
A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Shortest paths in the plane with polygonal obstacles

UNIV
ERSITY A

VENUE W
EST SEAGRAM DRIVE

COLUMBIA STREET WEST

RING ROAD

Campus Court

University Shops
Plaza

WELLESLEY
COURT

EBY HALL BECK HALL

WOOLWICH
COURTWATERLOO

COURT

WILMOT
COURT

PLAYING FIELDS

VILLAGE GREEN

W
ES

TM
O

U
N

T
 R

O
A

D
 N

O
RT

H

LA
U

RE
L

CR
EE

K

PH
IL

LI
P

 S
TR

EE
T

PH
IL

LI
P

 S
TR

EE
T

RIN
G R

OAD

WES GRAHAM WAY WES GRAHAM WAY

FRANK TOMPA DRIVE FRANK TOMPA DRIVE

H
A

G
EY

 B
O

U
LE

VA
R

D

COLUMBIA LAKE

LAUREL
LAKE

W
ES

TM
O

UN
T

 R
O

A
D

 N
O

RT
H

Humanities
Theatre

Theatre
of the Arts

WEATHER
STATION

HAGEY
BOULEVARD

Warrior Field

UW Police and
Parking Services

Visitors Centre
Campus Tours

SEAGRAM DRIVE

SU
N

V
IE

W
 S

TR
EE

T

LE
ST

ER
 S

TR
EE

T

C

V S JK

P

PP

P

M

N

OVW

X
X

R

L

O

B

T

H

A

D

EC

P

P

CL

HV

UWP

300

445

375

340

275

DAVID JOHNSTON
RESEARCH + TECHNOLOGY PARK

ACW
CLN

CLV

REV
TH

MKV

V1

FED

UC

PAC

SLC

HS

REN

MHR

PAS

EV2

EV3

EV1

HH

AL

ML
RCH

PHY

B1

ESC

MC
C2

DC
ECH

EITB2

QNC

CPH

UWP

E2

E3

E5

EC3 EC1

EC2

E6

M3

NH LIB

TC

GH

SCH

DWE
STP

STJ

CGR

LHI
ERC

CIF
OPT

KDC

HMNBRH

RA2
RAC

BAU

CSB
COM

GSC

BMH

COG

WCP

BUILDING INDEX
CODE BUILDING – LOCATION
ACW Accelerator Centre – G1
AL Arts Lecture Hall – G4
B1 Biology 1 – G4
B2 Biology 2 – G4
BMH B.C. Matthews Hall – G3
BRH Brubacher House – F2
C2 Chemistry 2 – G3, G4
CGR Conrad Grebel University College – F5
CIF Columbia Icefield – G2
CLN Columbia Lake Village North – B2, C1, C2
CLV Columbia Lake Village – B2, C2, D2
COG Columbia Greenhouses – D2
COM Commissary – H3

CPH Carl A. Pollock Hall – H4
CSB Central Services Building – G3
DC William G. Davis Computer Research Centre –

H3, H4
DWE Douglas Wright Engineering Building – H4
E2 Engineering 2 – H4
E3 Engineering 3 – H4
E5 Engineering 5 – H3, H4
E6 Engineering 6 – H4
EC1 East Campus 1 – I3
EC2 East Campus 2 – H3
EC3 East Campus 3 – H3
ECH East Campus Hall – H3, H4, I3, I4
EIT Centre for Environmental & Information

Technology – G4
ERC Energy Research Centre – G3

EV1 Environment 1 – G5
EV2 Environment 2 – G5
EV3 Environment 3 – G5
ESC Earth Sciences & Chemistry – G4
FED Federation Hall – F3
GA 335 Gage Street – see back page
GH Graduate House – G4
GSC General Services Complex – G3, H3
HH J.G. Hagey Hall of the Humanities – G5
HMN Hildegard Marsden Nursery – G2
HS Health Services – F4
KDC Klemmer Day Care – G2
LHI Lyle S. Hallman Institute for Health Promotion – G3
LIB Dana Porter Library – G4
M3 Mathematics 3 – G3

MC Mathematics & Computer Building– G3
MHR Minota Hagey Residence – F5, G5
MKV William Lyon Mackenzie King Village – E3
ML Modern Languages – G4
NH Ira G. Needles Hall – G4
OPT School of Optometry – G2
PAC Physical Activities Complex – G3
PAS Psychology, Anthropology, Sociology – G5
PHR School of Pharmacy – see back page
PHY Physics – G4, H4
QNC Mike & Ophelia Lazaridis
 Quantum-Nano Centre – G4
RAC Research Advancement Centre – F1
RA2 Research Advancement Centre 2 – F1
RCH J.R. Coutts Engineering Lecture Hall – H4

REN Renison University College – F4
REV Ron Eydt Village – E3
SCH South Campus Hall – G4, G5, H5
SLC Student Life Centre – G3
STJ St. Jerome’s University – F4
STP St. Paul’s University College – F4
TC William M. Tatham Centre for Co-operative
 Education & Career Action – G4, G5
TH Tutors’ Houses – E3
UC University Club – F3
UWP University of Waterloo Place – I4, I5
V1 Student Village 1 – E3, F3

PARKING INDEX
VISITOR PARKING
All Day, Every Day
C, N, W, X: $5 per day – pay and display
Lot X is free on weekends
HV: Weekdays: $2 per hour up tp daily
maximum of $15. After 5 p.m. and weekends:
$5 coin entry
M: $6 pay and display
D: Weekdays: $2 per hour up to daily
maximum of $15. After 5 p.m. and weekends:
$5 coin entry
P: $4 coin entry for St. Jerome’s University,
Renison University College; $5 coin entry
for St. Paul’s University College; $1 per hour
up to a $4 daily maximum at Conrad Grebel
University College
OV: $5 coin exit
J, S, V: $5 pay and display. Pay in lot S
CL, UWP: $5 pay and display

AFTER 4 P.M. AND WEEKENDS
A, B, EC, H, R: $5 coin entry

PERMIT PARKING
Faculty and Staff: A, B, H, K, L, N, O, R, T, X
Resident: CL, J, S, V, UWP, T
Parking in any ungated lot after 4:30 pm
with valid Faculty/Staff Permit

MOTORCYCLES
Purchase a term or day pass from Parking
Services, in the COM building for use at
motorcycle pads

ACCESSIBLE PARKING
Accessible parking for persons with
disabilities is available in most lots.
For details visit:
uwaterloo.ca/parking

SHORT-TERM PARKING
Fifteen minute parking is available on the
Ring Road at Environment 2 and Ira G.
Needles Hall. Meter parking is available,
visit the Parking website for locations at:
uwaterloo.ca/parking

WATCARD PAYMENT
Available at Lot C, N, W, X, M, UWP

LEGEND
PARKING

 Accessible Parking

 Meter Parking

 Motorcycle Parking

 Permit Parking

 Short-term Parking

 Visitor Parking

COLOUR CODES

 Academic/Administrative Buildings

 Roads and Parking Lots

 City Roads and Parking Lots

 Pathways

 Residence Buildings

 Water

 Research Park Buildings

P

SYMBOLS

 Accessible Entrances

 Building Codes

 Construction Site and
Future Site of Building

 Grand River CarShare

 Grand River Transit

 Greyhound

 GO Transit

 Help Line Telephone

 Information

 Public Telephone

 Service Vehicle

Given some polygons (“obstacles”) in the plane, a start point s and end point t,
find the shortest path from s to t that avoids the obstacles.

T

S

Note: most solutions actually allow us to find the shortest path from s to every t
(“single source” shortest path problem).

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 1 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Shortest paths in the plane with polygonal obstacles

CS 763 F22

T

SLemma. Any shortest path among obstacles in
the plane is composed of line segments
between vertices of the obstacles. Also any
locally shortest path.

locally shortest
= no local change can shorten the path
= taut string solution

T

S

2 locally shortest paths from S to T

Proof.

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 2 of 36

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

S

T

Shortest paths in a simple polygon

In a simple polygon, there is only one locally shortest path from S to T.

Can be found in O(n) time, after triangulating the polygon. “Funnel algorithm”.
(Recall: triangulation in O(n) time by Chazelle’s algorithm.)

OPEN: can this be done in linear time without Chazelle’s algorithm?

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 3 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Shortest paths in a simple polygon — the funnel algorithm

CS 763 F22

- triangulate the polygon and find the path of
 triangles from s to t

- go along the path of triangles, maintaining shortest
 paths from s to the mouth of the current triangle

s r

u

a

b

c

Joseph Mitchell

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 4 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Shortest paths in the plane with polygonal obstacles

T

S

Note: real-RAM model of computation, since we compare sums of square roots.

CS 763 F22

Two main approaches:

1. find a shortest path in the visibility graph using Dijkstra’s shortest path
 algorithm. O(n2) because the graph may have many edges.

2. “continuous” Dijkstra approach

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 5 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Shortest paths in the plane with polygonal obstacles via Visibility

T

S

Visibility graph:
Nodes are vertices of the polygonal obstacles plus S and T.
Edge (a,b) if the line segment ab does not intersect the interior of any obstacle.
weight (a,b) = Euclidean length of segment ab.

Problem becomes: find the shortest path from S to T in the visibility graph.

Use Dijkstra’s shortest path algorithm.
Run time O(m + n log n)
m = #edges.

But m can be Theta(n2).

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 6 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Computing the visibility graph.

Obvious: O(n3)
Plane sweep: O(n2 log n)
Line arrangements: O(n2)

Output sensitive: O(n log n + k), k = output size = number of edges of vis. graph.
[Ghosh and Mount, 1991].
Huge efforts went into this line of research, but the bottleneck is that the visibility
graph can have n2 edges.

Next: the O(n2) algorithm via line arrangements [Welzl, 1985]
(described for non-degenerate disjoint line segments).

CS 763 F22

Shortest paths in the plane with polygonal obstacles via Visibility

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 7 of 36

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Computing the visibility graph in O(n2). [Welzl, 1985]
(described for non-degenerate disjoint line segments).

CS 763 F22

1. shoot a horizontal ray from every vertex to find which
 segment it sees to the right. vis(v) = segment it sees.
 O(n log n) via plane sweep.

2. sweep the direction vector cyclically,
 maintaining vis(v)

 we will find a visibility edge (a,b) when the
 direction vector is parallel to it.

How to sweep the direction vector:

Visibilities only change when the direction vector goes through 2 vertices.

Find all (n choose 2) lines through pairs of points and sort by slope. O(n2 log n)
we will see a faster way using arrangements!

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 8 of 36

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Computing the visibility graph in O(n2).

How to update vis(v) for the line through points a, b.
Note: only vis(a) and vis(b) can change. Update vis(a) in O(1):

case 1. ab is a segment case 2. a does not see b
then vis(a) blocks a from seeing b

case 3. b is an endpoint of vis(a) case 4. otherwise

CS 763 F20 A. Lubiw, U. WaterlooLecture 15: Shortest Paths

Computing the visibility graph in O(n2).

How to update vis(v) for the line through points a, b.
Note: only vis(a) and vis(b) can change. Look at vis(a):

case 1. ab is a segment case 2. a does not see b
then vis(a) blocks a from seeing b

case 3. b is an endpoint of vis(a) case 4. otherwise

CS 763 F20 A. Lubiw, U. WaterlooLecture 15: Shortest Paths

Computing the visibility graph in O(n2).

How to update vis(v) for the line through points a, b.
Note: only vis(a) and vis(b) can change. Look at vis(a):

case 1. ab is a segment case 2. a does not see b
then vis(a) blocks a from seeing b

case 3. b is an endpoint of vis(a) case 4. otherwise

CS763-Lecture16 9 of 36

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Computing the visibility graph in O(n2).

Each update is O(1). Total cost of updates is O(n2).

The bottleneck is O(n2 log n) to sort the slopes. Do we need to do that?
NO. We just need that the n-1 lines through any one point a must be handled in
the correct order.

case 3. b is an endpoint of vis(a)

CS 763 F20 A. Lubiw, U. WaterlooLecture 15: Shortest Paths

Computing the visibility graph in O(n2).

How to update vis(v) for the line through points a, b.
Note: only vis(a) and vis(b) can change. Look at vis(a):

case 1. ab is a segment case 2. a does not see b
then vis(a) blocks a from seeing b

case 3. b is an endpoint of vis(a) case 4. otherwise Case 3 is crucial — we need vis(b) to be correct when
we handle direction ab. But that’s ok if we have the
correct order around b.

Plan. Take the dual.
Vertices (points) become lines.
Directions (lines through 2 points) becomes points.

we want to deal with the points on line a in order.

Compute the arrangement. O(n2). Direct edges left to right.
This gives a directed acyclic graph. Now use a “topological order” of the graph.
This avoids sorting.

CS763-Lecture16 10 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Shortest paths in the plane with polygonal obstacles

T

S

Note: real-RAM model of computation, since we compare sums of square roots.

CS 763 F22

Two main approaches:

1. find a shortest path in the visibility graph using Dijkstra’s shortest path
 algorithm. O(n2) because the graph may have many edges.

2. “continuous” Dijkstra approach

Recall

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 11 of 36

CS 763 F16 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Reminder of Dijkstra’s algorithm
single source shortest paths for non-negative edge weights.

d(v) = shortest path from s to v
using vertices in S plus one edge to v

Initialize: S = null d(s) = 0 d(u) = infinity for all other u

update step:

pick v in V - S to minimize d(v)
add v to S
for edge (v, u), u in V - S

d(u) <— min { d(u), d(v) + w(v,u) } (*)

line (*) takes O(m) in total. Use a priority queue to store d(v) values.
Total time O(m + n log n)

CS763-Lecture16 12 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Geometric visualization of Dijkstra’s algorithm — imagine paint flowing along edges

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 13 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Shortest paths in the plane with polygonal obstacles via continuous Dijkstra

due to Mitchell ’96.
O(n log n), Hershberger, Suri ‘99

wavefront expands from point S

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 14 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Continuous Dijkstra approach. Wavefront expands from point S.

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 15 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Continuous Dijkstra approach. Wavefront expands from point S.

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 16 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Continuous Dijkstra approach.

Implementation issues:

- keep track of events where the wave front changes combinatorially

- find which event occurs next (use a priority queue)

- make updates for that event

Original version was O(n2 log n).

Improved to O(n log n) by Hershberger, Suri

502 Discrete Comput Geom (2008) 39: 500–579

and Han follow the general idea of Mount [28] to solve the problem of storing short-

est path information separately, for a general, possibly nonconvex polyhedral surface.

They obtain a tradeoff between query time O (d log n / logd) and space complex-
ity O (n log n / logd), where d is an adjustable parameter. Again, the question whether
this data structure can be constructed in subquadratic time, has been left open.

The problem has been more or less “stuck” after Chen and Han’s paper, and the

quadratic-time barrier seemed very difficult to break. For this and other reasons, sev-

eral works [2–4, 16, 17, 19, 24, 25, 38] presented approximate algorithms for the

3-dimensional shortest path problem. Nevertheless, the major problem of obtain-

ing a subquadratic, or even near-linear, exact algorithm remained open. In 1999,

Kapoor [21] announced such an algorithm for the shortest path problem on an ar-

bitrary polyhedral surface P (see also a review of the algorithm in O’Rourke’s col-

umn [29]). The algorithm follows the continuous Dijkstra paradigm, and claims to be

able to compute a shortest path between two given points in O (n log2 n) time (so it
does not preprocess the surface for answering shortest path queries). However, as far

as we know, the details of Kapoor’s algorithm have not yet been published.

The Algorithm of Hershberger and Suri for Polygonal Domains A dramatic break-

through on a loosely related problem took place in 1995,1 when Hershberger and

Suri [18] obtained an O (n log n)-time algorithm for computing shortest paths in the
plane in the presence of polygonal obstacles (where n is the number of obstacle ver-
tices). The algorithm actually computes a shortest path map from a fixed source point

to all other (non-obstacle) points of the plane, which can be used to answer single-

source shortest path queries in O (log n) time.
Our algorithm uses (adapted variants of) many of the ingredients of [18], includ-

ing the continuous Dijkstra method—in [18], the wavefront is propagated amid the

obstacles, where each wave emanates from some obstacle vertex already covered by

the wavefront; see Fig. 1(a).

The key new ingredient in [18] is a quad-tree-style subdivision of the plane, of

size O (n), on the vertices of the obstacles (temporarily ignoring the obstacle edges).

Fig. 1 The planar case: (a) The wavefront propagated from s, at some fixed time t . (b) The conforming
subdivision of the free space

1A preliminary (symposium) version has appeared in 1993; the last version was published in 1999.

Schreiber & Sharir

complicated!

involves subdividing space and
approximating the wavefront
cell by cell

CS 763 F22

Note: Theta(n log n) is a lower bound

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 17 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Shortest paths in 3D with polyhedral obstacles

Note that a shortest path does not
have to travel on segments between
vertices.

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 18 of 36

https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwjGw6Ciz_7PAhXB2yYKHWurCLoQjRwIBw&url=http://www.foxnews.com/tech/2014/12/31/drones-to-zoom-into-buildings-and-hunt-inside.html&bvm=bv.136811127,d.eWE&psig=AFQjCNFctXKuGBiZYMfMe5LGSnOPy7KjKA&ust=1477782521850667

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Shortest paths in 3D with polyhedral obstacles

A

B

NP-hard — Canny & Reif, 1987
 even for the case of parallel floating triangles

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 19 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Shortest paths in 3D with polyhedral obstacles

Approximation algorithm. Papadimitriou ’85;

Exact PSPACE algorithm. Canny ’88. Uses decidability theory of real closed fields.

idea: put many points along each edge and use Dijkstra (on graph)

details are a bit tricky:

 - points are placed in geometric
 progression along edges (not placed uniformly)

 - this divides the edge into segments which
 become the vertices of the graph

Main Claim. If S and T are at distance d then
the approximate path has length

In 2000, Choi, Sellen, Yap, found and corrected
an error caused by mixing the algebraic model,
where we compute distance using \sqrt,
with the bit model used in approximation analysis

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 20 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Shortest paths on a polyhedral surface

Surface is made up of polygons (usually triangles) joined at edges.
Paths may cut across faces.

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 21 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Copyright © 2005 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from Permissions
Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.
© 2005 ACM 0730-0301/05/0700-0553 $5.00

Fast Exact and Approximate Geodesics on Meshes
Vitaly Surazhsky

University of Oslo
Tatiana Surazhsky

University of Oslo
Danil Kirsanov
Harvard University

Steven J. Gortler
Harvard University

Hugues Hoppe
Microsoft Research

Abstract
The computation of geodesic paths and distances on triangle
meshes is a common operation in many computer graphics applica-
tions. We present several practical algorithms for computing such
geodesics from a source point to one or all other points efficiently.
First, we describe an implementation of the exact “single source,
all destination” algorithm presented by Mitchell, Mount, and Pa-
padimitriou (MMP). We show that the algorithm runs much faster
in practice than suggested by worst case analysis. Next, we extend
the algorithm with a merging operation to obtain computationally
efficient and accurate approximations with bounded error. Finally,
to compute the shortest path between two given points, we use a
lower-bound property of our approximate geodesic algorithm to ef-
ficiently prune the frontier of the MMP algorithm, thereby obtain-
ing an exact solution even more quickly.

Keywords: shortest path, geodesic distance.

1 Introduction
In this paper we present practical methods for computing both exact
and approximate shortest (i.e. geodesic) paths on a triangle mesh.
These geodesic paths typically cut across faces in the mesh and are
therefore not found by the traditional graph-based Dijkstra algo-
rithm for shortest paths.
The computation of geodesic paths is a common operation in many
computer graphics applications. For example, parameterizing a
mesh often involves cutting the mesh into one or more charts
(e.g. [Krishnamurthy and Levoy 1996; Sander et al. 2003]), and
the result generally has less distortion and better packing efficiency
if the cuts are geodesic. Geodesic paths are used in segmenting a
mesh into subparts, as done in [Katz and Tal 2003; Funkhouser et al.
2004]. Mesh editing systems such as [Kobbelt et al. 1998] also use
geodesics to delineate the extents of editing operations. Simulating
fire on a mesh [Lee et al. 2001] also benefits from geodesics.
In addition, geodesic paths establish a surface distance metric,
which is an essential building block for many other techniques. For
example, radial-basis interpolation over a mesh requires calcula-
tion of geodesic distances, and is used in numerous applications
such as skinning [Sloan et al. 2001], mesh watermarking [Praun
et al. 1999], and the definition of surface vector fields [Praun et al.
2000]. Shape classification algorithms such as [Hilaga et al. 2001]
use Morse analysis of a geodesic distance field. Parameterization
metrics based on isomaps [Zigelman et al. 2002; Zhou et al. 2004;
Peyré and Cohen 2005] are also driven by geodesic distances.
In this paper we explore the problem of producing both exact and
approximate solutions for geodesic paths (and hence distances) on
triangle meshes (Figure 1). We present three contributions:
Exact algorithm We first present an efficient implementation of
the exact geodesic algorithm by Mitchell, Mount, and Papadim-
itriou (MMP) [1987]. Using a simple parameterization of the dis-

Figure 1: Geodesic paths from a source vertex, and isolines of the
geodesic distance function.

tance function over the edges, the implementation is actually prac-
tical even though, to our knowledge, it has never been done pre-
viously. We demonstrate that the algorithm’s worst case running
time of O(n2 log n) is pessimistic, and that in practice, the algo-
rithm runs in sub-quadratic time. For instance, we can compute
the exact geodesic distance from a source point to all vertices of a
400K-triangle mesh in about one minute.
Approximation algorithm We extend the algorithm with a merg-
ing operation to obtain computationally efficient and accurate ap-
proximations with bounded error. In practice, the algorithm runs in
O(n log n) time even for small error thresholds.
Exact geodesic path between two points We show how to
efficiently obtain the exact solution to the “single source, single
destination” problem, by using a lower-bound property of our ap-
proximation algorithm to prune the frontier of the MMP algorithm.
In practice, we compute the shortest path between two points on a
1M-triangle mesh in just a few seconds.

2 Related work
The MMP algorithm [Mitchell et al. 1987] provides an exact solu-
tion for the “single source, all destination” shortest path problem
on a triangle mesh. Their algorithm partitions each mesh edge into
a set of intervals (windows) over which the exact distance compu-
tation can be performed atomically. These windows are propagated
in a “continuous Dijkstra”-like manner. They prove a worst case
running time of O(n2 log n). Unfortunately, as far as we know the
MMP algorithm has not been implemented previously and thus has
not made its way into practice.
An exact geodesic algorithm with worst case time complexity of
O(n2) was described by Chen and Han [1996] and partially imple-
mented by Kaneva and O’Rourke [2000]. We show that our MMP
implementation runs many times faster than that implementation.
Kapoor [1999] describes an algorithm for the “single source, sin-
gle destination” geodesic path between two given mesh vertices,
in O(n log2 n) time. This is a complicated method which calls as
subroutines many other complicated computational geometry algo-
rithms; it is unclear if this algorithm will ever be realized.
Approximate geodesics with guaranteed error bounds can be ob-
tained by adding extra edges into the mesh and running Dijkstra
on the one-skeleton of this augmented mesh [Lanthier et al. 1997].

553

Fast Exact and Approximate Geodesics on Meshes
SIGRAPH 2005

includes shortest paths on surface of polyhedron

CS 763 F22

https://doi.org/10.1145/1073204.1073228

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 22 of 36

https://doi.org/10.1145/1073204.1073228

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

T

S

Shortest path on a polyhedral surface

CS 763 F22

shortest paths among
obstacles in the plane

shortest paths among
obstacles in 3D

shortest paths on a
polyhedral surface

⊆ ⊆

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 23 of 36

T

S

A. Lubiw, U. WaterlooLecture 16: Shortest PathsCS 763 F22

Shortest path on a polyhedral surface

shortest paths among
obstacles in the plane

shortest paths on a
polyhedral surface

⊆

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 24 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

How does a locally shortest path move from one face to another?

?

the spider and the fly problem. Dudeney, The Canterbury Puzzles, 1958

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 25 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

How does a locally shortest path move from one face to another?

locally shortest paths are straight lines in unfoldings

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 26 of 36

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Shortest paths on a polyhedral surface

History

O(n5) O’Rourke and students, ’85

O(n2 log n) Mitchell, Mount, Papadimitriou, ’87 — using continuous Dijkstra approach

O(n2) Chen and Han, ’96

O(n log2 n) Kapoor ’99

O(n log n) for the special case of a convex polyhedron. Schreiber, Sharir, 2006

CS 763 F22

no longer believed

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 27 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Chen and Han algorithm to find shortest paths on a polyhedral surface

Input: polyhedral surface made up of triangles in 3-space, joined edge-to-edge
(every non-boundary edge is in 2 triangles). Source point s, destination point t.
n = # triangles.

First consider a convex surface.
Then a shortest path will not go through any vertices.

CS 763 F22

Claim 1. Shortest paths unfold to straight lines.

Claim 2. A shortest path does not enter a face twice (or we could short-cut).

Claim 3. Two shortest s-t paths do not intersect (except at s and t).

Idea. Start unfolding from the triangle containing s.

- at each edge there is a unique “next” triangle to glue on
- triangles may appear multiple times
- the target t may appear multiple times
- the unfolding will self-overlap in general

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 28 of 36

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Shortest paths reach a segment on edge e via a cone.

Chen and Han algorithm to find shortest paths on a polyhedral surface

How a cone expands into the next triangle

Plan: keep track of segments and of the rays of cones reaching the segment
endpoints.

CS763-Lecture16 29 of 36

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Chen and Han algorithm to find shortest paths on a polyhedral surface

Build a tree. Nodes are the segments.

Initial tree Each node has one or two children

Lemma. After depth n, the tree contains all shortest paths from s to any point.

Proof.

Then just compare all straight line paths from s to a copy of t in the tree to find the
shortest.

well, ok — but this is exponential size and time!

- 448 -

CS 763 F16 A. Lubiw, U. WaterlooLecture 15: Shortest Paths

- 449 -

CS 763 F16 A. Lubiw, U. WaterlooLecture 15: Shortest Paths

CS763-Lecture16 30 of 36

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Chen and Han algorithm to find shortest paths on a polyhedral surface

How to prune the segment tree:
Lemma. (“one vertex one cut”) Suppose triangle T appears twice and in both
cases, a segment splits at vertex v in triangle T. Then we can discard one of the
four children.

segments s1 and s2 both split at
vertex v in copies of triangle T

More precisely, if d2 < d1 then s12 can be discarded (it never gives shortest paths).
Consequence. The size of the segment tree is O(n2):

overlaying the copies of T

CS763-Lecture16 31 of 36

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Chen and Han algorithm to find shortest paths on a polyhedral surface

More precisely, if d2 < d1 then s12 can be discarded (it never gives shortest paths).

Proof.
Let σ1 be the path from s to v through segment s1
Let σ2 be the path from s to v through segment s2

Then |σ1| = d1 and |σ2| = d2.

Consider a path σ through s12
σ crosses σ2 at x

Claim. |σ(s,x)| > |σ2(s,x)|. Thus s12 never gives
shortest paths.
Proof.

Notation: σ2(s,x) = subpath of σ2 from s to x

CS763-Lecture16 32 of 36

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Chen and Han algorithm to find shortest paths on a polyhedral surface

Dealing with non-convex vertices — actually negative curvature vertices.

Shortest paths may go through these vertices (think of saddle-points versus
mountain tops).

Solution: Each such vertex is treated as a “pseudo-source”.

vertex of negative
curvature

range of shortest paths
through the vertex

CS763-Lecture16 33 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Application of shortest paths on convex polyhedron: unfolding problem

Durer, 1498

Open problem: can every convex polyhedron be cut on its edges to a planar unfolding?

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 34 of 36

A. Lubiw, U. WaterlooLecture 16: Shortest Paths

Application of shortest paths on convex polyhedron: unfolding problem
unfolding was introduced by Alexandrov in 1948 [Ale50, p. 181][Ale05, p. 195]1
but only proved to avoid overlap more recently [AO92].

If P has n vertices, the unfolding has 2n vertices, n of which are images of
x, which alternate with the n images of the vertices of P. Because x can be any
generic point on the surface (and there is only a finite network of nongeneric
points to avoid), the star unfolding provides an entire class of unfoldings for a
given P.

F

L

RT

F

Bt

Bt

Bk

B
k

B
t

FB
t

B
t

B
k

B
t

B
t

B
t

(a) (b)

T

x

Bt

F
R

L

Bk

Figure 8: (a) 2⇥1⇥1 box. Box faces are labeled: Bt,F,T,R,L,Bk for Bottom,
Front, Top, Left, Right, and Back respectively. (b) Star unfolding with respect
to x.

The second general unfolding for a convex polyhedron is the source unfolding.
Again we start with a source point x 2 P, but this time we follow shortest paths
�(x, y) from x to every point y 2 P. The closure of the set of points y such
that �(x, y) is not unique forms the cut locus C(x) ⇢ P of x. The notion of cut
locus was introduced by Poincaré in 1905 [Poi05], and since then has become a
central concept in global Riemannian geometry. Its name reflects the fact that
shortest paths are “cut” or terminated when they reach the cut locus. The cut
locus for the box example is shown in Figure 9(a). Notice that the cut locus is
indeed a spanning tree of the vertices of P (this the reason for the closure in the
definition). So cutting C(x) will enable flattening the surface. The resulting
source unfolding for the box example is shown in (b) of the figure. That this does
not overlap is clear, because one can view it as composed of straight-segment
“spokes” of length �(x, y) for each y 2 C(x), emanating around x at every angle.

Returning to the star unfolding, the cut locus C(x) unfolds to a tree in U⇤(x)
that spans the n vertices of U⇤(x) which are the images of the vertices of P.

3.2 Nonconvex

Now that we have seen that all convex polyhedra have (many) general unfold-
ings, it is natural to ask whether nonconvex polyhedra do also. Here again the

1And so sometimes called an “Alexandrov unfolding” [MP08].

7

F

Bt

Bk

L R

T

T

x

(a) (b)

x

Bt

F

R

T
L

Bk

Figure 9: (a) 2⇥1⇥1 box, with cut locus C(x) marked. (b) Source unfolding
with respect to x.

answer is unknown: there is neither a counterexample, nor a general algorithm.
Progress has been made recently on orthogonal polyhedra.

3.2.1 Orthogonal Polyhedra

We saw one special class of orthogonal polyhedra that can be edge unfolded,
and one example (Figure 3(b)) of an orthogonal polyhedron that cannot be edge
unfolded. However, if we permit ourselves arbitrary cuts, it is not di�cult to
unfold this edge-ununfoldable example into a number of thin, connected strips.
See Figure 10 for one way, the result of applying a variation on the algorithm
from Section 1 for orthogonal terrains.

The idea of slicing an orthogonal polyhedron into strips was explored in a
series of papers handling special classes (summarized in [O’R08]), finally culmi-
nating in an algorithm that unfolds any orthogonal polyhedron P (of genus zero)
into a single, non-overlapping piece [DFO07]. This algorithm “peels” the sur-
face into a thin strip, following a recursively-nested helical path on the surface
of P. Although the cuts are arbitrary, they are parallel to polyhedron edges,
which is natural in this context. Unfortunately, the resulting unfolding can be
exponentially thin and exponentially long: if P has n vertices and has longest
dimension 1, strips might have width 1/2O(n) and stretch out to length 2O(n).

4 Summary & Prospects

Table 1 summarizes the status of the main questions on unfolding.
Of course there are many topics we have not discussed. For exam-

ple, the source and star unfoldings have been generalized to “quasigeodesic”

8

A Generalization of the Source Unfolding of

Convex Polyhedra

Erik D. Demaine1 and Anna Lubiw2

1 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, USA
edemaine@mit.edu

2 David R. Cheriton School of Computer Science, University of Waterloo, Canada
alubiw@uwaterloo.ca

Dedicated to Ferran Hurtado on the occasion of his 60th birthday.

Abstract. We present a new method for unfolding a convex polyhedron
into one piece without overlap, based on shortest paths to a convex curve
on the polyhedron. Our “sun unfoldings” encompass source unfolding
from a point, source unfolding from an open geodesic curve, and a variant
of a recent method of Itoh, O’Rourke, and Vı̂lcu.

1 Introduction

The easiest way to show that any convex polyhedron can be unfolded is via the
source unfolding from a point s, where the polyhedron surface is cut at the ridge
tree of points that have more than one shortest path to s, [10], or see [3]. The
unfolding does not overlap because the shortest paths from s to every other point
on the surface develop to straight lines radiating from s, forming a star-shaped
unfolding. See Figure 1(b).

(b)(a) (c)

C

Fig. 1. [based on O’Rourke [9]] Unfolding a box from a point on the middle of the base:
(b) source unfolding with some shortest paths shown. The source unfolding is the same
as the sun unfolding relative to circle C. (c) star unfolding, with ridge tree shown.

Our main result is a generalized unfolding, called a sun unfolding, that pre-
serves the property that shortest paths emanate in a radially monotone way,

Every convex polyhedron can be unfolded via the source and star unfolding

p

cut shortest path from x to every vertex cut Voronoi diagram of x (“ridge tree”)
star unfolding source unfolding

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

CS763-Lecture16 35 of 36

CS 763 F22 A. Lubiw, U. WaterlooLecture 16: Shortest Paths

References

- [CGAA] Chapter 15

Summary

- shortest paths:

- polygons O(n)
- polygonal domains O(n log n)
- 3D NP-hard
- polyhedral surfaces O(n2)

CS763-Lecture16 36 of 36

	intro
	discretize
	in polygon
	in polygon
	polygonal domain - general approaches
	reduce to visibility graph
	computing visibility graph
	computing visibility graph
	computing visibility graph
	CS 763 F20
	polygonal domain - general approaches
	reminder of Dijkstra
	reminder of Dijkstra
	continuous Dijkstra
	
	
	O(n log n)
	shortest paths in 3D
	shortest paths in 3D
	approx alg
	shortest path on polyhedral surface
	
	
	
	shortest paths and unfolding
	
	
	Chen and Han
	Chen and Han
	Chen and Han
	Chen and Han
	Chen and Han
	Chen and Han
	applications to unfolding
	applications to unfolding
	Summary

