
CS 763  F22 A. Lubiw, U. WaterlooLecture 19: Spanners, Routing, Networks

Given points in the plane, defining a complete graph G with Euclidean lengths, 
find a sparse subgraph H  that approximates distances in G, i.e., we want

Geometric Spanners

the min t  is called the spanning ratio or “stretch factor” of H.  H is a spanner.

Criteria for H :

- minimize the number of edges

- minimize the sum of edge weights

- make H  “nice” — bounded degree, planar, etc.

- fault-tolerance (H should be well-connected)

(More generally spanners can be defined for any edge-weighted graph G.)

survey Joseph SB Mitchell and Wolfgang Mulzer. "PROXIMITY ALGORITHMS."
Chapter 32 in Handbook of Discrete and Computational Geometry, 2016.
(see Lecture 1 slides for link to the Handbook in the library)
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Given points in the plane, defining a complete graph G with Euclidean lengths, 
find a sparse subgraph H  that approximates distances in G, i.e., we want

Geometric Spanners

the min t  is called the spanning ratio or “stretch factor” of H.  H is a spanner.

What about a tree of minimum spanning ratio (called the 
“minimum dilation spanning tree”)? 

NP-hard even for points in the plane   

Can H be a tree?

Otfried Cheong, Herman Haverkort, and Mira Lee. "Computing a minimum-dilation 
spanning tree is NP-hard." Computational Geometry 41, no. 3 (2008): 188-205.

https://doi.org/10.1016/j.comgeo.2007.12.001

(More generally spanners can be defined for any edge-weighted graph.)

The Minimum Spanning Tree (MST) has n-1 edges, and min sum 
of weights but its spanning ratio is Theta(n) in the worst case.
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The greedy spanner

H  :=  ∅ 
For each edge e = (u,v) of G in order from min to max weight

if dH(u,v) > t dG(u,v) then add e to H

https://doi.org/10.1007/BF02189308

Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. "On sparse spanners of 
weighted graphs." Discrete & Computational Geometry 9, no. 1 (1993): 81-100.

input: point set and desired spanning ratio t

Can be implemented in  O(n2 log n).  For constant t, H has bounded degree, 
hence O(n) edges.   Total weight is O((log n)weight(MST)).

t = 2 t = 1.1

https://en.wikipedia.org/wiki/Greedy_geometric_spanner

for point in 
the plane
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wikipedia

The Yao graph — a bounded degree spanner

To construct Yk:  Make k equal-size cones around each point, and connect the point 
to the nearest neighbour in each cone.

k = 8

Theorem. Yk  is a t-spanner for t = 1 + O(1/k)

This is easy to prove. 

CS763-Lecture19 4 of 17
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Theorem.  The Delaunay graph is a t-spanner for   

Planar Spanners

We cannot do better than √ 2 spanner: 

1.5932  ≤  t  ≤  1.998

This lower bound was improved to 1.4308 in 2016.

P. Bose, M. Smid / Computational Geometry 46 (2013) 818–830 821

Fig. 3. (a) Construction providing a lower bound of π/2 − ε on the spanning ratio. (b) Construction providing lower bound of 1.581. The basic construction
consists of two unit semicircles separated by a fixed distance that is optimized to maximize the spanning ratio. The shortest path from p to p′ in the
Delaunay triangulation has spanning ratio at least 1.581.

Open Problem 3. What is the best lower bound on the worst-case spanning ratio of the Delaunay triangulation? Can one
construct a point set such that the spanning ratio of its Delaunay triangulation is strictly greater than 1.5932? For points in
convex position, can one construct a point set such that the spanning ratio is strictly greater than 1.581?

Although all of the known upper bounds on the spanning ratio of planar graphs are obtained using some variant of the
Delaunay graph, the following question still remains open.

Open Problem 4. What is the best upper bound on the spanning ratio of a plane graph? The best that is currently known
is an upper bound of 1.998.

2.3. Minimum spanning ratio

One question that comes to mind when contemplating the above problem is how to compute, for a given point set, the
plane graph with minimum spanning ratio. The complexity of the problem is unknown, however, there is strong evidence
to suggest that the problem is NP-hard. Recently, Klein and Kutz [45] showed that computing, when given a point set and
a real number t > 1, the t-spanner with the minimum number of edges is NP-hard. In fact, Cheong et al. [23] showed that
even computing the spanning tree with minimum spanning ratio of a given point set is an NP-hard problem. However, their
proof does not imply the NP-hardness of the problem in the plane setting because the spanning tree of minimum spanning
ratio need not be plane. This leads to the following two open problems:

Open Problem 5. Is computing the plane graph of minimum spanning ratio for a given point set an NP-hard problem?

Open Problem 6. Is computing the plane spanning tree of minimum spanning ratio for a given point set an NP-hard prob-
lem?

2.4. α-diamond spanners

The empty circle property is the key property of Delaunay triangulations that is exploited to prove the upper and lower
bounds on the spanning ratio. However, there does not seem to be anything particularly special about circles. One can view
the empty circle property as each edge of the triangulation having an empty buffer region on one side of the edge. In other
words, each edge of the triangulation has a fixed proportional amount of space on one of its sides that is guaranteed to be
empty of points. Das and Joseph [29] formalized this notion in the following way.

Definition 1. Given a point set P and two points x, y ∈ P , the segment xy has the α-diamond property provided that at
least one of the two isosceles triangles with base xy and base angle α does not contain any point of P . Note that the apices
of the isosceles triangles need not be points of P . See Fig. 4.

A plane graph has the α-diamond property when every edge of the graph has the α-diamond property for some fixed α.
Moreover, a plane graph has the d-good polygon property if for every visible pair of vertices a,b on a face f , the shortest
distance from a to b around the boundary of f is at most d times the Euclidean distance between a and b. Two vertices
a,b form a visible pair provided that the segment ab does not intersect the exterior of the face. Das and Joseph showed
that an α-diamond plane graph with the d-good polygon property has a spanning ratio of at most 8dπ2/(α2 sin2(α/4)).
This was slightly improved to 8d(π − α)2/(α2 sin2(α/4)) [19]. Notice that when the value of d is 1, then a plane graph
with the α-diamond property must be a triangulation. Das and Joseph showed that certain special types of triangulations
possess the α-diamond property for fixed values of α. The empty circle property implies that Delaunay triangulations
have the α-diamond property for α = π/4. Das and Joseph also proved that the minimum weight triangulation and the

[Xia 2011] 

a lower bound

For points in the plane, what is the min spanning ratio achievable by a planar 
spanner (in the worst case)?

Best known upper bound is 1.998 — achieved by the Delaunay triangulation.
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The idea of proving that the Delaunay graph is a t-spanner (for a larger t).
Theorem.  The Delaunay graph is a t-spanner for   1.5932  ≤  t  ≤  1.998

Bose and Smid

820 P. Bose, M. Smid / Computational Geometry 46 (2013) 818–830

Fig. 2. One-sided Voronoi path from x to y shown in bold.

A natural question that Chew [26] posed is whether or not the standard (i.e., Euclidean) Delaunay triangulation is a
spanner. By placing the points on the boundary of a circle, Chew noticed that the spanning ratio of the Delaunay triangula-
tion can be at least π/2 − ε for any ε > 0; see Fig. 3(a). This led him to conjecture that not only is the standard Delaunay
triangulation a spanner but that its spanning ratio is strictly less than 2. This conjecture was recently settled by Xia [57]
who showed that the Delaunay triangulation has a spanning ratio of at most 1.998.

The first to show that the standard Delaunay triangulation of a point set is indeed a spanner were Dobkin et al. [30].
They showed that the spanning ratio of the Delaunay triangulation is at most (1 +

√
5)π/2 ≈ 5.08.

Almost all of the proofs in the literature are constructive. We give the reader a flavour of how some of these proofs
proceed by highlighting one of the cases in Dobkin et al.’s proof. Let DT(P ) be the standard Delaunay triangulation of P
and Vor(P ) the Voronoi diagram of P . It is well-known that DT(P ) and Vor(P ) are duals of each other. Given two points
x, y ∈ P , construct a path from x to y in DT(P ), in the following way. For ease of exposition, assume that x and y are on
a horizontal line, unit distance apart, with x to the left of y. Let PVor(P )(x, y) = [x = p1, p2, . . . , pk = y] be the sequence of
sites of Vor(P ) whose cells intersect the segment xy ordered from x to y. We call PVor(P )(x, y) a Voronoi path. By the duality
relation between Delaunay triangulations and the Voronoi diagram, this path consists of Delaunay edges. The Voronoi path
is called one-sided provided that all of the sites lie in one closed half-plane defined by the line containing xy. See Fig. 2
for an example. Denote by c j the intersection point of the segment xy with the Voronoi edge separating the cells of p j
and p j+1. Notice that by construction the circle centred at c j with radius c j p j , denoted C(c j, p j), has p j and p j+1 on its
boundary and is empty of all other points of P . Furthermore, the arc of C(c j, p j) defined clockwise from p j to p j+1 is
longer than the segment p j p j+1. Therefore, when PVor(P )(x, y) is a one-sided Voronoi path, its length is bounded by half
the boundary of the union of the circles C(c j, p j), j = 1, . . . ,k − 1. Since the boundary of the union of these circles has
length at most π , the length of PVor(P )(x, y) is at most π/2. When the Voronoi path is not one-sided, its spanning ratio
can be unbounded. In this case, Dobkin et al. showed how to construct a path with spanning ratio at most (1 +

√
5)π/2.

The argument in this case is slightly more involved.
Subsequently, Keil and Gutwin [42] showed that the spanning ratio of the Delaunay triangulation is at most 4π

√
3/9 ≈

2.42. Their proof is inductive and also relies heavily on the empty circle property of Delaunay triangulations. Cui et al. [27]
then improved the upper bound on the spanning ratio for points in convex position. They showed that when points are
in convex position, the upper bound on the spanning ratio is at most the root of some function bounded above by 2.33.
Finally, Xia [57] showed an upper bound of 1.998.

Open Problem 2. What is the best upper bound on the spanning ratio of the Delaunay triangulation? Can one prove a
smaller upper bound on the spanning ratio for points in convex position?

When considering the above problems, one also needs to consider the issue of lower bounds. Chew [26] conjectured that
the worst-case spanning ratio of the Delaunay triangulation is π/2 and showed that by placing points on the boundary of
a circle, one can approach this bound. The fact that one-sided Voronoi paths also have a spanning ratio of at most π/2 led
many to believe that π/2 was the correct bound. Surprisingly, it was shown recently that the worst-case spanning ratio of
the Delaunay triangulation is actually greater than π/2 [14]. There exists a set of points in convex position for which the
spanning ratio of the Delaunay triangulation is at least 1.581. See Fig. 3(b). The lower bound can be slightly improved to
1.5846 if points do not need to be in convex position. Moreover, it is shown that the lower bound on the spanning ratio of
the Delaunay triangulation is essentially the same for random point sets. The lower bound when points are not in convex
position has been further improved to 1.5932 [58].
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Another interesting planar spanner

Half-θ6 graph = TD-Delaunay graph

defining like Yao graph
A. Biniaz et al. / Computational Geometry 48 (2015) 646–660 647

Fig. 1. (a) Triangular-distance Delaunay graph (0-TD), (b) 1-TD graph, the light edges belong to 0-TD as well, and (c) Delaunay triangulation.

A graph G is connected if there is a path between any pair of vertices in G . Moreover, G is k-connected if there does not 
exist a set of at most k − 1 vertices whose removal disconnects G . In case k = 2, G is called biconnected. In other words a 
graph G is biconnected iff there is a simple cycle between any pair of its vertices. A matching in G is a set of edges in G
without common vertices. A perfect matching is a matching which matches all the vertices of G . A Hamiltonian cycle in G is 
a cycle (i.e., closed loop) through G that visits each vertex of G exactly once. For H ⊆ G we denote the bottleneck of H , i.e., 
the length of the longest edge in H , by λ(H).

Let Kn(P ) be a complete edge-weighted geometric graph on a point set P which contains a straight-line edge between 
any pair of points in P . For an edge (p, q) in Kn(P ) let w(p, q) denote the weight of (p, q). A bottleneck matching (resp. 
bottleneck Hamiltonian cycle) in P is defined to be a perfect matching (resp. Hamiltonian cycle) in Kn(P ), in which the weight 
of the maximum-weight edge is minimized. A bottleneck biconnected spanning subgraph of P is a spanning subgraph, G(P ), 
of Kn(P ) which is biconnected and the weight of the longest edge in G(P ) is minimized.

A tight lower bound on the size of a maximum matching in a TD-Delaunay graph, i.e. 0-TD, is presented in [4]. In 
this paper we study higher-order TD-Delaunay graphs. The order-k TD-Delaunay graph of a point set P , denoted by k-TD, is a 
geometric graph which has an edge (p, q) iff the interior of t(p, q) contains at most k points of P ; see Fig. 1(b). The standard 
TD-Delaunay graph corresponds to 0-TD. We consider graph-theoretic properties of higher-order TD-Delaunay graphs, such 
as connectivity, Hamiltonicity, and perfect-matching admissibility. We also consider the problem of blocking TD-Delaunay 
graphs.

1.1. Previous work

A Delaunay triangulation (DT) of P (which does not have any four co-circular points) is a graph whose distance function 
is defined by a fixed circle © centered at the origin. DT has an edge between two points p and q iff there exists a homothet 
of © having p and q on its boundary and whose interior does not contain any point of P ; see Fig. 1(c). In this case the 
edge (p, q) is said to have the empty circle property. The order-k Delaunay Graph on P , denoted by k-DG, is defined to have an 
edge (p, q) iff there exists a homothet of © having p and q on its boundary and whose interior contains at most k points 
of P . The standard Delaunay triangulation corresponds to 0-DG.

For each pair of points p, q ∈ P let D[p, q] be the closed disk having pq as diameter. A Gabriel Graph on P is a geometric 
graph which has an edge between two points p and q iff D[p, q] does not contain any point of P \ {p, q}. The order-k Gabriel 
Graph on P , denoted by k-GG, is defined to have an edge (p, q) iff D[p, q] contains at most k points of P \ {p, q}.

For each pair of points p, q ∈ P , let L(p, q) be the intersection of the two open disks with radius |pq| centered at p and 
q, where |pq| is the Euclidean distance between p and q. A Relative Neighborhood Graph on P is a geometric graph which 
has an edge between two points p and q iff L(p, q) does not contain any point of P . The order-k Relative Neighborhood Graph
on P , denoted by k-RNG, is defined to have an edge (p, q) iff L(p, q) contains at most k points of P . It is obvious that for a 
fixed point set, k-RNG is a subgraph of k-GG, and k-GG is a subgraph of k-DG.

The problem of determining whether an order-k geometric graph always has a (bottleneck) perfect matching or a 
(bottleneck) Hamiltonian cycle is of interest. In order to show the importance of this problem we provide the following 
example. Gabow and Tarjan [15] showed that a bottleneck matching of maximum cardinality in a graph can be computed in 
O (m · (n log n)0.5) time, where m is the number of edges in the graph. Using their algorithm, a bottleneck perfect matching 
of a point set can be computed in O (n2 · (n log n)0.5) time; note that the complete graph on n points has "(n2) edges. Chang 
et al. [11] showed that a bottleneck perfect matching of a point set is contained in 16-DG; this graph has "(n) edges and 
can be computed in O (n log n) time. Thus, by running the algorithm of Gabow and Tarjan on 16-DG, a bottleneck perfect 
matching of a point set can be computed in O (n · (n log n)0.5) time.

If for each edge (p, q) in Kn(P ), w(p, q) is equal the Euclidean distance between p and q, then Chang et al. [9–11]
proved that a bottleneck biconnected spanning graph, bottleneck perfect matching, and bottleneck Hamiltonian cycle of P
are contained in 1-RNG, 16-RNG, 19-RNG, respectively. This implies that 16-RNG has a perfect matching and 19-RNG is 
Hamiltonian. Since k-RNG is a subgraph of k-GG, the same results hold for 16-GG and 19-GG. It is known that k-GG is (k +
1)-connected [8] and 10-GG (and hence 10-DG) is Hamiltonian [16]. Dillencourt showed that every Delaunay triangulation 
(0-DG) admits a perfect matching [14] but it can fail to be Hamiltonian [13].

A. Biniaz et al. / Computational Geometry 48 (2015) 646–660 647

Fig. 1. (a) Triangular-distance Delaunay graph (0-TD), (b) 1-TD graph, the light edges belong to 0-TD as well, and (c) Delaunay triangulation.

A graph G is connected if there is a path between any pair of vertices in G . Moreover, G is k-connected if there does not 
exist a set of at most k − 1 vertices whose removal disconnects G . In case k = 2, G is called biconnected. In other words a 
graph G is biconnected iff there is a simple cycle between any pair of its vertices. A matching in G is a set of edges in G
without common vertices. A perfect matching is a matching which matches all the vertices of G . A Hamiltonian cycle in G is 
a cycle (i.e., closed loop) through G that visits each vertex of G exactly once. For H ⊆ G we denote the bottleneck of H , i.e., 
the length of the longest edge in H , by λ(H).

Let Kn(P ) be a complete edge-weighted geometric graph on a point set P which contains a straight-line edge between 
any pair of points in P . For an edge (p, q) in Kn(P ) let w(p, q) denote the weight of (p, q). A bottleneck matching (resp. 
bottleneck Hamiltonian cycle) in P is defined to be a perfect matching (resp. Hamiltonian cycle) in Kn(P ), in which the weight 
of the maximum-weight edge is minimized. A bottleneck biconnected spanning subgraph of P is a spanning subgraph, G(P ), 
of Kn(P ) which is biconnected and the weight of the longest edge in G(P ) is minimized.

A tight lower bound on the size of a maximum matching in a TD-Delaunay graph, i.e. 0-TD, is presented in [4]. In 
this paper we study higher-order TD-Delaunay graphs. The order-k TD-Delaunay graph of a point set P , denoted by k-TD, is a 
geometric graph which has an edge (p, q) iff the interior of t(p, q) contains at most k points of P ; see Fig. 1(b). The standard 
TD-Delaunay graph corresponds to 0-TD. We consider graph-theoretic properties of higher-order TD-Delaunay graphs, such 
as connectivity, Hamiltonicity, and perfect-matching admissibility. We also consider the problem of blocking TD-Delaunay 
graphs.

1.1. Previous work

A Delaunay triangulation (DT) of P (which does not have any four co-circular points) is a graph whose distance function 
is defined by a fixed circle © centered at the origin. DT has an edge between two points p and q iff there exists a homothet 
of © having p and q on its boundary and whose interior does not contain any point of P ; see Fig. 1(c). In this case the 
edge (p, q) is said to have the empty circle property. The order-k Delaunay Graph on P , denoted by k-DG, is defined to have an 
edge (p, q) iff there exists a homothet of © having p and q on its boundary and whose interior contains at most k points 
of P . The standard Delaunay triangulation corresponds to 0-DG.

For each pair of points p, q ∈ P let D[p, q] be the closed disk having pq as diameter. A Gabriel Graph on P is a geometric 
graph which has an edge between two points p and q iff D[p, q] does not contain any point of P \ {p, q}. The order-k Gabriel 
Graph on P , denoted by k-GG, is defined to have an edge (p, q) iff D[p, q] contains at most k points of P \ {p, q}.

For each pair of points p, q ∈ P , let L(p, q) be the intersection of the two open disks with radius |pq| centered at p and 
q, where |pq| is the Euclidean distance between p and q. A Relative Neighborhood Graph on P is a geometric graph which 
has an edge between two points p and q iff L(p, q) does not contain any point of P . The order-k Relative Neighborhood Graph
on P , denoted by k-RNG, is defined to have an edge (p, q) iff L(p, q) contains at most k points of P . It is obvious that for a 
fixed point set, k-RNG is a subgraph of k-GG, and k-GG is a subgraph of k-DG.

The problem of determining whether an order-k geometric graph always has a (bottleneck) perfect matching or a 
(bottleneck) Hamiltonian cycle is of interest. In order to show the importance of this problem we provide the following 
example. Gabow and Tarjan [15] showed that a bottleneck matching of maximum cardinality in a graph can be computed in 
O (m · (n log n)0.5) time, where m is the number of edges in the graph. Using their algorithm, a bottleneck perfect matching 
of a point set can be computed in O (n2 · (n log n)0.5) time; note that the complete graph on n points has "(n2) edges. Chang 
et al. [11] showed that a bottleneck perfect matching of a point set is contained in 16-DG; this graph has "(n) edges and 
can be computed in O (n log n) time. Thus, by running the algorithm of Gabow and Tarjan on 16-DG, a bottleneck perfect 
matching of a point set can be computed in O (n · (n log n)0.5) time.

If for each edge (p, q) in Kn(P ), w(p, q) is equal the Euclidean distance between p and q, then Chang et al. [9–11]
proved that a bottleneck biconnected spanning graph, bottleneck perfect matching, and bottleneck Hamiltonian cycle of P
are contained in 1-RNG, 16-RNG, 19-RNG, respectively. This implies that 16-RNG has a perfect matching and 19-RNG is 
Hamiltonian. Since k-RNG is a subgraph of k-GG, the same results hold for 16-GG and 19-GG. It is known that k-GG is (k +
1)-connected [8] and 10-GG (and hence 10-DG) is Hamiltonian [16]. Dillencourt showed that every Delaunay triangulation 
(0-DG) admits a perfect matching [14] but it can fail to be Hamiltonian [13].

defining like Delaunay triangulation

Biniaz, Maheshwari, Smid

TD= “triangular distance”

Bonichon, Nicolas, Cyril Gavoille, Nicolas Hanusse, and David Ilcinkas. "Connections between theta-graphs, 
Delaunay triangulations, and orthogonal surfaces." In International Workshop on Graph-Theoretic Concepts in 
Computer Science, pp. 266-278. Springer, Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-16926-7_25

two equivalent definitions

From each point p, put three
edges to the “nearest” points in 
three wedges.

Instead of an edge for an empty circle, 
put an edge for an empty equilateral 
triangle (no rotations).

theorem
=

Theorem.  The Half-θ6 graph has spanning ratio 2.
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Another interesting planar spanner

Half-θ6 graph = TD-Delaunay graphTheta-Graphs, Delaunay Triangulations, and Orthogonal Surfaces 271

!C2

C2

C1

!C1

C3

!C3

C2
C3

C1

(b)(a)

p8

p5

p2p3

p4

p7

p6

p1

Fig. 1. (a) Illustration of notations for half-Θ6-graphs. (b) An example of a directed
half-Θ6-graph.

In this paper, we focus on the half-Θ6-graph. So, in counter-clockwise order
starting from the positive x-axis, the six cones of A6 are encountered in the order
C2, C1, C3, C2, C1, C3 (see Fig. 1(a)). Fig. 1(b) shows an example of a directed
half-Θ6-graph on 8 points.

The set of points S is said to be degenerate if there exist two points p and q

in S such that both (p, q) and (q, p) are arcs of 1
2

−→
Θk(S). The set S is said to be

non-degenerate otherwise.

2.2 Geodesic Embeddings

Let P be a plane equipped with the standard basis (ex, ey), and let S be a finite
set of points in the plane P .

The following definitions are extracted from [27]. (Similar definitions can also
be found in Felsner’s book [14].) Let (e1, e2, e3) be the standard basis of R3.
The plane P is now embedded in P ′ ⊂ R3 where P ′ is the plane containing
the origin of R3 with basis (e′x, e′y) where e′x = (0,−1/

√
2, 1/

√
2) and e′y =

(
√

2/3,−1/
√

6,−1/
√

6). Observe that e1 + e2 + e3 is a normal vector5 of P ′.
Any point p = (px, py) ∈ R2 is mapped to p′ ∈ P ′ with p′ = pxe′x + pye′y.

Consider the dominance order on R3: p ! q if and only if pi " qi for each
i ∈ {1, 2, 3}. Note that any two different points of P ′ are incomparable. The
filter generated by a set of points S of P is the set

〈S〉 =
{
α ∈ R3 : α ! v for some v ∈ S

}
.

The boundary SS of 〈S〉 is the coplanar orthogonal surface generated by S.
Notice that in [27,15], the authors also consider orthogonal surfaces, a more
general case where elements of S are pairwise incomparable but not necessarily
5 I.e., ∀p′ = (p′

1, p
′
2, p

′
3) ∈ P ′, p′

1e1 + p′
2e2 + p′

3e3 = 0.

TD= “triangular distance”

Bonichon, Nicolas, Cyril Gavoille, Nicolas Hanusse, and David Ilcinkas. "Connections between theta-graphs, 
Delaunay triangulations, and orthogonal surfaces." In International Workshop on Graph-Theoretic Concepts in 
Computer Science, pp. 266-278. Springer, Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-16926-7_25

two equivalent definitions

Example

the result is a Schnyder drawing http://page.math.tu-berlin.de/~felsner/Slides/dagstuhl.pdf
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Planar Spanners of bounded degree

The Delaunay triangulation may have unbounded degree

There are bounded degree planar spanners:

20-spanner of degree 4

6-spanner of degree 6

CS763-Lecture19 9 of 17
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Routing. Given a network whose nodes are points in the plane, find a path from 
source to target just using local information (= coordinates of nodes).  

Greedy routing. 
From the current node, go to the neighbour that is closest to the target.

https://phys.org/news/2009-02-greedy-routing-enables-network.html

Condition for success: for every pair of 
nodes, u, v, there is a greedy path s.t. 
each successive node on the path is 
strictly closer to v.

Greedy routing always succeeds for the Delaunay 
triangulation (the Voronoi path is greedy).  
But the path that is found may be long.

ONLINE ROUTING IN TRIANGULATIONS 7

...vsrc vdst vsrc vdst

vcur
u

α

β
γ

β

π − 2β

vsrc vdst

(a) (b) (c)

Fig. 3.1. The proof of Theorem 3.1.

edge and vertex of the face [2].
Let T be any convex subdivision. Consider the planar subdivision T ′ obtained by

deleting from T all edges that properly intersect the line segment joining vsrc and vdst.
Because of convexity, T ′ is connected, and vsrc and vdst are on the boundary of the
same face F of T ′. The right-hand routing (RHR) algorithm uses the right-hand rule
on the face F to route from vsrc to vdst. Right-hand routing is easily implemented
using only O(1) additional memory by remembering vsrc, vdst, and the last vertex
visited.

Theorem 2.7. There is no convex subdivision that defeats the right-hand routing
algorithm.

3. Competitiveness of Paths. Thus far we have considered only the question
of whether routing algorithms can find a path between any two vertices in T . An
obvious direction for research is to consider the length of the path found by a routing
algorithm. We say that a routing algorithm A is c-competitive for T , if for any pair
(vsrc, vdst) in T , the length (sum of the edge lengths) of the path between vsrc and
vdst found by A is at most c times the length of the shortest path between vsrc and
vdst in T . In the case of randomized algorithms, we use the expected length of the
path. We say that A has a competitive ratio of c if it is c-competitive.

This section addresses questions about the competitive ratio of the algorithms
described so far, as well as a new algorithm specifically targeted for Delaunay trian-
gulations. We present theoretical as well as experimental results.

3.1. Negative Results. It is not difficult to contrive triangulations for which
none of our algorithms are c-competitive for any constant c. Thus it is natural to
restrict our attention to a well behaved class of triangulations. Unfortunately, even
for Delaunay triangulations none of the algorithms described so far are c-competitive.

Theorem 3.1. There exists Delaunay triangulations for which none of the greedy,
compass, randomized compass, or right-hand routing algorithms are c-competitive for
any constant c.

Proof. We begin with greedy routing. Consider the set of points that are placed
on a circle and then triangulated to obtain the zig-zag triangulation T shown in
Fig. 3.1.a. Since the points are cocircular, this is a valid Delaunay triangulation. The
points are placed so that each vertex v has a neighbor on the opposite side of the line
through vsrc and vdst that is closer to vdst than v’s two neighbors on the same side of
the line.

Note that there exists a path between vsrc and vdst of length approximately (π/2)·
dist(vsrc, vdst), and this is therefore an upper bound on the length of the shortest path
between vsrc and vdst. The length of the “zig-zag” path that uses the diagonals of T

ONLINE ROUTING IN TRIANGULATIONS 3

vdst

vsrc

vdst

vsrc

(a) (b)

Fig. 2.2. Triangulations that defeat the greedy routing algorithm.

will fail on the graph shown in Fig. 2.1.b since the only way to reach vdst

from the convex hull is via one of the two paths in the other two corners.
3. At one of the corners, the algorithm chooses to use an edge of the convex

hull and at the other two corners it does not. We may assume without loss
of generality that the corner that uses the interior edge is the top corner. In
this case, the algorithm will fail on the graph in Fig. 2.1.c since it will get
trapped cycling among the edges shown in bold.

4. At all of the corners, the algorithm chooses not to use an edge of the convex
hull. In this case the algorithm will also fail on the graph in Fig. 2.1.c for the
same reasons as in Case 3.

Since the graphs in Fig. 2.1 are all 2-connected we have the following negative
result:

Lemma 2.1. No deterministic memoryless algorithm works for all 2-connected
planar graphs.

2.1. Greedy Routing. The greedy routing (GR) algorithm always moves the
packet to the neighbor gdy(vcur) of vcur that minimizes dist(gdy(vcur), vdst), where
dist(p, q) denotes the Euclidean distance between p and q. In the case of ties, one of
the vertices is chosen arbitrarily. The greedy routing algorithm can be defeated by a
triangulation T in two ways (the first way is an important special case of the second):
(1) the packet can get trapped moving back and forth on an edge of the triangulation
(Fig. 2.2.a), or (2) the packet can get trapped on a cycle of three or more vertices
(Fig. 2.2.b). However, as the following theorem shows, neither of these situations can
occur if T is a Delaunay triangulation.

Theorem 2.2. There is no point set whose Delaunay triangulation defeats the
greedy routing algorithm.

Proof. We proceed by showing that every vertex v of T has a neighbor that is
strictly closer to vdst than v is. Thus, at each routing step, the packet gets closer to
vdst and therefore, after at most n steps, reaches vdst. Refer to Fig. 2.3.

Consider the Voronoi diagram [16] VD(T ) of the vertices of T and let e be the
first edge of VD(T ) intersected by the directed line segment (v, vdst). Note that e is on
the boundary of two Voronoi cells, one for v and one for some other vertex u, and the
supporting line of e partitions the plane into two open half planes hv = {p : dist(p, v) <
dist(p, u)} and hu = {p : dist(p, u) < dist(p, v)}. Since the Voronoi diagram is the
straight line face dual of the Delaunay triangulation, the edge (u, v) ∈ T . Also, by
the choice of e, vdst ∈ hu, i.e., dist(u, vdst) < dist(v, vdst).

Failure 
example
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Compass routing. 
From the current node, go to the neighbour in the best direction.

Routing. Given a network whose nodes are points in the plane, find a path from 
source to target just using local information (= coordinates of nodes).  

Compass routing always succeeds for Delaunay triangulations (needs proof).

4 P. BOSE AND P. MORIN

v vdst

hu

u

hv

Fig. 2.3. The proof of Theorem 2.2.

vdst

vsrc

Fig. 2.4. A triangulation that defeats the compass routing algorithm.

2.2. Compass Routing. The compass routing (CR) algorithm always moves
the packet to the vertex cmp(vcur) that minimizes the angle ! vdst, vcur, cmp(vcur)
over all vertices adjacent to vcur. Here the angle is taken to be the smaller of the two
angles as measured in the clockwise and counterclockwise directions. In the case of
ties, one of the (at most 2) vertices is chosen using some arbitrary deterministic rule.

One might initially believe (as we did) that compass routing can always be used
to find a path between any two vertices in a triangulation. However, the triangulation
in Fig. 2.4 defeats compass routing. When starting from one of the vertices on the
outer face of T , and routing to vdst, the compass routing algorithm gets trapped on
the cycle shown in bold. The following lemma shows that any triangulation that
defeats compass routing causes the packet to get trapped in a cycle.

Lemma 2.3. Let T be a triangulation that defeats compass routing, and let vdst

be a vertex such that compass routing fails to route a packet to vdst when given some
other vertex as the source. Then there exists a cycle C = v0, . . . , vk−1 (k ≥ 3) in T
such that cmp(vi) = vi+1 for all 0 ≤ i < k.1

Proof. Since T defeats compass routing, and the compass routing algorithm makes
the same decision each time it visits a vertex, either there is an edge (u, v) such that
cmp(u) = v and cmp(v) = u, or there is the situation described in the lemma. We
prove that there can be no such edge (u, v). Suppose such an edge (u, v) does exist.
Then there is a triangle (u, v, w) in T such that w is in the same half-plane bounded
by the line through u and v as vdst. Referring to Fig. 2.5, the vertex w must be in
the one of the regions 1, 2, or 3. But this is a contradiction, since if w is in region 1,
then cmp(v) = w, if w is in region 2, then cmp(u) = w (and cmp(v) = w), and if w
is in region 3, then cmp(u) = w.

1Here and henceforth, all subscripts are assumed to be taken modk.

compass routing fails on this triangulation

CS763-Lecture19 11 of 17
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Face routing. 
Take the face containing the start of the segment SD.  Walk around it to the 
intersection point with SD.  Hop to the next face and repeat.
Works for any planar graph.  

Routing. Given a network whose nodes are points in the plane, find a path from 
source to target just using local information (= coordinates of nodes).  

https://doi.org/10.1023/A:1012319418150

Bose, Prosenjit, Pat Morin, Ivan Stojmenović, and Jorge Urrutia. "Routing with guaranteed delivery in ad hoc wireless 
networks." Wireless networks 7, no. 6 (2001): 609-616.

CS763-Lecture19 12 of 17
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Routing in “ad hoc wireless networks”

https://en.wikipedia.org/wiki/Unit_disk_graph

A wifi node is a point in the plane.  
All nodes have the same range, a disc.
Two nodes can communicate iff their disks intersect. 

This is called a unit disc graph, UDG(P) of point set P.  

Routing in a unit disc graph:

We can find a planar subgraph and use face routing.

Claim.  If UDG(P) is connected then UDG(P) ∩ GG(P) is connected — because it 
contains MST(P).

Recall the Gabriel Graph, GG(P) — has an edge (u,v)  if the circle with diameter uv is 
empty of other points.  GG(P) is planar (it’s a subgraph of the Delaunay triangulation).

UDG(P) UDG(P) ∩ GG(P)

Frey, Ingelrest, Simplot-Ryl

planar and connected

CS763-Lecture19 13 of 17
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Routing in a network

Routing is usually done via a routing table:

R (current node, destination) = next node to go to

The size of routing tables is a barrier to efficiency.

Grand idea: Associate each node with a point in the plane (“virtual coordinates”) 
such that greedy routing works.  Then a routing table is not needed!  You only need 
to store the virtual coordinates.

Conjecture.  [Papadimitriou and Ratajczak, 2005]  Every 3-connected planar graph has a 
greedy embedding. https://doi.org/10.1016/j.tcs.2005.06.022

Note: not every 3-connected planar graph has an embedding as a Delaunay 
triangulation!  (If this was true, it would prove the conjecture.)

CS763-Lecture19 14 of 17
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Routing in a network

Grand idea: Associate each node with a point in the plane (“virtual coordinates”) 
such that greedy routing works.  Then a routing table is not needed!  You only need 
to store the virtual coordinates.

Conjecture.  [Papadimitriou and Ratajczak, 2005]  Every 3-connected planar graph has a 
greedy embedding. https://doi.org/10.1016/j.tcs.2005.06.022

Angelini, Patrizio, Giuseppe Di Battista, and Fabrizio Frati. "Succinct greedy 
drawings do not always exist." Networks 59, no. 3 (2012): 267-274.

The conjecture was proved in 2010 (by several groups independently)
but unfortunately, the number of bits required for the virtual coordinates is too large 
to make this practical.

https://doi.org/10.1002/net.21449

Furthermore, the number of bits MUST be large in the worst case: 

https://doi.org/10.1007/s00453-012-9682-yHe, Xin, and Huaming Zhang. "On succinct greedy drawings of plane triangulations 
and 3-connected plane graphs." Algorithmica 68, no. 2 (2014): 531-544.

There is a solution if you change the metric a bit: 
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Gao, Jie, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu. "Geometric spanners for routing in mobile 
networks." IEEE journal on selected areas in communications 23, no. 1 (2005): 174-185.

10.1109/JSAC.2004.837364

Combining spanners and local routing:  find a spanner that permits local routing, 
and s.t. the local route is within a constant of the Euclidean distance

Summary so far:

- spanners —  sparse graphs approximately preserving distances

- local routing in a given network
but here we didn’t care about the length of the path that was found

Bose, Prosenjit, Rolf Fagerberg, André Van Renssen, and Sander Verdonschot. "Competitive routing in the half-θ 6-graph." In Proceedings of the 
twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pp. 1319-1328. Society for Industrial and Applied Mathematics, 2012.

https://doi.org/10.1137/1.9781611973099.104

There is a local routing scheme that finds a uv-path with length ≤ t |uv|
for t = 2.886... 
And this is a lower bound for any local routing scheme in the half θ6-graph.
Which is interesting since the graph is a 2-spanner. 

Use the half θ6-graph

A more practical perspective:
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Summary

- idea of spanners, some spanner constructions

- idea of local routing, some approaches

References - see papers listed in slides
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