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aAbstra
tWe 
onsider the problem of �nding the shortest 
urvein the plane that has unit width. This problem was�rst posed as the \river shore" puzzle by Ogilvy (1972)and is related to the area of on-line sear
hing. Adhikariand Pitman (1989) proved that the optimal solution haslength 2:2782 : : : We present a simpler proof, whi
hexploits the fa
t that the width of a polygon does notde
rease under a 
ertain 
onvexi�
ation operation.1 Introdu
tionThe 
ompetitive analysis of robot navigation te
hniquesrequires various sear
h primitives that 
an be readilyused in the solution of more 
omplex problems. Forexample, two-ray sear
hing and its m-ray generaliza-tion [5℄ form the base of various sear
h algorithms (e.g.,[3, 4℄). While studying various three-dimensional sear
hproblems (work in progress), the need for one su
h prim-itive arose in the form of the question of what was theshape and length of the shortest 
urve of width one.De�nition 1 Let � be a path. A supporting line of� is a line L that interse
ts � in at least one point andsu
h that � is entirely 
ontained in one of the two 
losedhalfplanes de�ned by L.De�nition 2 The width of a 
urve is de�ned as theminimum distan
e between any two distin
t parallellines supporting the 
urve.Interestingly, it turns out that the question of whatis the shortest 
urve of width one has been asked beforein the setting of re
reational mathemati
s [6℄.The River Shore Problem: Starting at an un-known point inside a river of width one, whatis the shortest path that is guaranteed to rea
hone of the two shores of the river?It is not hard to see that this is equivalent to �nd-ing the shortest 
urve in R2 that has width one. Thisquestion was reported as an open problem by Ogilvy [6℄.

For the 
losed 
urve 
ase, the 
ir
le of diameter onehas width one and has perimeter �, whi
h is optimal.Surprisingly, there are in�nitely many 
losed 
urves (so-
alled 
urves of 
onstant width) with the property thatthe width of the minimum en
losing strip along any di-re
tion is one, and all of these 
urves have the sameperimeter � (this is known as Barbier's theorem). How-ever, for open 
urves, shorter solutions are possible. Forexample, a V-shape formed by the verti
es of an equi-lateral triangle already gives length 4=p3 = 2:3094 : : :In this paper, we obtain a 
urve of width one andlength 2:2782 : : :, whi
h is optimal.1 This 
urve wasa
tually �rst dis
overed by Adhikari and Pitman [1℄ in1989, although we were unaware of their result when theinitial draft of this paper was written. We give a dif-ferent proof of optimality, though, that is simpler andrequires less steps and less 
ases than Adhikari and Pit-man's. Our proof exploits an interesting lemma, statingthat a 
ertain 
onvexi�
ation pro
edure used in 
ompu-tational geometry (e.g., by Aloupis et al. in last year'sCCCG [2℄) 
an only in
rease the width of a given poly-gon or polygonal 
hain.2 Upper BoundWe begin by 
onstru
ting a spe
i�
 
urve of width oneand length 2:2782 : : : First, we restri
t ourselves to so-lutions with a generalized V-shape. For 
onvenien
e, weinvert the shape (as in Figure 1) and 
all it a \yurt"2:De�nition 3 A yurt is a 
urve that starts at the ori-gin s and ends at a point t on the x-axis, su
h that1. the apex (highest point) v is on or above the liney = 1,2. the portion of the 
urve from v to t en
loses the
ir
ular ar
 of radius one 
entered at s and, sym-metri
ally,3. the portion of the 
urve from s to v en
loses the
ir
ular ar
 of radius one 
entered at t.1The 
urve presented here is introdu
ed visually in the 2003SoCG video session.2Yurt: A tent used by nomadi
 peoples of 
entral Asia.1
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onvex hullLemma 1 Every yurt 
urve has width at least one.Proof. The width of the 
urve is at least the width ofthe 
onvex hull H of s; t; v and the two 
ir
ular ar
s.(See Figures 2 and 3.) Any pair of lines supporting Hmust go through at least one of s, t and v. Be
ause vis on the line y = 1 and H 
ontains the 
ir
ular ar
s ofradius one, the supporting line on the other side mustbe at a distan
e of one or greater. 2The shortest yurt 
urve is the upper 
onvex hull ofs; t; v and the two 
ir
ular ar
s, with v as low as possible(i.e., on the y = 1 line). We now determine the best
hoi
e of x-
oordinates. Let t = (u; 0). We observe thatin the optimal solution, the point v is lo
ated halfwaybetween s and t, i.e., v = (u=2; 1). This 
an be seen bya re
e
tion te
hnique 
ommonly used in shortest path
omputations. We re
e
t the portion of the 
urve fromv to t using the line y = 1 as a mirror (see Figure 4) andobtain a path from s to the re
e
ted point t0 = (u; 2)avoiding two 
ir
les. The shortest path is through the
ommon tangent of these 
ir
les, whi
h interse
ts y = 1at v = (u=2; 1).It follows then that the only free parameter is thevalue u, whi
h uniquely determines the position of band v and hen
e the shape of the entire 
urve. Thelength of the 
urve in terms of u isu+ 2pu2 � 1� 2 ar

os(1=u) + 2 ar

os�4u=(4 + u2)�:We determine the best value for u using 
al
ulus and�nd that the minimum length is 2:2782 : : : for u =2pz = 1:0434 : : :, where z = 0:2722 : : : is a root of the
ubi
 3z3 + 9z2 + z � 1. See Figure 5. This yields theshortest yurt 
urve.3 Lower BoundOur pre
eding derivation of the shortest yurt 
urve issimilar to Adhikari and Pitman's [1℄. To prove optimal-ity, it remains to show that a shortest 
urve of width oneindeed belongs to the yurt family; here, our proof de-parts from Adhikari and Pitman's and is mu
h shorter.We establish a series of simple lemmas that progres-sively restri
t the types of shapes that the shortest 
urveof width one 
an take.

One property about the optimal 
urve is that it mustbe the shortest path through the verti
es of its 
on-vex hull, and 
onsequently is 
omposed of one or more
hains of the boundary of the 
onvex hull joined by non-
rossing diagonals. We derive a stronger property: anoptimal 
urve in fa
t involves just one 
onvex 
hain.This property seems less obvious (for example, see Ad-hikari and Pitman's proof [1℄). Nonetheless, with theright approa
h, we show how this property 
an beproved elegantly. The idea is inspired by a 
onvexi�-
ation strategy studied by Aloupis et al. [2℄.Lemma 2 (Convexi�
ation lemma) Given a (pos-sibly self-interse
ting) polygon P with edges oriented in
lo
kwise order, let P 0 be the polygon formed by arrang-ing the edges of P via translations so that the dire
tionsof the edges form a monotoni
 sequen
e (as a result, P 0is a 
onvex polygon). Then the width of P 0 is at leastthe width of P .Proof. Let V be the set of all ve
tors des
ribing the(oriented) edges translated to the origin. Take an ar-bitrary dire
tion des
ribed by a unit normal ve
tor ~d.The distan
e between supporting lines along this dire
-tion is the absolute value of the sum P~vi2S ~d � ~vi oversome subset S � V . Clearly, this quantity is upper-bounded byX~vi2V : ~d�~vi>0 ~d � ~vi = � X~vi2V : ~d�~vi<0 ~d � ~vi:This upper bound is attained when the polygon in ques-tion is P 0, due to the 
onvexity of P 0. 2Lemma 3 There is a shortest 
urve of width one whi
his 
ompletely 
ontained in the boundary of its 
onvexhull.Proof. Let � be a shortest 
urve of width one withendpoints s and t. To ease the argument, imagine that �is polygonal (this assumption 
an be removed by takinga limit). Let P = �[fstg. Form P 0 as above. Considerthe new 
urve �0 = P 0� fstg. The length of �0 is equalto the length of �, but the width of �0 is at least thewidth of � by the 
onvexi�
ation lemma. 22
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xFig. 5: The optimal yurt s tFig. 6: Verti
al supporting lineHaving proved the main property, we 
an easily derivethe subsequent lemmas.Lemma 4 Some shortest 
urve of width one has start-ing and ending point s and t on the x-axis, is supportedby the x-axis, and is supported by verti
al lines at s andt.Proof. The previous lemma implies that st forms asupporting line. By rotation, we may assume that sand t lie on the x-axis. If the verti
al line at s is nota supporting line, let w be the �rst point from s alongthe 
urve that de�nes a verti
al supporting line. By re-moving the portion of the 
urve from s to w and addinga verti
al line segment from the x-axis to w, we get a
urve of width at least one and of shorter length (seeFigure 6). Thus, there must be a verti
al supportingline at s, and similarly at t. 2Lemma 5 Some shortest 
urve of width one is a yurt
urve.Proof. For the 
urve from the previous lemma, be
ausethe x-axis is a supporting line, the apex v must lie on orabove the line y = 1. By translation, we 
an make s theorigin. Be
ause the 
urve is 
ontained in the �rst quad-rant, the portion from v to t must en
lose the 
ir
ularar
 
entered at s and of radius one. Similarly, the por-tion from s to v must en
lose the 
ir
ular ar
 
enteredat t and of radius one. 2Putting everything together, we obtain the main the-orem.Theorem 1 There is a 
urve of width one and length2:2782 : : : Furthermore, there is no shorter 
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