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How to measure the distance/similarity between two sets/objects in the plane

Hausdorff distance

The preceding theorem is actually a corollary of the more general Theorem 4.2 involving the
generalized Fréchet distance and a so-called basis defined as follows. Given a set of points P ⇢ Y ,
we define for each p 2 P , the function

np(y) := dY (y, p).

We call the points p 2 P , basis points, and the functions np, basis functions. Then, for f : X ! Y ,
we define the persistence signature of f with respect to P as the following set of persistence barcodes.

Sig(f, P ) := {Pers(np � f) | p 2 P}

The bottleneck distance can be used to define a metric from these signatures for a given basis P ,
where

dSig(f, g, P ) := max
p2P

dB(Pers(np � f),Pers(np � g)).

Figure 1: Two curves are shown on the left. On the right are their distance functions to a point.
Di↵erent parameterizations can lead to quite di↵erent distance functions. However, the barcodes
(far right) remain similar.

We are now ready to state and prove the main theorem.

Theorem 4.2. Let X be a topological space and let (Y,dY ) be a metric space. For any two

continuous functions f, g : X ! Y and any finite P ⇢ Y , we have that

dSig(f, g, P )  dF (f, g).

Before proceeding to the proof, we observe that Theorem 4.1 follows from Theorem 4.2 by
letting X = [0, 1], Y = R2, and P = {0}.

Proof. Fix any f, g : X ! Y and P ⇢ Y . Let h : X ! X be any homeomorphism and let p 2 P

6

Don Sheehy

Applications:
- hand-writing, signatures
- protein backbones
- cartography

dXY = max min d(x,y)
x∈X y∈Y

dYX = max min d(x,y)
y∈Y x∈X

Hausdorff distance = max{dXY, dYX}

Hausdorff distance can be 
a bad measure for curves

every point is close to the other 
curve, but the curves are not similar
(a curve is more than a set of points!)

https://structseg2019.grand-challenge.org/Evaluation/
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A better distance measure for curves: Fréchet distance

Shripad Thite

A curve is a continuous map [0,1] —>  R2  (map time [0,1] to points along the curve)
There can be many different parameterizations (corresponding to different speeds). 

The person and the dog must 
move forward on their curves.

Definition.  The Fréchet distance of two curves A and B is

min     max   { d(α(t), β(t)) }
t∈[0,1]

reparameterizations 
α of A and β of B   
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Algorithm for Fréchet distance between two polygonal curves in the plane
Alt and Godeau, 1995 
The algorithm has two steps:

1. a decision procedure to see if the distance is ≤ ε
2. a search to find the min ε

https://doi.org/10.1142/S0218195995000064

Step 1.  Testing if the Fréchet distance is ≤ ε 
use the free-space diagram :  points (ta, tb) such that d(α(ta), β(tb)) ≤ ε 

A

B

t1
t2

t3t4

t1 t2 t3 t4

t1

t1

t2 t2

A

B

0

1

0

1

0

1

0 1
Günter Rote

free space

Lemma.  The Fréchet distance is ≤ ε iff there is path from (0,0) to (1,1) in the free 
space that is monotone in ta and  tb.
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How to construct the free space:

Lemma.  For two line segments, the free space is [part of] an ellipse (possibly 
degenerating to a strip if the line segments are parallel). 

We can compute the intervals of the 
free space along each grid line.

Then we can compute the subintervals 
reachable from (0,0) via a monotone path.

Step 1. Testing if the Fréchet distance is ≤ ε 

reachable

reachable

not reachable
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another example
Q

P

Algorithm for Fréchet distance between two polygonal curves in the plane 
The algorithm has two steps:

1. a decision procedure to see if the distance is ≤ ε
2. a search to find the min ε

From the above, Step 1 can be done in time O(nm) for two polygonal curves with n 
and m edges, respectively.
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Step 2.  Finding the minimum ε 
Note that the free space grows as ε increases.  
At critical values of ε there are significant changes to the free space:

1. when ε = d(α(0), β(0)) — then the free space contains (0,0)
2. when ε = d(α(1), β(1)) — then the free space contains (1,1)
3. when an interval of free space opens up between two cells
4. when a new horizontal or vertical passage opens up 

Q

P

a horizontal passage opens

(1) and (2) are single distances

(3) is the distance between a vertex of one curve 
and an edge of the other curve, so O(nm) events.

(4) involves two vertices of one curve and an edge 
of the other curve, so O(n2m + nm2) events.

These events can be found in time O(1) each.

Sort the events O((n2m + nm2) log (nm)).
Do binary search to find minimum ε.  

Total time: O((n2m + nm2) log (nm))

CS763-Lecture18 6 of 15
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Algorithm for Fréchet distance between two polygonal curves in the plane
The algorithm has two steps:

1. a decision procedure to see if the distance is ≤ ε
2. a search to find the min ε

From above, Step 2 can be done in time O((n2m + nm2) log (nm)). 
It can be improved to O(nm log(nm)) using “parametric search”, a technique 
due to Megiddo.  
We can write this bound as O(n2 log n) where n is total input size.

A lower bound for Fréchet distance

Karl Bringmann. "Why walking the dog takes time: Frechet distance has no strongly subquadratic algorithms unless SETH fails." In 2014 IEEE 55th 
Annual Symposium on Foundations of Computer Science 10.1109/FOCS.2014.76

Karl Bringmann, Marvin Künnemann, and André Nusser. "Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance." In 35th 
International Symposium on Computational Geometry (SoCG 2019) 10.4230/LIPIcs.SoCG.2019.17

There is no subquadratic algorithm assuming the Strong Exponential Time 
Hypothesis (SETH)

https://en.wikipedia.org/wiki/Exponential_time_hypothesis
SETH says that 3-SAT has no subexponential time algorithm.  This is stronger 
than assuming P ≠ NP. 

Fréchet distance in practice
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Variants on Fréchet distance

Efrat, Alon, Leonidas J. Guibas, Sariel Har-Peled, Joseph SB Mitchell, and T. M. Murali. "New Similarity 
Measures between Polylines with Applications to Morphing and Polygon Sweeping." (2002).

https://doi.org/10.1007/s00454-002-2886-1
New Similarity Measures between Polylines OF5

Fig. 1. The two polylines α and β and an example of a morphing between them. Dashed lines represent
intermediate polylines. Dotted lines show the paths traveled by the points on α and β during the morphing.

homeomorphism) of size #(n2) exists between two n-vertex simple polygons. Gupta
and Wenger [20] construct compatible triangulations whose size is within a constant
factor of optimal. Etzion and Rappoport [14] decompose the polygons into star-shaped
pieces. Their technique is not able to avoid all self-intersections during the morphing
and can take O(n4) time.

In the first part of this paper, we consider the problem of morphing two nonin-
tersecting simple polygonal chains (or polylines) α and β in the plane. A morphing
scheme $(α, β) = {γ (t) | 0 ≤ t ≤ 1} from α to β is a family of polylines such that
α = γ (0), β = γ (1), for every 0 ≤ t ≤ 1, γ (t) is connected and simple, and the
scheme is continuous, meaning that for any t and any ε > 0, there is a neighborhood of
t for which the Hausdorff distance between γ (t) and γ (t ′) is less than ε for any t ′ in the
neighborhood. See Fig. 1 for an example of a morphing. We compute a morphing scheme
from α to β that consists of two parts. The first part is an explicit mapping between α

and β. Given two functions f : [0, 1] → α and g: [0, 1] → β that parameterize α and
β, respectively, we define the mapping as the set of pairs {( f (u), g(u)), 0 ≤ u ≤ 1}.
We enforce the natural requirement that f and g are monotone along α and β. The
second part of the morphing scheme specifies a route connecting every point f (u) to
the corresponding point g(u), for 0 ≤ u ≤ 1. In this paper we adopt the policy of
moving f (u) to g(u) along the Euclidean shortest path from f (u) to g(u) that avoids
α and β. This policy guarantees that all intermediate polylines are simple, since f and
g are monotone along α and β and shortest paths do not cross each other (although
two such shortest paths might have a common subpath). (This property of intermediate
polylines being simple does not hold for the Fréchet metric [2], [15], which corresponds
to linking f (u) to g(u) with a straight segment, instead of using shortest paths avoiding
α and β, and then optimizing over parameterizations f and g; one can readily construct
examples for which γ (t) self-intersects for some t .) The resulting morphing scheme is
straightforward: we move each point f (u) along its designated route at a constant speed
proportional to the length of the route. This morphing is guaranteed to be connected and
continuous. Note that once we specify the mapping functions f and g, the morphing
scheme is completely determined.

Given these requirements on the morphing scheme, it is possible to generate an
uncountable number of different morphing schemes. Clearly, some schemes are better

the leashes provide a way of morphing one curve to another

but the intermediate curves might not 
be simple even if the originals are

when the leash must stay inside the 
region bounded by the input curves, 
the intermediate curves are simple
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Polyline simplification.  
Given a polyline, delete points while keeping 
the curve “close” to the original.
Important in cartography.

Douglas–Peucker Algorithm [1973]
Input: p1, . . . , pn, error ε

call Test(1, n) 

Test ( i, j )
If all points pk, i < k < j are within distance ε 
   of line segment pi pj, then delete all pk
Else  
    let pk be the farthest point
    Test(i,k), Test(k,j)

David Legland, Marie-Françoise Devaux, Fabienne GuillonProperties:
- output has Hausdorff distance ≤ ε 
- may not give the min number of points   
- may not keep the curve simple 

Runtime O(n2), can be improved
Kevin Buchin

Imai-Iri

� Both previous algorithms are simple and fast but do not give a 
bound on the complexity of the simplification!

� Examples for which they perform poorly?

ε ε ε

Douglas-Peucker Optimal

https://www.mathworks.com/matlabcentral/fileexchange/21132-line-simplification
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Polyline simplification.  
Given a polyline, delete points while keeping 
the curve “close” to the original.

Imai-Iri Algorithm [1988]
Input: p1, . . . , pn, error ε

Construct graph G with edge (i, j) if
all points pk, i < k < j are within distance ε of 
line segment pi pj 
Find a shortest path from 1 to n

Properties:
- output has Hausdorff distance ≤ ε 
- may not give the min number of points 
- does not always keep the curve simple 

Runtime O(n3)  can be improved to O(n2)

Imai-Iri

Find all possible valid shortcuts

Imai-Iri

1. Build a directed graph of valid shortcuts.

2. Compute a shortest path from p1 to pn using breadth-first search.

Kevin Buchin

56:4 On Optimal Polyline Simplification Using the Hausdor� and Fréchet Distance

2 Preliminaries

The line simplification problem takes a maximum allowed error Á and a polyline P defined by
a sequence of points Èp1, . . . , pnÍ, and computes a polyline Q defined by Èq1, . . . , qkÍ and the
error is at most Á. Commonly the sequence of points defining Q is a subsequence of points
defining P , and furthermore, q1 = p1 and qk = pn. There are many ways to measure the
distance or error of a simplification. The most common measure is a distance, denoted by Á,
like the Hausdor� distance or the Fréchet distance (we assume these distance measures are
known). Note that the Fréchet distance is symmetric, whereas the Hausdor� distance has a
symmetric and an asymmmetric version (the distance from the input to the simplification).

The Douglas-Peucker algorithm for polyline simplification is a simple recursive procedure
that works as follows. Let the line segment p1pn be the first simplification. If all points of P

lie within distance Á from this line segment, then we have found our simplification. Otherwise,
let pf be the furthest point from p1pn, add it to the simplification, and recursively simplify
the polylines Èp1, . . . , pf Í and Èpf , . . . , pnÍ. Then merge their simplifications (remove the
duplicate pf ). It is easy to see that the algorithm runs in O(n2) time, and also that one
can expect a much better performance in practice. It is also straightforward to verify that
polyline P has Hausdor� distance (symmetric and asymmetric) at most Á to the output. We
denote this simplification by DPH(P, Á), and will leave out the arguments P and/or Á if they
are understood.

We can modify the algorithm to guarantee a Fréchet distance between P and its simplific-
ation of at most Á by testing whether the Fréchet distance between P and its simplification
is at most Á. If not, we still choose the most distant point pf to be added to the simplific-
ation (other choices are possible). This modification does not change the e�ciency of the
Douglas-Peucker algorithm asymptotically as the Fréchet distance between a line segment
and a polyline can be determined in linear time. We denote this simplification by DPF (P, Á).

We have already described the Imai-Iri algorithm in the previous section. We refer to the
resulting simplification as IIH(P, Á). It has a Hausdor� distance (symmetric and asymmetric)
of at most Á and never has more vertices than DPH(P, Á). Similar to the Douglas-Peucker
algorithm, the Imai-Iri algorithm can be modified for the Fréchet distance, leading to a
simplification denoted by IIF (P, Á).

We will denote the optimal simplification using the Hausdor� distance by OPTH(P, Á),
and the optimal simplification using the Fréchet distance by OPTF (P, Á). In the case of
Hausdor� distance, we require P to be within Á of its simplification, so we use the directed
Hausdor� distance.

The example in Figure 1 shows that DPH(P ) and IIH(P ) – which are both equal to P

itself – may use more vertices than OPTH(P ) = Èp1, p5, p6, p7Í. Similarly, the example in
Figure 2 shows that DPF and IIF may use more vertices than OPTF .

"

p1

p2
p3

p4
p5

p6p7

p1

p2
p3

p4
p5

p6p7

Figure 1 Simplifications IIH (same as input, left) and OPTH (in blue, right) for an example.both algorithms leave this 
curve intact

this smaller simplification 
has Hausdorff distance ε 

http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.56

CS763-Lecture18 10 of 15

http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.56


CS 763  F22 A. Lubiw, U. WaterlooLecture 18: Curves, Trajectories, Fréchet distance

Polyline simplification.  
Given a polyline, delete points while keeping 
the curve “close” to the original.

Using the Fréchet distance rather than Hausdorff

http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.56

Marc van Kreveld, Maarten Löffler, and Lionov Wiratma. "On Optimal Polyline Simplification using 
the Hausdorff and Fréchet Distance." 

Agarwal, Pankaj K., Sariel Har-Peled, Nabil H. Mustafa, and Yusu Wang. "Near-linear time 
approximation algorithms for curve simplification." Algorithmica 42, no. 3-4 (2005): 203-219.

https://doi.org/10.1007/s00453-005-1165-y

Further reading

CS763-Lecture18 11 of 15

http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.56
https://doi.org/10.1007/s00453-005-1165-y


CS 763  F22 A. Lubiw, U. WaterlooLecture 18: Curves, Trajectories, Fréchet distance

Homotopic Paths

Sergio Cabello, Yuanxin Liu, Andrea Mantler, and Jack Snoeyink. "Testing homotopy 
for paths in the plane." Discrete & Computational Geometry 31, no. 1 (2004): 61-81.

T

S

O(n log n) to test if two simple paths are homotopic

https://doi.org/10.1007/s00454-003-2949-y

https://doi.org/10.1016/j.comgeo.2006.03.003

Finding a shortest path homotopic to a given one
Alon Efrat, Stephen G. Kobourov, and Anna Lubiw. "Computing homotopic shortest 
paths efficiently." Computational Geometry 35, no. 3 (2006): 162-172.

https://doi.org/10.1016/j.comgeo.2009.02.008

Chambers, Erin Wolf, Eric Colin De Verdiere, 
Jeff Erickson, Sylvain Lazard, Francis Lazarus, 
and Shripad Thite. "Homotopic Fréchet 
distance between curves or, walking your dog 
in the woods in polynomial time." 
Computational Geometry 43, no. 3 (2010): 
295-311.

Two curves from s to t in the presence of obstacles 
are homotopic if one can be deformed to the other 
without intersecting the obstacles.

Combining homotopic and Fréchet distance

blue paths are homotopic

CS763-Lecture18 12 of 15

https://doi.org/10.1007/s00454-003-2949-y
https://doi.org/10.1016/j.comgeo.2006.03.003
https://doi.org/10.1016/j.comgeo.2009.02.008


CS 763  F22 A. Lubiw, U. WaterlooLecture 18: Curves, Trajectories, Fréchet distance

Self-Overlapping Curves

Peter W. Shor, and Christopher J. Van Wyk. "Detecting and decomposing self-
overlapping curves." Computational Geometry 2, no. 1 (1992): 31-50. https://doi.org/10.1016/0925-7721(92)90019-O

An O(n3) time dynamic programming algorithm to detect self-overlapping curves

(b)(a)

Evans, Parker, and Carola Wenk. "Combinatorial Properties of Self-Overlapping Curves and Interior 
Boundaries." (2020). arXiv:2003.13595

228 U. Mukherjee / Computer-Aided Design 46 (2014) 227–232

Fig. 1. A disk painted blue on the front and red on the back side is stretched
and overlapped (left to right) without twisting such that only the blue side is
always visible. The disk boundary is a self-overlapping curve (extreme right). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

The algorithm presented in this paper explicitly computes all
the immersions from a given self-overlapping curve. It has an
average time complexity of O(n2), where n is the number of points
on the curve. The given self-overlapping curve is divided into a set
of simple curves, each of which can be triangulated in any known
way of triangulating simple polygons, thereby making the method
suitable for applications like shape morphing.

Although not directly related to this paper, thework of Eppstein
et al. [9] requires special mention where it was proved that
extruding an immersion of a self-overlapping curve to a non self-
intersecting surface in 3D (embedding) is NP complete.

3. Definitions

Self-overlapping curve: A self-intersecting closed-loop curve
which can be divided into a set of simple curves by non-trivial line
segments (Fig. 7). Traversing the curve in a particular direction (e.g.
clockwise) from a starting point defines a natural interior of the
curve. Every simple polygon is trivially a self-overlapping curve.

An edge of a curve is defined as the line segment joining two
adjacent points on the curve. If the curve intersects in general
positions only, i.e. the edges of the curves intersect only at non-
terminal points, it is called a self-overlapping polygon. The formal
definition of self-overlapping curves can be compared with an
intuitive one introduced at the beginning of the paper.

Immersion: A continuous function i : M ! T such that for
any point v 2 M there exists a neighborhood u(v) within which
i restricts to a homomorphism from u(v) to i(u(v)) [9].

A self-overlapping curve forms the boundary of a deformed
disk. An immersion of a self-overlapping curve is a one-to-one
mapping between the interior of the curve and the disk.

Crest point: A local extremum point with respect to the
horizontal such that the curve takes a left turn at the crest point,
assuming that the interior of the curve is to its right (Fig. 8). If the
crest point is at a local maxima, it is called a maximal crest point,
and if it is at a local minima, it is called aminimal crest point.

4. Computing immersions

Given a self-overlapping curve, horizontal rays directed to-
wards the right (positive X axis) are drawn for each crest point P . If
P has an ordinate value y, the ordinate value of the corresponding
ray is y� ✏, if P is a maximal crest point, and y+ ✏ if P is a minimal
crest point, where ✏ is very small. These rays intersect the curve at
various points including a pair of points in the local neighborhood

Fig. 3. Morphing boundaries only (top) and interior (bottom) of a self-overlapping
polygon.

Fig. 4. An aerial view of a nested freeway. The boundaries of the lanes are self-
overlapping curves (partly highlighted in red). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

of each crest point. The ray–curve intersection points are defined
as cuts. If the curve crosses a ray r , the cut is termed as positive and
marked as r , or termed as negative and marked as r 0, according as
the curve crosses the ray from right to left or left to right. The ray
and its corresponding cuts aremarkedwith the same symbol but it
will be clear from the context which one is referred. The cuts in the
local neighborhood of a crest point (having ordinate values y ± ✏,
where y is the ordinate value of the crest point) are called crest cuts.
They are referred to as maximal or minimal crest cuts according as
the corresponding crest point is a maximal or minimal crest point.
Traveling along the curve, two consecutive cuts i and j are called
adjacent cuts (Fig. 9).

A self-overlapping curve can be potentially segmented into two
self-overlapping curves, by cutting it along a pair of positive and
negative cuts from the same ray. If such a pair exists, it is called
a valid pair of cuts. However, if by cutting along a pair of positive
and negative cuts yields two curves, either of which is non self-
overlapping, the cut pair is invalid (Fig. 10). A cut pair is defined
to be left valid if the portion of the original curve to the left of the
corresponding ray is self-overlapping, and right valid if the curve
to the right of the ray is self-overlapping. Thus, a valid cut pair is
both left valid and right valid.

Fig. 2. Self-overlapping polygon in graphite atom.
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any point v 2 M there exists a neighborhood u(v) within which
i restricts to a homomorphism from u(v) to i(u(v)) [9].

A self-overlapping curve forms the boundary of a deformed
disk. An immersion of a self-overlapping curve is a one-to-one
mapping between the interior of the curve and the disk.

Crest point: A local extremum point with respect to the
horizontal such that the curve takes a left turn at the crest point,
assuming that the interior of the curve is to its right (Fig. 8). If the
crest point is at a local maxima, it is called a maximal crest point,
and if it is at a local minima, it is called aminimal crest point.

4. Computing immersions

Given a self-overlapping curve, horizontal rays directed to-
wards the right (positive X axis) are drawn for each crest point P . If
P has an ordinate value y, the ordinate value of the corresponding
ray is y� ✏, if P is a maximal crest point, and y+ ✏ if P is a minimal
crest point, where ✏ is very small. These rays intersect the curve at
various points including a pair of points in the local neighborhood

Fig. 3. Morphing boundaries only (top) and interior (bottom) of a self-overlapping
polygon.

Fig. 4. An aerial view of a nested freeway. The boundaries of the lanes are self-
overlapping curves (partly highlighted in red). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

of each crest point. The ray–curve intersection points are defined
as cuts. If the curve crosses a ray r , the cut is termed as positive and
marked as r , or termed as negative and marked as r 0, according as
the curve crosses the ray from right to left or left to right. The ray
and its corresponding cuts aremarkedwith the same symbol but it
will be clear from the context which one is referred. The cuts in the
local neighborhood of a crest point (having ordinate values y ± ✏,
where y is the ordinate value of the crest point) are called crest cuts.
They are referred to as maximal or minimal crest cuts according as
the corresponding crest point is a maximal or minimal crest point.
Traveling along the curve, two consecutive cuts i and j are called
adjacent cuts (Fig. 9).

A self-overlapping curve can be potentially segmented into two
self-overlapping curves, by cutting it along a pair of positive and
negative cuts from the same ray. If such a pair exists, it is called
a valid pair of cuts. However, if by cutting along a pair of positive
and negative cuts yields two curves, either of which is non self-
overlapping, the cut pair is invalid (Fig. 10). A cut pair is defined
to be left valid if the portion of the original curve to the left of the
corresponding ray is self-overlapping, and right valid if the curve
to the right of the ray is self-overlapping. Thus, a valid cut pair is
both left valid and right valid.

Fig. 2. Self-overlapping polygon in graphite atom.

A self-overlapping curve is formed by stretching a disk.  Overlapping is allowed.  
Twisting in 3D is not.

U. Mukherjee / Computer-Aided Design 46 (2014) 227–232 229

Fig. 5. A self-overlapping curve (center) is segmented into a set of simple curves by non-trivial line segments (dotted). These line segments are chords on the disk dividing
it into mutually exclusive segments.

Fig. 6. Two immersions (center and right) of the Milnor’s doodle (left).

a b

Fig. 7. (a) Self-overlapping and (b) non self-overlapping curves. Traversing (a)
along the red arrow, has its interior to its right.

Fig. 8. Maximal(left) and minimal(right) crest points on a self-overlapping curve.
The curve interior is on its right.

Fig. 9. Rays drawn corresponding to the crest points of a self-overlapping curve
and the cuts produced. a1, a3 are positive cuts and a

0
2 is a negative cut. a

0
2 and a3 are

crest cuts—maximal (left) and minimal (right).

A cut pair (a1, a
0
2) is left valid if either of the following condi-

tions are satisfied (Fig. 11).
(i) Positive cut a1 is the previous adjacent cut of negative cut a0

2,
both lying on the ray a.

(ii) b1 and b
0
2, on ray b, are next adjacent cut of a1 and previous

adjacent cut of a0
2 respectively, and (b1, b

0
2) is a left valid cut

pair.
(iii) The two minimal crest cuts a0

3 and a4, corresponding to ray a,
lie between a1 and a

0
2, and (a1, a

0
3) and (a4, a

0
2) are left valid

cut pairs.
(iv) a

0
2 is amaximal crest cut, a3 is the othermaximal crest cut, and

if a0
p
is a cut lying to the right of a3, (a1, a0

p
) is a left valid cut

pair and (a3, a
0
p
) is a right valid cut pair.

(v) a1 is amaximal crest cut, a0
3 is the othermaximal crest cut, and

if ap is a cut lying to the left of a0
3, (ap, a

0
3) is a right valid cut

pair and (ap, a
0
2) is a left valid cut pair.

Fig. 10. Segmenting a self-overlapping curve (top left) into two curves along cut
pairs. Top right: cutting along the pair a2, a0

5 produces two curves each of which is
non self-overlapping. Bottom: cutting along the designated valid cut pairs (shown
alongside) produces a set of simple curves (interiors are colored) which are trivially
self-overlapping.

The conditions for the cut pair to be right valid are similar except
that the part of the curve from a

0
2 to a1 is considered and the

interpretations concerning the minimal and maximal crest points
are interchanged.

A cut pair (a1, a
0
2) is left invalid in either of the following cases

(Fig. 12).
(i) a1 has a next adjacent cut a0

3 lying between a1 and a
0
2 on the

ray a.
(ii) a

0
2 has a previous adjacent cut a3 lying between a1 and a

0
2 on

the ray a.
(iii) The segment of the curve from a1 to its next adjacent cut

intersects the segment of the curve from a
0
2 to its previous

adjacent cut.
Assuming a triangulation of the curve interior, a valid cut com-

plies with an internal edge of that triangulation and an invalid cut
is incompatible with any internal edge of any possible triangula-
tion. With this framework, the immersion algorithm identifies the
set of valid cut pairs which segment a given self-overlapping curve
into simple curves. The number of rays drawn are sufficient for
this purpose. This can be proved by contradiction in the follow-
ing way. Suppose a curve segment produced by the algorithm does
not bound a simple polygon. In that case the polygon loops over
to intersect itself and there is at least one crest point on the poly-
gon from which a ray can be drawn. The valid cut pairs on this ray
further divide the curve.

4.1. Immersion algorithm

Given a self-overlapping curve, the crest points are identified
and the cuts corresponding to rays are computed. A validity tree is
generated for the curve with nodes signifying left or right validity
of cut pairs. For example, if a node P represents the left validity of
a cut pair C1, and the latter is left valid only if either cut pair C2 or
C3 is left valid, then P has two children nodes signifying the left
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Fig. 10. Segmenting a self-overlapping curve (top left) into two curves along cut
pairs. Top right: cutting along the pair a2, a0

5 produces two curves each of which is
non self-overlapping. Bottom: cutting along the designated valid cut pairs (shown
alongside) produces a set of simple curves (interiors are colored) which are trivially
self-overlapping.

The conditions for the cut pair to be right valid are similar except
that the part of the curve from a

0
2 to a1 is considered and the

interpretations concerning the minimal and maximal crest points
are interchanged.

A cut pair (a1, a
0
2) is left invalid in either of the following cases

(Fig. 12).
(i) a1 has a next adjacent cut a0

3 lying between a1 and a
0
2 on the

ray a.
(ii) a

0
2 has a previous adjacent cut a3 lying between a1 and a

0
2 on

the ray a.
(iii) The segment of the curve from a1 to its next adjacent cut

intersects the segment of the curve from a
0
2 to its previous

adjacent cut.
Assuming a triangulation of the curve interior, a valid cut com-

plies with an internal edge of that triangulation and an invalid cut
is incompatible with any internal edge of any possible triangula-
tion. With this framework, the immersion algorithm identifies the
set of valid cut pairs which segment a given self-overlapping curve
into simple curves. The number of rays drawn are sufficient for
this purpose. This can be proved by contradiction in the follow-
ing way. Suppose a curve segment produced by the algorithm does
not bound a simple polygon. In that case the polygon loops over
to intersect itself and there is at least one crest point on the poly-
gon from which a ray can be drawn. The valid cut pairs on this ray
further divide the curve.

4.1. Immersion algorithm

Given a self-overlapping curve, the crest points are identified
and the cuts corresponding to rays are computed. A validity tree is
generated for the curve with nodes signifying left or right validity
of cut pairs. For example, if a node P represents the left validity of
a cut pair C1, and the latter is left valid only if either cut pair C2 or
C3 is left valid, then P has two children nodes signifying the left

two different immersions
of “Milnor’s doodle”

not self-overlapping
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https://en.wikipedia.org/wiki/Unknotting_problem

Given a knot diagram, does it represent the unknot?

two diagrams 
of the unknot

the trefoil knot is this the unknot?

1999.  The unknot problem is in NP.

2016.  The unknot problem is in co-NP.

The unknot problem.

OPEN.  Is there a polynomial time algorithm for the unknot problem?

10.1145/301970.301971

https://arxiv.org/abs/1604.00290
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- Fréchet distance
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