Recall

Triangulations of point sets/polygons. Recall what we've seen:

- Delaunay triangulation of point set in R^d, O(n log n) algorithm in R².
- O(n) algorithm to triangulate any polygon in R² (Chazelle's hard algorithm)

Applications and criteria (this is the outline for the next lectures)

- angle criteria for meshing
- length criteria: minimum weight triangulation
- constrained triangulations (when certain edge must be included)
- meshing triangulations with Steiner points
- flip distance

- morphing
 today
 curve and surface reconstruction
 medial axis and straight skeleton

CS763-Lecture13 1 of 32

Application of Triangulations: Morphing

500 Years of Female Portraits in Western Art

https://www.youtube.com/watch?v=nUDIoN-_Hxs

Choose corresponding points, and make the "same" triangulation on both. Then morph the triangles.

Alexei Efros

http://vision.gel.ulaval.ca/~jflalonde/cours/4105/h16/tps/results/tp3/JIZHA16/index.html

Two aspects to this morphing approach:

- 1. how to triangulate "compatibly"
- 2. how to morph compatible triangluations

Compatible triangulations

Given two (unlabelled) point sets, triangulate them the "same" way.

Two triangulations are *compatible* if we can map the points p of the first set to points f(p) of the second set (one-to-one, onto) s.t. pqr is a clockwise triangle iff f(p)f(q)f(r) is a clockwise triangle.

Compatible triangulations

an interesting open side question:

Conjecture: Given two points sets each with n points total, and h points on the convex hull, they have a compatible triangulation.

This assumes no 3 points collinear (otherwise false).

Aichholzer, Oswin, Franz Aurenhammer, Ferran Hurtado, and Hannes Krasser. "Towards compatible triangulations." *Theoretical Computer Science* 296, no. 1 (2003): 3-13.

d https://doi.org/10.1016/S0304-3975(02)00428-0

also see Devadoss O'Rourke book

back to what's relevant for morphing:

Theorem. Two simple polygons on n vertices can be compatibly triangulated with Theta(n^2) Steiner points.

Aronov, Boris, Raimund Seidel, and Diane Souvaine. "On compatible triangulations of simple polygons." *Computational Geometry* 3.1 (1993): 27-35.

d https://doi.org/10.1016/0925-7721(93)90028-5

compatible triangulations of polygons

compatible triangulations using 1 Steiner point inside and 1 Steiner point outside

Craig Gotsman, Vitaly Surazhsky

Morphing compatible triangulations

The face morphing projects just use a linear mapping of each triangle.

such morphs do not preserve planarity in general

Planarity preserving morphs

- existence first proved by Cairns, 1944
- solution by Floater, Gotsman, Surazhky 2000, using Tutte's graph drawing algorithm. No explicit vertex trajectories.
- piecewise linear soluton

Alamdari, S., Angelini, P., Barrera-Cruz, F., Chan, T.M., Da Lozzo, G., Di Battista, G., Frati, F., Haxell, P., Lubiw, A., Patrignani, M., Roselli, V., Singla, S., Wilkinson, B., 2017. How to morph planar graph drawings. SIAM J. Comput.

d https://doi.org/10.1137/16M1069171

CS763-Lecture13 7 of 32

morphing using Floater, Gotsman, Surazhky method

Craig Gotsman, Vitaly Surazhsky

Curve and surface reconstruction

Curve and surface reconstruction

digital Michaelangelo project

Curve and surface reconstruction

alpha-shapes and alpha-hulls

pushing lines against a point set gives the convex hull line = infinite radius circle

pushing discs of smaller radius gives more refined "shape" and detects holes

alpha-shapes and alpha-hulls

when alpha is small, the points remain isolated; when alpha is large the alpha-hull approaches the convex hull

alpha-shapes and alpha-hulls

Teichmann, Capps

issues:

- what is the "right" value of alpha?
- if points are not uniform then no single value of alpha will work.

Edelsbrunner, Herbert, and Ernst P. Mücke. "Three-dimensional alpha shapes." *ACM Transactions on Graphics (TOG)* 13.1 (1994): 43-72. cited by 1939

d https://doi.org/10.1145/174462.156635

Crust Algorithm for surface reconstruction

in 2D this is curve reconstruction

CS 763 F20

figures from Devadoss, O'Rourke

points on the curve must be sufficiently dense in order to reconstruct the curve

Dey, Tamal K. Curve and surface reconstruction: algorithms with mathematical analysis. Vol. 23. Cambridge University Press, 2006.

Amenta, Nina, Marshall Bern, and David Eppstein. "The crust and the βskeleton: Combinatorial curve reconstruction." Graphical models and image processing 60.2 (1998): 125-135.

d https://doi.org/10.1006/gmip.1998.0465

CS763-Lecture13 14 of 32

input points

Voronoi diagram

Delaunay triangulation of original points S + Voronoi vertices

edges with both endpoints in S

Medial axis of a convex polygon = Voronoi diagram of edges of polygon

= locus of centers of circles inside polygon that touch boundary at 2 or more points (centers of maximal inscribed discs)

Medial axis of a convex polygon = Voronoi diagram of edges of polygon

= grow the vertex angle bisectors by shrinking the polygon. The trajectories of the vertices form the medial axis.

every edge of the medial axis is a bisector of two polygon edges

Medial axis of a convex polygon = Voronoi diagram of edges of polygon

There is an O(n) time algorithm. Here is a simpler O(n log n) algorithm:

Medial axis of a non-convex polygon = locus of centers of maximal inscribed discs

Joseph O'Rourke

Figure 5.6: The central arc lies on the parabola determined by the vertex v and the edge e, where the maximal disks centered on that arc touch e and v.

can be found in time O(n)

A physical model for medial axis

- Imagine the polygon is drawn on the prairie, and you light fires along the boundary. Medial axis = points where fire is quenched (fire meets other fire)
- pouring sand

Voronoi diagram

bradmohr

CS763-Lecture13 20 of 32

A physical model for medial axis

Applications of medial axis

Blum transform for shape recognition

Vadim Shapiro

character recognition

的的

shape matching

http://www.cs.wustl.edu/~taoju/research/ma_final.pdf

Straight Skeleton — similar to medial axis but avoids curved sections

Grow the vertex angle bisectors by shrinking the polygon. The trajectories of the vertices form the straight skeleton.

For a convex polygon, this is the same as the medial axis

But for a non-convex polygon, it is not the same:

Straight Skeleton — similar to medial axis but avoids curved sections

Difference between medial axis and straight skeleton — only for non-convex polygons:

offset curve with mitred caps

24 of 32 CS763-Lecture13

Straight skeleton algorithms

idea of previous algorithm gives O(n^2 log n) because the next ray intersection need not be between consecutive rays

improvements:

$$O(n^{8/5+\epsilon})$$
 for any fixed $\epsilon > 0$

Eppstein, David, and Jeff Erickson. "Raising roofs, crashing cycles, and playing pool: Applications of a data structure for finding pairwise interactions." *Discrete & Computational Geometry* 22.4 (1999): 569-592

d https://doi.org/10.1007/PL00009479

$$O(n^{4/3+\epsilon})$$
 time for any $\epsilon > 0$

Vigneron, Antoine, and Lie Yan. "A faster algorithm for computing motorcycle graphs." *Discrete & Computational Geometry* 52.3 (2014): 492-514.

d https://doi.org/10.1007/s00454-014-9625-2

Straight skeleton applications: designing roofs

CS 763 F20

Straight skeleton application: fold and cut problem

Fold and Cut Theorem. For any (slightly perturbed) polygon on a piece of paper there is a flat folding of the paper that puts all the polygon edges on one line and puts the inside and outside of the polygon on opposite sides of the line.

solution for triangle:

general solution to fold-and-cut

MUST use angle bisector at each vertex.

Thus, use straight skeleton.

MAY use perpendiculars on any edge and we need some of these to get flat folding

Example.

All folds except the pink ones are straight skeleton folds.

In degenerate cases, this bouncing can be infinite.
This is why we may need to perturb the input polygon slightly.

fold-and-cut examples

Demaine, Erik D., Martin L. Demaine, and Anna Lubiw. "Folding and one straight cut suffice." *Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms*. Society for Industrial and Applied Mathematics, 1999.

http://erikdemaine.org/foldcut/

Summary

- compatible triangulations and morphing
- curve and surface reconstruction
- medial axis (Voronoi diagram of edges)
- straight skeleton

References

- papers and books listed throughout