According to some Calculus textbooks, is an ``indeterminate form''. When evaluating a limit of the form , then you need to know that limits of that form are called ``indeterminate forms'', and that you need to use a special technique such as L'Hopital's rule to evaluate them. Otherwise, seems to be the most useful choice for . This convention allows us to extend definitions in different areas of mathematics that otherwise would require treating 0 as a special case. Notice that is a discontinuity of the function . More importantly, keep in mind that the value of a function and its limit need not be the same thing, and functions need not be continous, if that serves a purpose (see Dirac's delta).

This means that depending on the context where occurs, you might wish to substitute it with 1, indeterminate or undefined/nonexistent.

Some people feel that giving a value to a function with an essential discontinuity at a point, such as at (0,0), is an inelegant patch and should not be done. Others point out correctly that in mathematics, usefulness and consistency are very important, and that under these parameters is the natural choice.

The following is a list of reasons why should be 1.

Rotando & Korn show that if *f* and *g* are real functions that vanish
at the origin and are analytic at 0 (infinitely differentiable is
not sufficient), then approaches 1 as *x* approaches 0 from
the right.

From Concrete Mathematics p.162 (R. Graham, D. Knuth, O. Patashnik):

Some textbooks leave the quantity undefined, because the functions and have different limiting values whenPublished by Addison-Wesley, 2nd printing Dec, 1988.xdecreases to 0. But this is a mistake. We must define for allx, if the binomial theorem is to be valid whenx=0,y=0, and/orx=-y. The theorem is too important to be arbitrarily restricted! By contrast, the function is quite unimportant.

As a rule of thumb, one can say that , but is
undefined, meaning that when approaching from a different
direction there is no clearly predetermined value to assign to
; but Kahan has argued that should be 1,
because if as *x* approaches some
limit, and *f*(*x*) and *g*(*x*) are analytic functions, then
.

The discussion on is very old, Euler argues for since for . The controversy raged throughout the nineteenth century, but was mainly conducted in the pages of the lesser journals: Grunert's Archiv and Schlomilch's Zeitschrift für Mathematik und Physik. Consensus has recently been built around setting the value of .

On a discussion of the use of the function by an Italian mathematician named Guglielmo Libri.

[T]he paper [33] did produce several ripples in mathematical waters when it originally appeared, because it stirred up a controversy about whether is defined. Most mathematicians agreed that , but Cauchy [5, page 70] had listed together with other expressions like 0/0 and in a table of undefined forms. Libri's justification for the equation was far from convincing, and a commentator who signed his name simply ``S'' rose to the attack [45]. August Möbius [36] defended Libri, by presenting his former professor's reason for believing that (basically a proof that ). Möbius also went further and presented a supposed proof that whenever . Of course ``S'' then asked [3] whether Möbius knew about functions such as andg(x) =x. (And paper [36] was quietly omitted from the historical record when the collected words of Möbius were ultimately published.) The debate stopped there, apparently with the conclusion that should be undefined.But no, no, ten thousand times no! Anybody who wants the binomial theorem to hold for at least one nonnegative integer

nmustbelieve that , for we can plug inx= 0 andy= 1 to get 1 on the left and on the right.The number of mappings from the empty set to the empty set is . It

hasto be 1.On the other hand, Cauchy had good reason to consider as an undefined

limiting form, in the sense that the limiting value of is not knowna prioriwhenf(x) andg(x) approach 0 independently. In this much stronger sense, the value of is less defined than, say, the value of 0+0. Both Cauchy and Libri were right, but Libri and his defenders did not understand why truth was on their side.[3]

Anonymous and SBemerkungen zu den Aufsatze überschrieben, `Beweis der Gleichung , nach J. F. Pfaff',im zweiten Hefte dieses Bandes, S. 134, Journal für die reine und angewandte Mathematik,12 (1834), 292-294.

[5]

uvres Complètes.Augustin-Louis Cauchy.Cours d'Analyse de l'Ecole Royale Polytechnique (1821). Series 2, volume 3.

[33]

Guillaume Libri.Mémoire sur les fonctions discontinues, Journal für die reine und angewandte Mathematik,10 (1833), 303-316.

[36]

A. F. Möbius.Beweis der Gleichung , nach J. F. Pfaff.Journal für die reine und angewandte Mathematik,12 (1834), 134-136.

[45]

SSur la valeur de .Journal für die reine und angewandte Mathematik 11,(1834), 272-273.

**References**

*Knuth.* **Two notes on notation.** *(AMM 99 no. 5 (May 1992),* 403-422).

*H. E. Vaughan.* **The expression ' '.** *Mathematics
Teacher 63 (1970),* pp.111-112.

*Kahan, W.* **Branch Cuts for Complex Elementary Functions
or Much Ado about Nothing's Sign Bit,** *The State of the Art in
Numerical Analysis, editors A. Iserles and M. J. D. Powell, Clarendon
Press, Oxford, pp. 165-212. * \
Louis M. Rotando and Henry Korn.The Indeterminate Form .
Mathematics Magazine,Vol. 50, No. 1 (January 1977), pp. 41-42.

*L. J. Paige,.* **A note on indeterminate forms.** *American
Mathematical
Monthly,* 61 (1954), 189-190; reprinted in the Mathematical
Association of America's 1969 volume, Selected Papers on Calculus,
pp. 210-211.

*Baxley & Hayashi.* **A note on indeterminate
forms.** *American Mathematical
Monthly,* 85 (1978), pp. 484-486.

* * **Crimes and Misdemeanors in the Computer
Algebra Trade.** *Notices of the American
Mathematical Society,* September 1991, volume 38, number 7,
pp.778-785

Mon Feb 23 16:26:48 EST 1998