
A. Lubiw, U. WaterlooLecture 17: Motion Planning

Moving objects in space with obstacles/constraints.

Objects = robots, vehicles, jointed linkages (robot arm), tools (e.g. on automated 
assembly line), foldable/bendable objects.
Objects need not be physical (e.g. “fly-through” animation).

We will concentrate on moving from one position to another, though visiting a 
sequence of positions is also very interesting. 

Outline:

- translational motion (one rigid object)
- linkage motion (robot arm)

1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 15

(a) (b)

Figure 1.11: Some parking illustrations from government manuals for driver test-
ing: (a) parking a car (from the 2005 Missouri Driver Guide); (b) parking a
tractor trailer (published by the Pennsylvania Division of Motor Vehicles). Both
humans and planning algorithms can solve these problems.

application that involves a difficult combination of most of the issues mentioned
so far. Driving across rugged, unknown terrain at high speeds involves dynam-
ics, uncertainties, and obstacle avoidance. Numerous unsolved research problems
remain in this context.

Flying Through the Air or in Space Driving naturally leads to flying. Plan-
ning algorithms can help to navigate autonomous helicopters through obstacles.
They can also compute thrusts for a spacecraft so that collisions are avoided
around a complicated structure, such as a space station. In Section 14.1.3, the
problem of designing entry trajectories for a reusable spacecraft is described. Mis-
sion planning for interplanetary spacecraft, including solar sails, can even be per-
formed using planning algorithms [11].

Designing better drugs Planning algorithms are even impacting fields as far
away from robotics as computational biology. Two major problems are protein
folding and drug design. In both cases, scientists attempt to explain behaviors
in organisms by the way large organic molecules interact. Such molecules are
generally flexible. Drug molecules are small (see Figure 1.14), and proteins usually
have thousands of atoms. The docking problem involves determining whether a
flexible molecule can insert itself into a protein cavity, as shown in Figure 1.14,
while satisfying other constraints, such as maintaining low energy. Once geometric
models are applied to molecules, the problem looks very similar to the assembly
problem in Figure 1.3 and can be solved by motion planning algorithms. See
Section 7.5 and the literature at the end of Chapter 7.

Perspective Planning algorithms have been applied to many more problems
than those shown here. In some cases, the work has progressed from modeling,

16 S. M. LaValle: Planning Algorithms

(a) (b)

Figure 1.12: (a) Having a little fun with differential constraints. An obstacle-
avoiding path is shown for a car that must move forward and can only turn left.
Could you have found such a solution on your own? This is an easy problem for
several planning algorithms. (b) This gigantic truck was designed to transport
portions of the Airbus A380 across France. Kineo CAM developed nonholonomic
planning software that plans routes through villages that avoid obstacles and
satisfy differential constraints imposed by 20 steering axles. Jean-Paul Laumond,
a pioneer of nonholonomic planning, is also pictured.

(a) (b)

Figure 1.13: Reckless driving: (a) Using a planning algorithm to drive a car quickly
through an obstacle course [4]. (b) A contender developed by the Red Team
from Carnegie Mellon University in the DARPA Grand Challenge for autonomous
vehicles driving at high speeds over rugged terrain (courtesy of the Red Team).
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Translational motion

Then we can use the shortest path algorithm from previous lecture.  

But we do not really need the shortest path.

a polygon translating 
among polygonal obstacles.

Start with a point moving among polygonal obstacles.
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How to find if there is some path from point s to point t among polygonal obstacles. 

the blue graph is called a roadmap

CS 763  F22

- construct trapezoidal map of space outside obstacles

- construct dual graph (in blue above)

-  check if Trapezoid(s) and Trapezoid(t) are connected in the dual graph

- time O(n log n)

A point moving among polygonal obstacles
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An alternative roadmap: the Voronoi diagram of the obstacles.

7

Voronoi Diagrams: Beyond Points

• Edges are combinations of straight line 
segments and segments of quadratic curves

• Straight edges: Points equidistant from 2 lines
• Curved edges: Points equidistant from one 

corner and one line

Voronoi Diagrams (Polygons)

• Key property: The points on the edges of the Voronoi 
diagram are the furthest from the obstacles
• Idea: Construct a path between qstart and qgoal by 
following edges on the Voronoi diagram
• (Use the Voronoi diagram as a roadmap graph instead 
of the visibility graph)

Voronoi Diagrams: Planning

• Find the point q*start of the Voronoi 
diagram closest to qstart

• Find the point q*goal of the Voronoi 
diagram closest to qgoal

• Compute shortest path from q*start to 
q*goal on the Voronoi diagram

Then, for a given route, the point stays as far as possible from the obstacles.

CS 763  F22

A point moving among polygonal obstacles
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A disc moving among polygonal obstacles.

Model as a point (the center of the disc) moving among enlarged obstacles.

disc radius = r
the center of the disc must stay distance ≥ r from the obstacles

“Enlarging the obstacles” is captured more formally via Minkowski sum, A ⨁ B

O’Rourke
the disc cannot follow this path
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Minkowski sum

Let A and B be sets of points in the plane.

Definition.  The Minkowski sum of A and B is

A ⨁ B  =  { x + y : x ∈ A, y ∈ B }   
as vector addition of points

x0 ⨁ B = { x0 + y : y ∈ B }  = translate B by vector x0 
so A ⨁ B  =  translate B by all possible points in A 

Let P = polygon, D = disc centered at (0,0)
Then P ⨁ D = union of copies of D placed at each point of P   

P
D P ⨁ D

CS763-Lecture17 6 of 27
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A convex polygon moving among polygons — by translation only

Replace R by a reference point at the origin.  We will move the reference point.
  
Enlarge P to compensate  — we need    

R = moving polygon
P = obstacle polygon

where can the reference point be 
when R touches P?

CS 763  F22

P ⨁ (−R) = {x − y : x ∈ P, y ∈ R }

= P ⨁ (−R)
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Can polygon R move (via translations) from initial to final position among 
polygonal obstacles?

1. compute the Minkowski sum P ⨁ (−R) for each obstacle P

2. take the union, to obtain new polygonal obstacles

3. test if a point (the reference point) can move from initial to final position 
among the new enlarged obstacles

High level idea

CS 763  F22Today’s lecture

Planning for a planar translational robot

Setting
Point Robot

Cell decomposition

Polygonal Robot
Minkowski sums

Point Robot
Visibility graphs

This lecture (and most figs) are based on CG⇤ book, Ch. 6 (Point Location),

Ch. 13 (Robot Motion Planning) and Ch. 15 (Visibility graphs)

⇤M. de Berg, O. Cheong, M. van Kreveld, M. Overmars: Computational geometry: algorithms and applications, 3rd Ed.

Springer 08

Oren Salzman (Technion) Algorithmic Motion Planning - planar planning 2 / 49

[CGAA]
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Can polygon R move (via translations) from initial to final position among 
polygonal obstacles?

1. compute the Minkowski sum P ⨁ (−R) for each obstacle P

2. take the union, to obtain new polygonal obstacles

3. test if a point (the reference point) can move from initial to final position 
among the new enlarged obstacles

High level idea

CS 763  F22

What we will cover:

- the case where obstacles and R are convex

- computing the Minkowski sum of two convex polygons
- computing the union of convex Minkowski sums

- the idea of handling non-convex polygons

A. Lubiw, U. WaterlooLecture 17: Motion Planning
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Theorem.  If P and R are convex polygons with n and m edges, respectively, then 
P ⨁ R is convex with at most n+m edges and can be found in O(n+m) time.

Proof

CS 763  F22

The Minkowski sum of two convex polygons

Let P have vertices p1, p2, . . . pn.  Let R have vertices r1, r2, . . . , rm.

Claim.  Vertices of P ⨁ R have the form pi + rj.
Stronger Claim.  The vertex (extreme point) of P ⨁ R in direction d is the sum of 
the extreme points of P and R in direction d.

P
R

How to find P ⨁ R 
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A. Lubiw, U. WaterlooLecture 17: Motion Planning

Computing the union of convex Minkowski sums  

The complexity of the union is reduced due to the following:

Theorem 1:  Let P1 and P2 be disjoint convex polygons, and let R be convex.  
Then P1 ⨁ R and P2 ⨁ R form pseudodiscs. 

two convex polygons’ boundaries 
can intersect many times

they form pseudodiscs if their 
boundaries intersect at most twice

Note: need a more 
careful definition in 
case of shared 
boundary segments

Theorem 2:  If Q1. . . Qk are pairwise pseudodiscs of total size n then their union 
has size O(n). 

CS 763  F22 A. Lubiw, U. WaterlooLecture 17: Motion Planning
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Theorem 1:  Let P1 and P2 be disjoint convex polygons, and let R be convex.  
Then P1 ⨁ R and P2 ⨁ R form pseudodiscs. 

Proof.
Suppose P1 ⨁ R and P2 ⨁ R
are not pseudodiscs.
Then around the union we can find
tangent lines d1, d2, d3, d4,
at extreme points 
alternating between the two.  

d1

d2

d3d4

These extreme points correspond to extreme
points of P1 and P2, respectively.  (by the Stronger Claim.)

d1

But that’s impossible for two disjoint convex polygons.

CS763-Lecture17 12 of 27
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CS 763  F22 A. Lubiw, U. WaterlooLecture 17: Motion Planning

Theorem 2:  If Q1. . . Qk are pairwise pseudodiscs of total size n then their union 
has size O(n). 

Proof.
Vertices of the union are of two types:

1. vertices of the Qi’s

2. intersections of edges

We just need to bound the number of type 2 vertices.
pu

v

From a type 2 vertex p, follow the two edges into the interior to endpoints u, v.

Claim.  At least one of u, v is interior to the union.  

Charge p to that vertex.
Observe: Each interior vertex is charged at most 2 times (from its two edges).
Thus there are at most 2n vertices of type 2.

otherwise

pu

v

then they are not pseudodiscs!

CS763-Lecture17 13 of 27
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A. Lubiw, U. WaterlooLecture 17: Motion Planning

Can polygon R move (via translations) from initial to final position among 
polygonal obstacles?

1. compute the Minkowski sum P ⨁ (−R) for each obstacle P

2. take the union, to obtain new polygonal obstacles

3. test if a point (the reference point) can move from initial to final position 
among the new enlarged obstacles

High level idea

CS 763  F22
Today’s lecture

Planning for a planar translational robot

Setting
Point Robot

Cell decomposition

Polygonal Robot
Minkowski sums

Point Robot
Visibility graphs

This lecture (and most figs) are based on CG⇤ book, Ch. 6 (Point Location),

Ch. 13 (Robot Motion Planning) and Ch. 15 (Visibility graphs)

⇤M. de Berg, O. Cheong, M. van Kreveld, M. Overmars: Computational geometry: algorithms and applications, 3rd Ed.

Springer 08

Oren Salzman (Technion) Algorithmic Motion Planning - planar planning 2 / 49

[CGAA]

Recall
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How to deal with non-convex obstacles

Cut them into triangles.  (We assume R is convex.)

P ⨁ R  =  Union { TP ⨁ R :  TP  a triangle of P }

TP ⨁ R is a convex Minkowski sum, and we know how to take their union.

O(nm).

PseudoThings, an aside One of the most interesting ideas that comes up again and again in
Computational Geometry is "Pseudothings". There are pseudo-disks, pseudolines, pseudopoints,
etc. Pseudo-things are usually defined within a limited context, and maintain, within that context,
some useful geometric property of the real thing. For instance, if you have some collection of
squiggly lines, where you can gauruntee that these squiggly lines don't intersect more than once,
then you might call these pseudolines --- and then pretend they are (regular) lines when trying to
prove properties about your squiggly lines, and how many intersections they create, or how many
regions they define. 

The Union of Pseudodisks: To show that O(nm) is an upper bound, we need some way of
extracting the special geometric structure of the union of Minkowski sums. Recall that we are
computing the union of Ti (+) R, where the Ti's have disjoint interiors. The configuration that we
want to avoid is the criss cross pattern shown below. How do we prove that such a pattern cannot
be created? The key is in the way the Minkowski sums of disjoint objects can intersect.

Figure 83: Minkowski sum of O(nm) complexity.

A set of convex objects {o1, o2, ... , on} is called a collection of pseudodisks if for any two
distinct objects oi and oj both of the set theoretic differences oi - oj and oj - oi are connected. That
is, if the objects intersect then they do not ``cross through'' one another. Note that the pseudodisk
property is not a property of a single object, but a property that holds among a set of objects.

Figure 84: Pseudodisks.

Lemma 1: Given a set convex objects T1, T2, ... , Tn with disjoint interiors, and convex R, the
set {Ti (+) R, for 1 <= i <= n} is a collection of pseudodisks.

proof Consider two polygons T1 and T2 with disjoint interiors. We want to show that T1
(+) R and T2 (+) R do not cross over one another. Given any directional unit vector ~ d, the

P non-convex
R convex

P non-convex
R non-convex

Examples of more complicated Minkowski sums:

A. Lubiw, U. WaterlooLecture 17: Motion Planning
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Suppose obstacles have total size n and the robot is convex of fixed size.  

Forbidden space = union of enlarged convex polygons = 
Free space = complement of forbidden space.

Forbidden space has size O(n) by Theorems 1 and 2.

FACT: Forbidden space can be computed in O(n log n) time (complicated),
or via a simpler O(n log2 n) time divide and conquer algorithm.
Details in [CGAA].

CS 763  F22

Completing the plan.

 { P ⨁ (−R): P an obstacle }∪

Then the problem is reduced to finding a path for a point in a polygonal region 
of size O(n).

A. Lubiw, U. WaterlooLecture 17: Motion Planning
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Translational motion planning in higher dimensions 

in 2D  O(n log n) by above method (for convex robot of fixed size)

in 3D  O(n2 log2 n) by similar method (for convex robot of fixed size)
(Note that this finds a path, not necessarily a shortest path.) 

General road map algorithm of Canny O(nd log n) where d is the number of 
degrees of freedom — this applies to rotational motion as well.

CS 763  F22 A. Lubiw, U. WaterlooLecture 17: Motion Planning

CS763-Lecture17 17 of 27



A. Lubiw, U. WaterlooLecture 17: Motion Planning

Robot Arm Motion  (Linkages)

The study of linkages is old, e.g. Peaucellier linkage to convert rotary motion to 
linear motion 

Input is a polygonal chain where the segments (“links”) have fixed lengths and the 
angles between successive links may change. 

Two models:

- intersection of links allowed, e.g. above, where linkage is essentially planar, but 
  each link is slightly higher (in 3rd dimension) than previous 

- intersections forbidden, e.g. protein folding, robot arm in 3D  

We will just look at a chain (not a general graph, which gets into “rigidity theory”). 

as P moves on a circle, Q moves on a line

CS 763  F22

https://www.geogebra.org/m/RTqjzeJ4
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We will study two problems:

1. Given a chain with one endpoint fixed, where can the other endpoint reach?        
    Allow intersections.

2. Given a chain, can we go from any configuration to any other?  
    Forbid intersections.

 
This example is one of the first I saw, designed by Jorge Urrutia. It was never really thought to be locked, but it was noted as difficult to open.
The linear program found a rather surprising solution--I was expecting it to pull the two jaws apart.

Animation (without Zooming) 
Animated GIF (69k) 
Antialiased Animated GIF (347k) 

     

Animation with Automatic Zooming (the edge lengths in fact stay the same) 
Animated GIF (252k) 
Antialiased Animated GIF (827k) 

     

different views not to scale
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outer radius =   S  =  ∑ Li

inner radius =    

Idea of proof

John Hopcroft, Deborah Joseph, and Sue Whitesides. 
"On the movement of robot arms in 2-dimensional bounded regions." 1985

CS 763  F22

Theorem.  Given a chain v0, . . . , vn with link lenghts L1, . . . , Ln and with v0 pinned 
in the plane, the reachability region of vn is an annulus with 

M − R, where M = max Li, R = S − M 

S = sum 
M = max, R = the rest

0  if R > M

- trivial for n = 1
- for n = 2

A. Lubiw, U. WaterlooLecture 17: Motion Planning
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outer radius =   S  =  ∑ Li

inner radius =    

CS 763  F22

Theorem.  Given a chain v0, . . . , vn with link lengths L1, . . . , Ln and with v0 pinned 
in the plane, the reachability region of vn is an annulus with 

M − R, where M = max Li, R = S − M 

S = sum 
M = max, R = the rest

0  if R > M

Idea of proof
General case by induction on n.
The first n-1 links yield an annulus.  Adding the last link, gives the Minkowski sum 
of the annulus and a disc — which is an annulus.

The formulas for outer and inner radius
are clear if L1 is the longest link, 
but note that the order does not matter! 

Devadoss and O’Rourke
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The theorem tells us WHICH points can be reached.
It is also possible to find HOW to reach any point in the annulus.

In fact, it is possible to reach any point using only two of the joints and locking 
the others (just ensure that S, M, R are the same)

So it suffices to find out how to reach a point with 3 links.

(Details omitted)

reorder to put M over the midpoint
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We will study two problems:

1. Given a chain with one endpoint fixed, where can the other endpoint reach?        
    Allow intersections.

2. Given a chain, can we go from any configuration to any other?  
    Forbid intersections.

 
This example is one of the first I saw, designed by Jorge Urrutia. It was never really thought to be locked, but it was noted as difficult to open.
The linear program found a rather surprising solution--I was expecting it to pull the two jaws apart.

Animation (without Zooming) 
Animated GIF (69k) 
Antialiased Animated GIF (347k) 

     

Animation with Automatic Zooming (the edge lengths in fact stay the same) 
Animated GIF (252k) 
Antialiased Animated GIF (827k) 

     

different views not to scale
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Recall
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2. Given a linkage, can we go from any configuration to any other?  
    Forbid intersections.

In 3D, the answer is “not always”.

OPEN.  Can a chain of unit length links be locked?

OPEN. Find a polynomial time algorithm to test if a 3D polygonal chain is locked.  
(It is PSPACE-hard to test if we can get from one configuration to another.)
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270 T. Biedl et al.

1. Introduction

A polygonal chain P = (v0, v1, . . . , vn−1) is a sequence of consecutively joined seg-
ments ei = vivi+1 (also called edges or links) of fixed lengths !i = |ei |, embedded in
space.1 A chain is closed if vn−1 = v0; otherwise, it is open. A closed chain is also called
a polygon. A chain is simple if its edges are pairwise disjoint except for adjacent edges,
which share only their common endpoint. Unless stated otherwise, chainmeans “simple
polygonal chain.” For an open chain, our goal is to straighten it; for a closed chain the
goal is to convexify it, i.e., to reconfigure it to a planar convex polygon. Both goals are
to be achieved by continuous motions that maintain link lengths and simplicity of the
chain throughout.
A locked chain is one that cannot be straightened or convexified. Since a chain in three

dimensions can be continuously moved between any of its unlocked configurations via
straightened or convexified intermediate configurations, the property of being unlocked
is of fundamental importance. Nontrivial knots provide examples of closed chains that
are locked. However, as Figs. 1 and 2 show, even open chains and unknotted closed
chains may be locked in three dimensions. Section 2 provides details.
In Section 3we give an algorithmic proof that any open chainwith a simple orthogonal

projection can be made straight in three dimensions, as well as an algorithmic proof that
any open chain embedded in the surface of a polytope can be straightened. Section 4
presents our main result, an algorithmic proof that any closed chain initially taking the
form of a polygon lying in the plane can be made convex.
We describe our algorithms in terms of “moves.” Throughout the paper a “ move” is

a continuous motion of a chain in which only O(1) angles at joints (vertices) change at
once, and only O(1) dihedral angles at edges change at once. (The dihedral angle of an
edge is the angle between the plane it determines with one of its neighboring edges and
the plane it determines with the other.) Our algorithms make easily described moves that
change angles at a very small number of vertices and edges at once.
After we reported our work in abstract form [BDD+1], Connelly et al. [CDR] and

Streinu [St] reported two approaches for convexifying polygons in the plane using

Fig. 1. A locked, open chain K with long “knitting needles” at the ends.

1 All index arithmetic throughout the paper is mod n.

Biedl, T., Demaine, E., Demaine, M., Lazard, S., Lubiw, A., 

O'Rourke, J., Overmars, M., Robbins, S., Streinu, I., 

Toussaint, G. and Whitesides, S., 

Locked and unlocked polygonal chains in three dimensions. 

2001
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Theorem.  In 2D, any chain can be straightened.  Any closed chain can be made 
convex.

(Erik Demain’s PhD thesis work)

idea of proof: they show that it suffices to use expansive motions — the distance 
between any two vertices never decreases.

This implies that a linkage can go from any configuration to any other.  

initial config. final config.straight config.

Robert Connelly, Erik D. Demaine, and Günter Rote. 
"Straightening Polygonal Arcs and Convexifying Polygonal Cycles." 2003

This example was designed by Joseph Mitchell on July 5, 1999, with some simplifications suggested by Joseph O'Rourke. This is one of the last
examples I've seen. It was first unlocked by Joseph O'Rourke on July 8, 1999, using a symmetric motion.

Animation (without Zooming) 
Animated GIF (97k) 
Antialiased Animated GIF (312k)

     

Animation with Automatic Zooming (the edge lengths in fact stay the same) 
Animated GIF (121k) 
Antialiased Animated GIF (508k)

     

Teeth
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A better way to go from initial to final configuration — avoid going through 
intermediate straight/convex chain.

Hayley Iben, James F. O’Brien, and Erik D. Demaine. 
"Refolding planar polygons." 2009.

450 Discrete Comput Geom (2009) 41: 444–460

Fig. 2 The top row demonstrates how using the vertex-position metric alone will, as expected, generate a
sequence with self intersections. The bottom row illustrates how the collision-avoidance machinery alters
the vertex motions to avoid self intersection. Computation times were less than one second

then the intersection-avoidance machinery would tend to violate them needlessly. In-
stead, we combine the projection step that prevents self-intersection with the projec-
tions that preserve the user constraints. In the special case where the user constraints
seek to make edge lengths constant (or change them monotonically), we can guar-
antee, based on the previously described unfolding results, that they will not conflict
with intersection avoidance. However, arbitrary constraints may conflict with inter-
section avoidance, so they will only be enforced to the extent that they do not cause
the algorithm to fail.

5.1 The Algorithm

The following pseudocode describes our algorithm for generating an interpolation
sequence between two polygons, A and B:

1. Establish compatibility and correspondence:
The user, or some heuristic, indicates the desired correspondence between A and
B and renumbers vertices accordingly. If one of the polygons has fewer vertices
than the other, then additional vertices are inserted by splitting edges.

2. While A and B are different:
a) Compute the energy for A and B .
b) Use the gradient of the distance metric to determine a direction, D, that would

move the higher-energy polygon, H , closer toward the lower-energy one, L.
c) Optional: Project D to enforce edge-length or other constraints.
d) If D would move H to a higher-energy configuration:

• Project D so that it is perpendicular to the energy gradient. (Attempt to honor
any constraints if they are in use.)

e) If D is not null:

• Perform a bounded search in the direction D for a new state that decreases
the distance metric by some minimal amount and does not result in an energy
increase.

f) If D is null or the search in (2.e) failed:

• Set G to the direction of the downward energy gradient at H . (Again, attempt
to honor any constraints if they are in use.)
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Summary

- Motion planning

- convex robot translating among 2D obstacles
- linkages
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