Recall a problem we considered before: given n points, are there 3 (or more) collinear.

By duality (points \leftrightarrow lines) this becomes: given n lines, do 3 of them intersect at a point.

To get an $O(n^2)$ algorithm, we study **line arrangements**.

A set of n lines in the plane partitions the plane into faces (cells), edges, vertices, called the **arrangement**.
Recall

How to update after adding line \(l_i \) to the line arrangement:

To bound the run time we need the Zone Theorem

Definitions. Let \(A \) be an arrangement, and \(l \) be a line not in \(A \). The **zone** of \(l \) in arrangement \(A \) is \(Z_A(l) = \{ \text{faces of } A \text{ cut by } l \} \).

The **size** of the zone is \(z_A(l) = \sum \{ \# \text{ edges in face } f : f \in Z_A(l) \} \).

\[z_n = \max \{ z_A(l) : \text{over all possible} \ l, \ A \text{ of } n \text{ lines} \} \]

Zone Theorem. \(z_n \) is \(O(n) \).
Arrangements in higher dimensions

For an arrangement of \(n \) hyperplanes in \(\mathbb{R}^d \)

- the number of cells is \(O(n^d) \)

- Zone Theorem. The zone of a hyperplane has complexity \(O(n^{d-1}) \)

In 3D, for \(n \) planes, there are \(O(n^3) \) cells, and a zone has complexity \(O(n^2) \).
Application: Aspect Graph

What are all the combinatorially distinct viewpoints of an object?

Figure 7: Aspect graph of a cube. The front, left, right, back, top and under sides of the cube are denoted by the letters F, L, R, B, T and U respectively.

http://im-possible.info/english/articles/animation/animation.html
Application: Aspect Graph

Area with the same viewpoint = cell in arrangement of lines through pairs of visible points.

n^2 lines, so n^4 cells.

Can we really get $\Omega(n^2)$ lines for a convex polygon — $\Theta(n)$ lines?
Application: Aspect Graph

Aspect graph of convex polyhedron in 3D with n vertices

\[O(n) \text{ faces} \Rightarrow O(n^3) \text{ cells} \]

for non-convex polyhedron \(\Theta(n^9) \) cells

we need planes through every 3 points (in worst case)
so \(O(n^3) \) planes \(\Rightarrow \) \(O(n^9) \) cells

The aspect graph can be used to:

- find the viewpoint seeing the maximum number of faces
- find a “nice” projection
- figure out where a robot is, based on what it sees.
Recall Duality Map

point in \mathbb{R}^2 $\quad \leftrightarrow \quad$ line in \mathbb{R}^2

$p = (p_1, p_2)$ $\quad \leftrightarrow \quad$ $y = p_1 x - p_2$ (not defined for vertical lines)

Lemma. point p lies on/above/below line q^* iff point q lies on/above/below line p^*.

Corollary. Some points lie on a line iff their dual lines go through a point.
Properties of duality map

Lemma. point p lies on/above/below line q* iff point q lies on/above/below line p*.

Corollary. Some points lie on a line iff their dual lines go through a point.

Proof. \(\begin{align*}
p &= (a, b) \\
q &= (c, d)
\end{align*} \)

\(\begin{align*}
p^* : y &= ax - b \\
q^* : y &= cx - d
\end{align*} \)

above
\(p \) lies on \(q^* \)
above
\(q \) lies on \(p^* \)

\(b = ca - d \)
\(d = ac - b \)

\(\begin{align*}
\text{same} & \}
\text{same} & \}
\end{align*} \)
Application: Collinear points.

Given n points, are there 3 (or more) collinear?

Solution. Apply duality. There are 3 collinear points iff the dual has 3 lines through a point. Construct the arrangement, and check for this. $O(n^2)$

Is there a faster algorithm? — see below
Levels in an arrangement

Any vertical line not through vertices orders the edges top to bottom.

Level L_1 = all edges that appear first (topmost) along such a vertical line: $L_1 \ L_2 \ L_5 \ L_7$
Level L_i = all edges that appear in i-th place along such a line

Claim. Levels can be constructed in $O(n^2)$ time.
Claim. Levels can be constructed in $O(n^2)$ time.

- Compute arrangement $O(n^2)$
- Sort lines by slope — this gives edges in each $O(n \log n)$ level at $x = -\infty$
- Trace line l through the arrangement

Total time $O(n^2)$.
Levels in an arrangement

Open problem: what is the complexity of level L_k?
i.e. what is the worst case number of edges in level L_k?

Dual: given a set of points, how many subsets of size k can be cut away with a line?
For $k = n/2$, how many *halving lines* can there be?

Best known bounds:

- $\Omega(n \log k)$
 1973, Erdös et al., raised a bit by Toth, 2001

- $O(n k^{1/3})$
 Tamal Dey, 1997

Also: find level L_k (without constructing whole arrangement)
Application: Discrepancy problem.

Given n points in a unit square, do they provide a reasonable random sample?

discrepancy of half-plane $h = \mid$ area of square below h – fraction of points below h \mid

example:
7 points in shaded area; 13 points total
so fraction of points below h is 7/13

Given n points, find the maximum discrepancy of any half-plane.

Arrangements give an $O(n^2)$ time algorithm for this.

nice presentation:
Application: Discrepancy problem.

Lemma. Maximum discrepancy occurs

1. at line h through 2 points, or

2. at line h through 1 point and the point is the midpoint of the segment $h \cap \text{unit square}$

Proof.

- if h goes through 0 points we can slide h up or down to increase discrepancy.

- if h goes through 1 point p

 increase discrepancy by rotating h around p unless p is midpoint.
Solving the discrepancy problem via arrangements.

- Type 2 lines h can be checked brute force
 \[O(n^2) \text{ per point} \]
 \[O(n^2) \text{ total} \]

- Type 1 points - h thru 2 points
 use dual arrangement
 point h^* through 2 lines
 at intersection of
 test all vertices of arrangement
 - the level gives # points above

Total \[O(n^2) \] (area below h takes $O(1)$)
Application: Ham sandwich theorem.

Theorem. Given a set of red points and a set of blue points in the plane, there exists a line that cuts both sets in half.

General Ham-Sandwich Theorem
(from ’30’s - 40’s).
In \mathbb{R}^d, any d measurable objects can be cut in half by one $(d-1)$ dimensional hyperplane.

For discrete version in plane, there is an $O(n)$ time algorithm to find the halving line.

Can be viewed in terms of arrangements.
Application: Ham sandwich theorem.

Theorem. Given a set of red points and a set of blue points in the plane, there exists a line that cuts both sets in half.

Standard proof idea uses a rotating line.

In terms of duality and arrangements:

- The two $\frac{n}{2}$ levels intersect at a point.
- The halving line.
- The $n/2$ level of red lines.
- The point p is solution to Ham sandwich.
3-SUM hardness

Can we test for 3 collinear points (for point set in the plane) faster than $O(n^2)$?

It is a “3-SUM-hard” problem, one of a large class of “equivalent” problems that all seem(ed) to need $O(n^2)$ time.

3-SUM problem: Given n numbers, are there 3 that sum to 0? (repetition is allowed)

Exercise. Find an $O(n^2)$ time algorithm for 3-SUM.
[This is not too hard. Start by sorting the points.]

Lemma. If we could test for 3 collinear points in $o(n^2)$, then we could solve 3-SUM in $o(n^2)$.

Proof. Given n numbers as input to 3-SUM, map each number x to the point (x,x^3).

Claim. 3 numbers a,b,c sum to 0 iff the corresponding points are collinear.

Points collinear iff slopes (a,a^3) to $(b,b^3) =$ slope (b,b^3) to (c,c^3)

iff $\frac{b^3-a^3}{b-a} = \frac{c^3-b^3}{c-b}$

iff $b^2 + a^2 + ab = c^2 + b^2 + cb$

iff $b(a-c) = c^2 - a^2$ iff $b = \frac{c^2-a^2}{c-a}$

iff $a+c+b = 0$
recent breakthrough on 3-SUM:

an algorithm with run time $O(n^2 / (\log n / \log \log n)^{2/3})$

improved by Timothy Chan, 2018

very recent paper on “fine-grained” complexity lower bounds:

Hardness for Triangle Problems under Even More Believable Hypotheses: Reductions from Real APSP, Real 3SUM, and OV

The 3-SUM hypothesis, the APSP hypothesis and SETH are the three main hypotheses in fine-grained complexity. So far, within the area, the first two hypotheses have mainly been about integer inputs in the Word RAM model of computation. The "Real APSP" and "Real 3-SUM" hypotheses, which assert that the APSP and 3-SUM hypotheses hold for real-valued inputs in a reasonable version of the Real RAM model, are even more believable than their integer counterparts. Under the very believable hypothesis that at least one of the ...
Summary

- applications of arrangements

- testing collinearity and the 3-SUM problem.

References

- [CGAA] Chapter 8

- [Zurich notes] Chapter 8