
one trapezoids end, one starts
two trapezoids end, one starts

General Plane Sweep — segments may cross (The above plane sweep assumed that segments do not cross.)

The order of segments changes at an intersection point — we must add the intersection point as an "event" (in addition to the endpoints).

How do we find these events? By checking pairs of adjacent edges in cross-sections.
Use a Priority Queue (PQ) to store events.

initialize cross-section = \emptyset (at y = $-\infty$)

Priority = y-coordinate initialize PQ to contain vertices

while PQ not empty

get next event from Priority Queue update cross-section at the event

if a new pair of edges becomes consecutive in the cross section, test for intersection and add event

 $O(n \log n + k \log n)$ $k = number of intersections (might be <math>n^2$) See [CGAA], or [Zurich Notes] — discusses primitives

improvement to $O(n \log n + k)$ (hard) further improvement to O(n) space

d https://doi.org/10.1145/220279.220302

An optimal algorithm for finding segments intersections

IJ Balaban - Proceedings of the eleventh annual symposium on ..., 1995 - dl.acm.org

Other applications of plane-sweep

- find all k intersections of n line segments — there may be Theta (n^2)

[Zurich notes]

general plane sweep solves this in $O(n \log n + k \log n)$ time.

- Robust plane sweep for intersecting segments

 d https://doi.org/10.1137/S0097539797329373

 JD Boissonnat, FP Preparata SIAM Journal on Computing, 2000 SIAM
- Crossing patterns in nonplanar road networks

 D Eppstein, S Gupta Proceedings of the 25th ACM SIGSPATIAL ..., 2017 dl.acm.org

CS763-Lecture2 14 of 19

Other applications of plane-sweep

- map overlay

[Zurich notes]

Overlaying simply connected planar subdivisions in linear time

d https://doi.org/10.1145/220279.220292

U Finke, KH Hinrichs - Proceedings of the eleventh annual symposium ..., 1995 - dl.acm.org

- Boolean operations on polygons

- Is a polygon simple?

Triangulating a polygonal region.

More general than polygon — *polygonal region* = polygon with holes

Plane Sweep for non-crossing segments still works. $O(n \log n)$ (Note that we did not require connectedness of the boundary.)

But faster algorithms (e.g. Chazelle's linear time algorithm) do not work.

A lower bound for triangulating a polygonal region.

Asano, Asano, Pinter, 1986.

Idea: the problem is as hard as sorting, so requires $Omega(n \log n)$.

Must be careful of the model of computation.

Reduce sorting to triangulation.

Given n distinct integers $x_1, x_2, \ldots x_n$ to sort, construct a polygonal region such that triangulating gives the sorted order.

polygonal region = rectangle with n square holes

Polle in region

The for each xi

Following links gives sorted order.

A lower bound for triangulating a polygonal region.

Note that this requires indirect addressing.

Thus, we need a stronger model of computation than the comparison-based model where sorting has an easy $Omega(n \log n)$ lower bound.

Model: unit cost RAM (Random Access Machine) with

- indirect addressing
- branching based on comparisons
- arithmetic +, -, x

There is an $Omega(n \log n)$ lower bound for sorting on this model (Paul and Simon, 1982).

Summary

- plane sweep algorithm (basic tool in 2D)
- $O(n \log n)$ triangulation for polygons and polygonal regions
- pay attention to basic steps of geometric algorithms
- pay attention to model of computing for lower bounds

References

- [CGAA] Sections 3.2, 3.3 (slightly different algorithm)
- [Zurich notes] Appendix A
- [O'Rourke] 2.1 2.4