
A. Lubiw, U. WaterlooLecture 12: Triangulations

Triangulations of point sets/polygons.  Recall what we’ve seen:

- Delaunay triangulation of point set in Rd, O(n log n) algorithm in R2.

- O(n) algorithm to triangulate any polygon in R2 (Chazelle’s hard algorithm)

Applications and criteria (this is the outline for the next lectures)

- angle criteria - for meshing

- length criteria: minimum weight triangulation

- constrained triangulations (when certain edge must be included)

- meshing - triangulations with Steiner points

- flip distance

- morphing

- curve and surface reconstruction

- medial axis and straight skeleton
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Angle conditions for triangulations

The motivation is meshing for finite element methods (more on this later)
where small and large angles are bad. 

bad triangles

Problems:

1. given a point set, find a triangulation that maximizes the min. angle
The Delaunay triangulation does this.

2. given a point set, find a triangulation that minimizes the max. angle
  

    EX.  Show that these two can be different.
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There is a poly time algorithm to find a triangulation that minimizes the maximum 
angle.

It uses a solution for the case of triangulating a polygon (via dynamic 
programming).

Bern, M., Edelsbrunner, H., Eppstein, D., Mitchell, S. and Tan, T.S., 1993. 
Edge insertion for optimal triangulations. Discrete & Computational Geometry, 
10(1), pp.47-65.
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Length conditions:  Minimum weight triangulation

Given a point set find a triangulation that minimizes the sum of the lengths of the 
edges.

Solved by dynamic programming for triangulations of a simple polygon.

For point sets, proved NP-hard in 2008 (had been open since 1979).  
Note: not known to be in NP because of square root computations.

Mulzer, Wolfgang, and Günter Rote. "Minimum-weight triangulation is 
NP-hard." Journal of the ACM (JACM) 55.2 (2008): 11.  

Approximations (how do various triangulations compare to min weight) 

- approximation ratio of Delaunay triangulation: Theta(n)
- approximation ratio of greedy triangulation (add edges in order of weight): 
  Theta(\sqrt(n))

- quasi-poly time approximation scheme:

Remy, Jan, and Angelika Steger. "A quasi-polynomial time approximation 
scheme for minimum weight triangulation." Journal of the ACM (JACM) 
56.3 (2009): 15.
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Constrained triangulations

Given points P in R2 and some non-crossing edges F (the “fixed” edges), add more 
edges to get a triangulation optimizing some criterion.

This generalizes polygon triangulation (though note that the above problem asks to 
triangulate the inside AND the outside of a polygon).

CS 763  F22

F = red edges
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Mariette Yvinec

Must be proved that these triangles form a triangulation.

The Constrained Delaunay triangulation (CDT) consists of triangles abc not 
crossed by any edge of F such that Circle(a,b,c) contains no point of P visible from 
inside triangle abc.
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Examples of Constrained Delaunay triangulations

Delaunay triangulation

Constrained Delaunay 
triangulation

CS 763  F22

https://www.cs.cmu.edu/~quake/tripaper/triangle3.html
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Most results for Delaunay triangulations carry over to Constrained Delaunay 
triangulations.

(a,b) is an edge of the Constrained Delaunay triangulation iff no edge of F crosses 
(a,b) and there is a circle through a and b that does not contain any point p in P 
visible to a point on edge (a,b).

Illegal edge flipping carries over.  

There is an O(n log n) time algorithm to compute the Constrained Delaunay 
triangulation.

The Constrained Delaunay triangulation maximizes the min angle (among all 
constrained triangulations).

The edge empty circle condition carries over:
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Triangulations for finite element methods

Example problem: find how a solid body deforms under stress.  
Requires solving partial differential equations, which is done by approximating on a 
“mesh” (often a triangulation)  

Meshing.  Given a region of R2 with a polygonal boundary, subdivide it into disjoint 
triangles meeting edge-to-edge and conforming to the boundary, i.e. every 
boundary edge is a union of triangle edges.  Use “nicely shaped” triangles. 

Note: can add new points called “Steiner points”
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Shewchuk, Jonathan Richard. "Unstructured mesh 
generation." Combinatorial Scientific Computing 
(2011): 259-297.

Meshing.  Given a region of R2 with a polygonal boundary, subdivide it into disjoint 
triangles meeting edge-to-edge and conforming to the boundary, i.e. every 
boundary edge is a union of triangle edges.  Use “nicely shaped” triangles. 

Theoretically Guaranteed Delaunay 
Mesh Generation−In Practice (slides)

We concentrate on unstructured meshes.

CS 763  F22

https://people.eecs.berkeley.edu/~jrs/papers/umg.pdf

https://people.eecs.berkeley.edu/~jrs/papers/imrtalk.pdf
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bad for finite element methods:

Also want as few triangles as possible, but this conflicts with angle constraints.
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5

No minimum angle

518 elements

5°  minimum angle

593 elements

34.2°  minimum angle

4,886 elements

25°  minimum angle

1,427 elements

15°  minimum angle

917 elements

Well−Shaped Elements vs. Few Elements
somewhat contradictory goals

Lake Superior

These meshes generated by Ruppert’s Delaunay refinement algorithm.

Jonathan Shewchuk
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Delaunay refinement algorithm

Start with Delaunay triangulation and add more points to improve angles.

Ruppert, Jim. "A Delaunay refinement algorithm for quality 2-dimensional 
mesh generation." Journal of algorithms 18.3 (1995): 548-585.

23

All new edges are at least as long as circumradius of
(because is at center of empty circumcircle).

Kill each skinny triangle by inserting vertex at circumcenter.
(Bowyer−Watson algorithm.)

Delaunay Refinement

v

t

v

v

[Alert:  here comes the MAIN IDEA behind all Delaunay refinement algorithms]

t

kill skinny triangle by adding point v at center of circumcircle
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https://doi.org/10.1006/jagm.1995.1021
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A related puzzle problem (Martin Gardner)

Given a square or an obtuse triangle, dissect into smallest number of acute triangles.
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A related puzzle problem (Martin Gardner)

Given a square or an obtuse triangle, dissect into smallest number of acute 
triangles.
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Flip distance

Reconfiguration problem:  changing one structure to another via discrete steps

Examples:
- edit distance of strings
- sorting via swaps
- solving Rubik’s cube
- pivot operations for simplex method

      of linear programming

These can be viewed as connectivity and shortest path questions 
in a reconfiguration graph — vertex for each configuration, 
edge for each step  

Questions:
- can we get from every configuration to every other one? 
- worst case bound on number of steps?
- how many steps between a given pair of configurations?

Reconfiguration graphs are large, so we don’t explore them 
explicitly.
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Flip distance

Reconfiguring triangulations of a given point set via flips

- can we get from any triangulation to any other?  Yes, via Delaunay triangulation

- what is the worst case flip distance (= number of flips)?  O(n2)

CS 763  F22

- can we find the flip distance between two given triangulations?

This is NP-complete, but OPEN for the case of convex polygons = rotation    
distance between binary trees.
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Flip distance lower bound of Omega(n2)

JID:COMGEO AID:1365 /FLA [m3G; v1.143-dev; Prn:26/11/2014; 13:09] P.3 (1-7)

A. Lubiw, V. Pathak / Computational Geometry ••• (••••) •••–••• 3
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Fig. 1. Channels.

We now show that the number of flips goes down if a channel has a cap, an extra vertex that is visible to all the channel 
vertices, as shown in Fig. 1(c).

Property 2. The flip distance from a left-inclined to a right-inclined triangulation of a capped channel is 24.

Proof. The canonical triangulation shown in Fig. 1(d) is 12 flips away from both the left-inclined and the right-inclined 
triangulations of a capped channel: To flip the left-inclined triangulation to the canonical triangulation, flip edges 
A1 B1, . . . , A1 B7 followed by edges A2 B7, . . . , A6 B7 in that order. Similarly for the right-inclined triangulation.

For the lower bound, we follow the same idea as above. In any triangulation, each edge of the upper [lower] reflex chain 
is in a triangle whose apex is either the cap or a vertex of the lower [upper] chain. There are only two kinds of flips: 
(1) a flip involving the cap vertex, an edge of one chain, and a vertex of the other chain; and (2) a flip involving one edge 
of each chain. A flip of type (1) moves the apex of only one triangle, and moves the apex to or from the cap. If a triangle 
is altered by a flip of type (1) then at least two such flips are required, one to move the apex to the cap and one to move 
the apex from the cap. If a triangle is only altered by flips of type (2), then, as above, it costs 3 flips to get the apex to its 
destination. Thus the 12 triangles require at least 24 flips. !

We now elaborate on the idea of our reduction. We create a polygonal region by replacing each edge in the planar 
drawing by a channel, and each vertex by a vertex gadget. We make two triangulations of the polygonal region. In triangu-
lation T1 all edge channels are left-inclined and in T2 all edge channels are right-inclined. The triangulations are otherwise 
identical. We design vertex gadgets so that making a few flips in a vertex gadget creates a cap for a channel connected to 
it. Since transforming a channel from left-inclined to right-inclined is less costly if it is capped, the minimum flip sequence 
that transforms all the channels is obtained by choosing the smallest set of vertices that covers all the edges and using 
them to cap all the channels. Thus, intuitively, a minimum flip sequence corresponds to a minimum vertex cover.

One complication is that we cannot construct a vertex gadget for a sharp vertex—a vertex of degree 3 where one of 
the three incident angles in the planar drawing is ≥ π . Therefore, we first show how to eliminate sharp vertices. Let G be 
our given 3-connected cubic planar graph. Using a result of Bárány and Rote [2], we can find, in polynomial time, a strictly 
convex drawing of G on a polynomial-sized grid. Strictly convex means that each face is a strictly convex polygon. Thus the 
only sharp vertices of this drawing are the vertices of the outer face. We replace each sharp vertex v by a 3-vertex chain 
v1, v2, v3 as shown in Fig. 2. We claim that G has a vertex cover of size ≤ k if and only if the modified graph has a vertex 
cover of size ≤ k + t , where t is the number of vertices on the outer face of G . This is because any minimum vertex cover 
of the modified graph can be adjusted to use either {v1, v3} (corresponding to v being in the vertex cover of G), or {v2}
(corresponding to v not being in the vertex cover of G).

We remark that Pilz’s independent NP-hardness reduction [23] is from general (non-planar) vertex cover. His construction 
begins with the same channel gadgets, but then uses channels that overlap geometrically while flipping independently.

This example (generalized from 7 to n) shows that n2 flips may be needed to get 
from one triangulation to another. 
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Flip distance for triangulations of a convex polygon.

Fig. 8.38 Every point on the boundary of a weakly externally visible polygon is visible to some point at
infinity. The polygon on the right is not a WEV polygon

Fig. 8.39 The edge flip operation can be used for producing locally angle-optimal triangulation

Edge-Flip Algorithm

A quadrilateral can be triangulated in at most two possible ways. The triangulation that gives the maximum
value for the minimum angle among the two triangles is called angle-optimal (Fig. 8.39a). One triangulation can
be obtained from the other by flipping the dividing edge while making sure that the quadrilateral does not
contain a reflex vertex. If a vertex is reflex, flipping the edge results in an invalid triangulation (Fig. 8.39b). We
saw earlier that a convex polygon can be triangulated from any vertex. To obtain an angle-optimal triangulation
we consider every pair of adjacent triangles and flip the common edge if the resulting configuration gives a

In this case the flip distance is O(n) (easy)
and there is a lower bound of 2n-6 
(hard! — due to Sleator, Tarjan, Thurston, 1986).

The reconfiguration graph is the “associahedron”

The reconfiguration graph of 
triangulations of a hexagon.

see Devadoss O’Rourke book 
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Flip distance for triangulations of a convex polygon
= rotation distance for binary search trees.
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a flip corresponds to a rotation
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Why is rotation distance interesting?

OPEN.  Is the following problem NP-complete or in P?  Given number k and two 
triangulations of a convex polygon, is their flip distance <= k? 

- dynamic optimality conjecture for splay trees:  splay trees perform within a 
  constant factor of any offline rotation-based search tree algorithm

- distance between phylogenetic trees
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References 

- papers and books listed throughout

Summary

- triangulations of point sets, possibly with fixed edges (“constrained”)

- angles, meshing, lengths, flipping, reconfiguration
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