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ABSTRACT

System provisioning, resource allocation, and system config-
uration decisions for I/O-intensive workflow applications are
complex even for expert users. Users face choices at mul-
tiple levels: allocating resources to individual sub-systems
(e.g., the application layer, the storage layer) and configur-
ing each of these optimally (e.g., replication level, chunk size,
caching policies in case of storage) all having a large impact
on overall application performance. This paper presents our
progress on addressing the problem of supporting these pro-
visioning, allocation and configuration decisions for work-
flow applications. To enable selecting a good choice in a
reasonable time, we propose an approach that accelerates
the exploration of the configuration space based on a low-
cost performance predictor that estimates total execution
time of a workflow application in a given setup. Our evalu-
ation shows that: (i) the predictor is effective in identifying
the desired system configuration, (ii) it can scale to model a
workflow application run on an entire cluster, while (iii) us-
ing over 2000x less resources (machines x time) than running
the actual application.

Categories and Subject Descriptors

D.4 [Operating systems]: [Storage management]; D.4.8
[Performance]: Modeling and Prediction

Keywords

performance prediction; distributed storage systems

1. INTRODUCTION

Assembling workflow applications by putting together stan-
dalone binaries has become a popular approach to support
large-scale science [9,21,28]. The processes spawned from
these binaries communicate via temporary files stored on
a shared storage system. In this setup, the workflow run-
time engines are basically schedulers that build and manage
a task-dependency graph based on the tasks’ input/output
files (e.g., SWIFT [27]).
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To avoid accessing the platform’s backend storage system
(e.g., NF'S or GPFS or Amazon S3), recent proposals [4, 28]
advocate using some of the nodes allocated to the applica-
tion to deploy a intermediate storage system. That is, aggre-
gating (some of) the resources of an application allocation
to provide a shared temporary in-memory storage system
dedicated to (and co-deployed with) the application.

This approach offers a number of advantages: higher per-
formance - as applications benefit from a wider I/O channel
obtained by striping data across several nodes; higher ef-
ficiency — as it improves resource utilization; incremental
scalability — as it is possible to increase system capacity in
small increments. This scenario also opens the opportunity
for optimizing the intermediate storage system for the tar-
get workflow application: a storage system used by a sin-
gle workflow, and co-deployed on the application allocation,
can be configured specifically for the I/O patterns generated
by the workflow (e.g., specify chunk-size to optimize data-
transfers, configure striping and replication to eliminate hot
spots, use a data placement policy to maximize data access
locality) [25].

These benefits, however, come at a price: configuring the
intermediate storage system becomes increasingly complex
for multiple reasons. First, the optimization techniques com-
monly used in distributed environments expose trade-offs
that rarely exist in centralized solutions [22,23]. Second,
each application may obtain peak performance at a differ-
ent configuration point [3,4,22,23]. Third, depending on
the context, there are multiple metrics of interest to opti-
mize [11,22,25]: time-to-solution, throughput, energy, or,
increasingly common in cloud computing environments, the
cost of resources.

The Problem. In this scenario, the role of the appli-
cation administrator/user is non-trivial: if the user wants
to extract maximum performance, in addition to being in
charge with running the workflow application, the user has
to configure the deployment and the intermediate-storage
system to achieve high performance (e.g., in terms of appli-
cation turnaround time, storage footprint, energy consump-
tion, or financial cost). This involves allocating resources
and configuring the storage system (e.g., chunk size, stripe
width, data placement policy, and replication level). Thus,
the decision space revolves around: provisioning the allo-
cation - total number of nodes, deciding on node type(s)
(or node specification) for cloud environments; allocation
partitioning — splitting or not these nodes between the ap-
plication and the intermediate storage system; and stor-
age system configuration parameters — choosing the values
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for several configuration parameters, e.g., choosing chunk
size, replication level, cache/prefetching and data placement
policies for the intermediate storage system. Consequently,
provisioning the system entails searching a complex multi-
dimensional configuration space to determine the user’s ideal
cost /performance balance point (see examples in §3 ).

In this complex space, generally the user’s goal is to opti-
mize a multi-objective problem, in at least two dimensions:
maximize performance (e.g., reduce application execution
time) while minimizing cost (e.g., reduce the total CPU
hours or dollar amount spent). More concretely the user
is often interested in answering specific questions: What is
the configuration that can achieve the lowest total cost? How
should I partition the allocation among application and stor-
age nodes to achieve the highest performance? Which is the
allocation that has lowest cost per unit of performance?

Manually fine-tuning the storage system configuration pa-
rameters and allocation decisions is hard, and time-consuming
due to the time to consider the potentially large configura-
tion space, and non-linear interaction among the possible
decisions.

Our long-term goal is to design a configuration exploration
framework able to explore the multidimensional configura-
tion space to find the provisioning and the storage system
configuration that optimizes a user-specific metric [14]. To
reach this goal, we design a prediction mechanism - the fo-
cus of this paper - that is able to predict the application
performance given a certain resources and storage system
configuration.

This paper presents our progress to date on designing and
harnessing a performance prediction mechanism for an inter-
mediate object-based storage system in the context of work-
flow applications. Given a storage system configuration, an
application I/O profile, and a characterization of the de-
ployment platform based on a simple system identification
process (e.g., storage nodes service time, network character-
istics), the mechanism predicts the application turnaround.
This approach can support autotuning: a software tool that
relies on the proposed mechanism can enable efficiently con-
figuring the storage system [14, 22, 23], through exploring
the configuration space without actually running the appli-
cation.

The contributions of this paper lie over multiple axes.
It:
e Synthesizes the key requirements for a prediction mecha-
nism (§2.1).

Describes a prediction mechanism that relies on a uniform
queue-based model for distributed, object-based storage
systems (§2.3). More important, it proposes a system
identification procedure to seed the model that is simple,
lightweight, effective, and does not require storage system
or kernel changes to collect monitoring information (§2.4).
Evaluates the prediction mechanism for workflow appli-
cations and synthetic benchmarks in the context of mak-
ing configuration choices for different scenarios (§3). The
evaluation shows that the predictor is lightweight (up to
2000x less resources (machines X time) than running the
actual applications) and effective (identify the configu-
ration that achieves the best performance in the exper-
iments).

Finally, this paper discusses our experience and lessons
learnt (§5) from using the prediction mechanism as a per-
formance testing and debugging tool for distributed stor-
age system development.
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2. THE DESIGN OF A PERFORMANCE ES-
TIMATION MECHANISM

Making accurate performance predictions for distributed
systems is a challenge. Since in most cases purely analyt-
ical models cannot provide adequate accuracy, simulation
is the commonly adopted solution. At the one end of the
design spectrum, current practice (e.g., NS2 simulator [2])
suggests that while simulating a system at low granularity
(e.g., packet-level simulation in NS2) can provide high ac-
curacy, the complexity of the model, the complexity of the
seeding process, and the number of events generated make
accurately simulating large-scale systems infeasible, and re-
duces the generality of the model. Further, the improve-
ment in accuracy may not add much value. At the other
end, coarse grained simulations (e.g., PeerSim [20]) scale at
the cost of lower accuracy.

Two key observations enable us to reduce simulation com-
plexity and increase its scalability: First, as the goal is to
support configuration choice for a specific workload, achiev-
ing perfect accuracy is less critical as long as the configu-
ration decisiodummy.psns are good. Second, we take ad-
vantage of workload characteristics generated by workflow
applications: relatively large files, and specific data access
patterns. These observations enable us to reduce the sim-
ulation complexity by not simulating in detail some of the
control paths that do not significantly impact accuracy (e.g.,
the chunk transfer time is dominated by the time to send the
data, not accounting the time of the acknowledgments and
all metadata messages will not tangibly impact accuracy).

Our solution uses a queue-based storage system model for
the system components’ operations and their interactions.
The model requires three inputs from the user: the stor-
age system configuration, a workload description, and the
performance characteristics of storage system components
(i.e., system identification §2.4). The simulator instantiates
the storage system model with the specific component char-
acteristics and configuration, and simulates the application
run as described by the workload description.

This section discusses the requirements for a practical per-
formance prediction mechanism (§2.1) and presents the key
aspects of the object-based storage system architecture mod-
eled (§2.2). Then, it focuses on the proposed solution: it
presents the model (§2.3), its implementation (§2.5), the sys-
tem identification process to seed the model (§2.4), and an
overview of the workload description (§2.6).

2.1 Solution Requirements

A practical performance prediction mechanism should meet
the following, partially conflicting, requirements that bind
the solution space:

e Accuracy. The mechanism should provide adequate ac-
curacy. Although higher accuracy is always desirable, in
the face of practical limitations to achieve perfect accu-
racy, there are decreasing incremental gains for improved
accuracy. For example, to support configuration decisions,
a predictor only needs to correctly estimate relative per-
formance or trends resulting from changing a configura-
tion parameter.

Scalability and Response Time. The predictor should
enable quick exploration of the configuration space. The



mechanism should offer performance predictions quickly
and scale with: (i) the system size; and (ii) the I/O inten-
sity of I/O workflow applications.

e Usability and Generality. The predictor should not
impose a burdensome effort to be used. Specifically, the
bootstrapping/seeding process should be simple and it
should not require storage system redesign (or a particular
initial design) to collect performance measurements. Ad-
ditionally, using the predictor should not require in-depth
knowledge of storage system protocols and architecture.

2.2 Object-based Storage System Design

We focus on a widely-adopted object-based storage system
architecture (e.g., UrsaMinor [3], PVFS [15], and MosaStore
[4]). This architecture includes three main components: a
centralized metadata manager, storage nodes, and a client-
side system access interface (SAI). The manager maintains
the stored files’ metadata and system state. To speed up
data storage and retrieval, the architecture employs striping:
files are split into chunks stored across several storage nodes.
Client SAIs implement data access protocols.

Data placement. The default data placement generally
adopted is round-robin: when a new file is created on a
stripe of n nodes the file’s chunks are placed in a round-
robin fashion across these nodes. Additionally, and key for
workflows, application driven data placement policies that
optimize for a specific application access patterns have seen
increasing adoption [25,30]. For instance, the following data
placement policies are used to optimize for the workflow ap-
plications’ data access patterns: local, co-locate and broad-
cast (detailed in §3).

Replication. Data replication is often used to improve
reliability or access performance. However, while a higher
replication level reduces contention on the node storing a
popular file, it increases the file write time and the storage
space consumption.

We explore the accuracy of the prediction mechanism as-
suming that the chunk size, stripe width, replication level,
and data placement policy are configurable as suggested
in [3,4,25]. Our approach can be extended to support other
configuration parameters.

2.3 System Model

All participating machines are modeled similarly, regard-
less of their specific role (Figure 1): each machine hosts a
network component and can host one or more system com-
ponents (each modeled as a service with its own queue).

A system component and its queue represent a specific
functionality: The manager component is responsible for
storing files’ and storage nodes’ metadata. The storage com-
ponent is responsible for storing and replicating data chunks.
Finally, the client component receives the read and write
operations from the application, implements, at the high-
level the storage system protocol by sending control or data
requests to other services, and once a storage operation fin-
ished it communicates again with the application. Each of
these components is modeled as service that takes requests
from its queue (fed by the network service or by the applica-
tion for the client service) and sends responses back through
the network service.

The network component and its in- and out- queues model
the network-related activity of a host. Key here is to model
network-related contention while avoiding modeling the de-
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tails of the transport protocol (e.g., dealing with packet loss,
connection establishment and teardown details). The re-
quests in the out-queue of a network component are broken
in smaller pieces that represent network frames and sent
to the in-queue of the destination host. Once the network
service processes all the frames of a given request in the in-
queue, it assembles the request and places it in the queue of
the destination service.
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Figure 1: Queue-based model of a distributed stor-
age system. Each component (manager, client compo-
nent, and storage component) has a single system ser-
vice that processes requests from its queue. Addition-
ally, each host has a network component with an in- and
out- queue.
messages between the different components in the sys-
tem and can model network latency and contention at
the aggregate network fabric level. Solid lines show the
flow going out from a storage system component while
dashed lines show the in-flow path.

The network core connects and routes the

The system components can be collocated on the same
host (e.g., the client and storage components on the same
host). Requests between these collocated services also go
through the network, but have a faster service time than re-
mote requests - representing a loopback data transfer (§2.4).

Space limitations prevent us from presenting the full de-
tails of the model. A technical report [12] presents more de-
tails on the prediction mechanism. As a rule, we accurately
model the data paths of the storage system at chunk-level
granularity, and the control paths at a coarser granularity:
modeling only one control message to initiate a specific stor-
age function while an implementation may have multiple
rounds of control messages.

2.4 System Identification

To instantiate the storage system model, one needs to
specify the number of storage and client components in the
system, and the service times for the network (u™°") and
the system components (storage - u°™, manager - ™%, and
client - ).

Compared to past work (e.g., [23]), our approach focuses
on making this process simple, and not intrusive as no changes
are required to the storage system or kernel modules. The
system identification process is automated with a script as
follows. First, to measure the service time per chunk/request
T™¢!), a script runs a network throughput measurement util-
ity tool (e.g., iperf), to measure the throughput of both:
remote and local (loopback) data transfers. Second, this
script measures the time to read/write a number of files to
identify client and storage service time per data chunk. To
this end, the system identification script deploys one client,



one storage node and the manager on different machines,
and writes/reads a number of files. For each file read/write
the benchmark records the total operation time. The script
computes the average read/write time 7*°. The number of
files read/written is set to achieve 95% confidence intervals
with £5% error.

The operation total time (7%°") includes the client side
processing time (T°"%), the storage node processing time
(T°™), the total time related to the manager operations
(T™™) , and the network transfer time (77°"). The network
service time for the network (") is based on a simple ana-
lytical model based on network throughput and proportional
to the amount of data to be transferred in a packet.

To isolate just T* + 7™ the script runs a set of reads
and writes of 0-size. This forces a request to go through the
manager, but it does not touch the storage module. Since
decomposing T and T™™ is not possible without probes in
the storage system code, we opted to associate the T = 0
and associate the whole cost of 0-size operations to the man-
ager. While iperf can estimate 7™, and the script can infer
Tcli + j*muzn7 and therefore Ts'm — Ttot _ Tnet _ Tnm,n. TO
obtain the service time per chunk, the times are normalized
by chunk size. Therefore, pu*™ = e

chunkSize*

2.5 Model Implementation: The Simulator

We have implemented the above model as a discrete-event
simulator in Java. The simulator receives as inputs: a sum-
marized description of the application workload (§2.6), the
system configuration (currently, it supports replication level,
stripe-width, and data-placement per file; and chunk size
system-wide), the deployment parameters (number of stor-
age nodes and clients, whether they are collocated on the
same hosts), and a performance characterization of system
components: service times for network, client, storage, and
manager (§2.4).

Once the simulator instantiates the storage system, it
starts the application driver that processes the application
workload. The driver reads the description of the applica-
tion workload, creates the corresponding events (e.g., read
from file x at offset y, z bytes) and places them in the client
service queue. File-specific configuration [3,25] is described
as part of the operations in the workload description.

As in a real system, the manager component maintains
the metadata of the system (i.e., implements data place-
ment policies, and keeps track of file to chunk mapping and
chunk placement). To make the process clearer, consider the
following example for a file write operation. First, the client
contacts the manager asking for free space, the manager
replies specifying a set of storage services with free chunks.
Then, the client requests each storage service to store chunks
in a round-robin fashion. After processing a request to store
a chunk, a storage service replies to the client acknowledg-
ing the operation success. After sending all the chunks, the
client sends to the manager the chunk-map. Once the man-
ager acknowledges, the client returns success to the appli-
cation driver. In total the write operation generates two
requests to the manager and one request per chunk to the
storage nodes.

The manager implements a number of data placement
policies. The default policy selects, for a write operation,
a “stripe-width” of storage services. To model per-file op-
timizations, the client can overwrite system-wide configura-
tions by requesting the manager to use a specific data place-
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ment policy. For example, the client may require that a file
is stored locally, that is, on a storage service that is located
on the same host. In this case, the manager attempts to
allocate space on that specific storage service for that write
operation. The file-specific data placement policy is part of
the workload description.

2.6 Workload Description

The predictor takes as input a description of the work-
load. This description contains two pieces of information:
per client 1/O operations trace (i.e., open, read, write, close
calls with timestamp, operation type, size, offset, and client
id), and files’ dependency graph (capturing workflow execu-
tion plan) for scheduling and data placement purposes. The
client traces are obtained by running and logging the appli-
cation operations. The execution plan can be provided by
the workflow scheduler (e.g., Swift [27]), by an expert user
or extracted from log files. Currently, we use the workflow
execution plan from PyFlow scheduler and client traces from
MosaStore storage logs, which required no further modifica-
tion for this work. We have developed a FUSE wrapper to
log the storage operations, if the storage system does not
provide the needed information. The predictor preprocess
the logs to infer the operations’ elapsed times and interar-
rival times based on timestamps, aggregate some operations,
and create the events to be simulated.

3. EVALUATION

This section aims to evaluate the mechanism’s prediction
accuracy and, more important, to demonstrate through a set
of experiments the mechanism’s ability to support correctly
identifying quasi-optimal configuration for a specific applica-
tion. To this end, we use a set of synthetic benchmarks and
real applications. The synthetic benchmarks are designed to
mimic the access patterns [25] of workflow applications.

To understand how the prediction mechanisms can be
used in a real set-up, we use two real workflow applications:
BLAST [5] and Montage [16]. The goal is to evaluate the
mechanism’s ability to predict time-to-solution to support
decisions on the storage configuration and allocation.

Storage system. We use an open source distributed ob-
ject based storage system [4]. We choose to experiment with
RAMDisks as they are frequently used to support workflow
applications as intermediate storage: it offers higher perfor-
mance and are the only option in most supercomputers that
do not have spinning disks (e.g., IBM BG/P machines).

Testbeds. We use two testbeds. The first testbed (TB20)
is our lab cluster with 20 machines. Each machine has Intel
Xeon E5345 4-core, 2.33-GHz CPU, 4GB RAM, and 1Gbps
NIC. The second testbed (TB100), used for larger scale ex-
periments, includes 100 nodes on Grid5000 ‘Nancy’ clus-
ter [10]. Each machine has Intel Xeon X3440 4-core, 2.53-
GHz CPU, 16GB RAM, 1Gbps NIC, and 320GB SATA II.

In all the experiments, one node runs the metadata man-
ager and the workflow coordination scripts, while the other
nodes run the storage nodes, the client SAI, and the appli-
cation processes. The networks is shared with applications
running on different machines. The simulator is seeded ac-
cording to the procedure described in §2.4.

3.1 Synthetic Benchmarks: Workflow Patterns

This section evaluates the accuracy of the prediction mech-
anism in capturing the system behavior with multiple clients,



multiple applications, and different data-placement policies
designed to support workflow applications [25]. We use syn-
thetic benchmarks that mimic common data access patterns
of workflow applications: pipeline, reduce, and broadcast
(Figure 2). These are the most popular patterns uncovered
by studying over 20 scientific workflow applications by Woz-
niak et al. [28], Shibata et al. [21], and Bharathi et al. [9]).

The synthetic benchmarks are designed to explore the lim-
itations of the predictor as they are composed exclusively
of I/O operations, which generates high network and disk
contention in the system.

Summary of results. The predictor has good accuracy:
our approach leads to prediction errors of 5% on average,
lower than 8% in 80% of the studied scenarios, and within
14% in the worst case. More important, the mechanism
correctly differentiates between the different configurations
and can support choosing the best configuration for each
evaluated scenario.

Experimental setup. We use the storage system setup
as described above on the TB20 testbed. We use the DSS
label for experiments where we use the (Default Storage
System) configuration: client and storage modules run on
all machines, client stripes data over all 19 machines, and
no optimizations are enabled for any data-access pattern.
We use the WASS label (Workflow Aware Storage System)
when the system configuration is optimized for a specific
access pattern (including data placement, stripe width or
replication) [25]. All WASS experiments assume data lo-
cation aware scheduling: for a given compute task, if the
input file chunks exist on a single storage node, the task is
scheduled on that node to increase access locality.

The goal of showing results for two different configurations
choices is two-fold: (i) demonstrate the accuracy of the pre-
dictions for two different scenarios, and (ii), most important,
show that the predictions correctly indicate which configu-
ration is the best. To understand the impact of the data
size, for each benchmark, we use three workloads labeled
as medium (data sizes are indicated in Figure 2), the small
(10x smaller than medium), and where possible, a 10x larger,
large workload. We omit results for a small workload, since
it exhibits a similar performance between different configu-
rations and the predictions are inside the confidence interval.

For actual performance, the figures show the average turn-
around time and standard deviation (in error bars) for 15 tri-
als (which was enough to guarantee a 95% confidence level).

Broadcast

Reduce

Pipeline

100MB 100MB

200MB 200MB

200MB 200MB

Figure 2: Pipeline, Reduce, and Broadcast bench-
marks. Nodes represent workflow stages and arrows rep-
resent data transfers through files. The file sizes repre-
sent the medium workload. The part of the flow that is
repeated, ran over 19 machines in this evaluation.
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Pipeline benchmark. A set of compute tasks are chained
in a sequence such that the output of one task is the input of
the next task in the chain (Figure 2). A pipeline-optimized
storage system will store the intermediate pipeline files on
the storage node co-located with the application. Later, the
workflow scheduler places the task that consumes the file
on the same node, increasing data access locality. Here, 19
application pipelines run in parallel and go through three
processing stages that read and write files from/to the in-
termediate storage. (The large workload produces too much
data to fit in the in-memory intermediate storage system in
the TB20 testbed.)

Evaluation of the results. For the optimized configuration
(WASS) the predictor has almost perfect accuracy (Figure
3). For the default data placement policy (DSS), however,
predictions are 9% lower than actual results. For this case,
all clients stripe (write) data to all machines in the system;
similarly, all machines read from all others. This creates,
complex interactions among all components in the system
leading to contention and chunk transfer retries due to con-
nection initiation timeouts caused by network congestion
which, we believe, are the main source of prediction inac-
curacies.

WASS Pred m 7 Actual N Predicted
wass [ 7|
DSS Pred K N
pss [/ A
[ T T 1
0 5 Time (Lgc) 18

Figure 3: Actual and predicted average execution time
for the pipeline benchmark and medium workload.

Reduce benchmark. A single compute task uses input
files produced by multiple tasks. In the benchmark, 19 pro-
cesses run in parallel on different nodes, consume an input
file, and produce an intermediate file. In the next stage of
the workflow, a single process reads all intermediate files and
produces the final output file. A possible data placement op-
timization is the use of collocation - placing input files on
one node and expose their location, which will later be used
by the scheduler to run the reduce task on that machine. For
WASS configuration, this collocation optimization is enabled
for the files used in the reduce stage, for the remaining files
the locality optimization is enabled.

Evaluation of the results. Similar to the pipeline bench-
mark, predictions for the reduce benchmark are close to the
actual performance. In fact, they are within 9% of the actual
average for medium workload, and 13% of the actual perfor-
mance for large (Figure 4). More important, they capture
the relative improvements the pattern-specific data place-
ment policies bring. We note that Figure 4(b) captures the
behavior of a heterogeneous scenario: to accommodate the
amount of data produced, we used a faster machine with
a larger RAMDisk to run the reduce stage. With proper
seeding, the predictor captures the system performance with
accuracy similar to a homogeneous system.

When the collocation and locality optimizations are not
enabled, the challenge of capturing exactly the system be-
havior is similar to the pipeline case: capture the complex
interactions among all machines in the system. When the
specific data placement is enabled though, the challenge is
different: there is a high contention created by having sev-
eral clients writing to the same storage machine (the one that
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Figure 4: Actual and predicted average execution time
for the reduce benchmark for the medium, large work-
loads, and per stage for large workload.

performs the reduce phase). Figure 4(c) shows the results
per-stage for the two stages of the large workload separately
to show how the predictor captures these cases.

Broadcast benchmark. A single task produces a file
that is consumed by multiple tasks. In this benchmark, 19
processes running in parallel on different machines consume
a file that is created in earlier stage by one task. A possible
optimization for this pattern is to create replicas of the file
that will be consumed by several different tasks.

FEvaluation of the results. The results show for broadcast
pattern with medium workload with the WASS system have
similar performance of aproximately 3 seconds when con-
figured with 1, 2, or 4 replicas (the large workload shows
a similar trend) [12]. For this benchmark all predictions
match the actual results: predictions are inside the interval
of mean of actual & standard deviation, just 1-3% difference
from the mean.

This experiment highlights an interesting case for the pre-
dictor. According to the structure of the pattern and the
results reported in [25], creating replicas will improve the
performance of the broadcast pattern. The results, however,
show that creating replicas does not really help here. This
happens because data striping already avoids the contention
of a single node holding the file. So, although creating repli-
cas reduces the number of accesses to a given machine (since
chunks are read in sequence), this gain is not paid off by the
overhead of creating a replica. More important, this is an-
other situation where the predictor captures the impact of
different configurations, showing, in this case that they are
equivalent and the user can stick with one replica and save
storage space.

3.2 The pipeline benchmark at scale

This section expands the analysis of the synthetic bench-
marks to answer the following questions: “How accurate is
the predictor estimates for a different platform?” and “How
does the predictor capture the behavior of larger scale sys-
tems?” To answer these question, we ran the pipeline bench-
mark at scale on our Grid 5000 testbed, TB100. We chose
this benchmark because it is the one with the biggest gap
between predicted and actual, and it is the most I/O inten-
sive benchmark which stresses the network and the meta-
data manager, a component well-known for being a poten-
tial bottleneck for this type of cluster-based storage system.
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We executed this benchmark for a weak scaling set-up using
three different scales (25, 50, and 100 nodes), the medium
workload, and the two configurations (DSS and WASS). The
stripe width is set to 4, reflecting a typical value in dis-
tributed storage setup [4,15].

Figure 5 shows the results. The predictor produces es-
timates that differ 15% of the actual time on average, are
within 22% of the actual results for all cases, and are close
to the interval delimited by the standard deviation. Differ-
ent from the TB20 results, most of the scenarios on TB100
show cases where the predictor underestimate the time, in-
stead of overestimating. We believe it happens because the
faster machines of TB100 offer higher parallelism.
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Figure 5: Actual and predicted average execution time
for the pipeline benchmark medium workload on TB100.

3.3 Supporting decisions for a real application

Section 3.1 evaluated predictor’s ability to accurately es-
timate the turnaround time of synthetic benchmarks and
the impact of different data placement optimizations. This
section targets more complex scenarios where the user has
to deal with a real application, allocation decisions, as well
as the choice of the storage system configuration. Further,
the previous section evaluated prediction accuracy when the
application and storage system are co-deployed on the same
nodes, this section evaluates accuracy when they are deployed
on separate nodes.

This section demonstrates the predictor’s ability to prop-
erly guide the user or a search algorithm to the desired con-
figuration focusing on two provisioning scenarios:

e Scenario I assumes that the user has full access to a fixed-
size cluster, a common set-up in several university research
labs. Problem: How should the system be partitioned be-
tween the application and the intermediate storage and
what will be the intermediate storage system configuration
for best overall performance?

e Scenario II explores the provisioning problem with cost
constraints (e.g., in HPC centers with limited user budget
or cloud environments). Problem: For a fized workload;
what is the cost/turnaround time trade-off space among
the deployment options?

Workload. We explore these two scenarios with a real
workflow application: BLAST [5] a DNA search tool for
finding similarities between DNA sequences. In the BLAST
workflow, each node receives a set of DNA queries as input
(a file for each node with 200 search queries) and all nodes
search the same DNA database file stored on intermediate
storage (total size of 1.67 GB). Each machine produces one
output file, and the files are combined at the end of the



application execution. The input files are transferred to the
intermediate storage system prior to application execution.

Deployment scenario. Among the 20 machines of the
testbed TB20; one node coordinates BLAST tasks’ execu-
tion and runs the storage system manager. The remaining
nodes can either execute tasks from the workload or act as
storage nodes.

Experimental methodology. The plots report the av-
erage of at least 20 runs, leading to 95% confidence intervals
for all experiments. Since standard deviation is low (less
than 5%), we omit it in plots to reduce clutter.

3.3.1 Scenario I: Configuring a Fixed-size Cluster

We explore the following question: Given a fixed size clus-
ter, how should the nodes be partitioned between the applica-
tion and the intermediate storage, and what is the intermedi-
ate storage system configuration to yield highest application
performance?

Figure 6 shows the application execution time for different
partitioning and storage system configurations. For this ap-
plication chunk size is the configuration parameter that has
the highest impact on performance, thus, to limit the num-
ber of possible configurations in the figure, we focus on it
only. (We note that the predictor correctly captures the lack
of impact for other parameters). Additionally, this scenario
covers a configuration parameter not evaluated in §3.1.

Figure 6 highlights several important points: First, the
performance difference between the different configurations
is significant: up to 10x difference between the best and the
worst configuration even for the same chunk size. Second,
the results show that the system achieves the fastest process-
ing time with a partitioning of 14 application nodes and 5
storage nodes, and chunk size of 256KB (4x smaller than
the default size) a non-obvious configuration beforehand.
Third, the experiment shows that the predictor accurately
captures the system performance under different partition-
ing strategies, and storage system configurations. Actually,
the overall error of the predictions are small (always within
the standard deviation), and smaller than obtained for syn-
thetic benchmarks since there is less stress on the storage
system. Finally, the most important point is that the pre-
dictor can correctly lead the user or a search algorithm to
the desired configuration.

3.3.2  Scenario II: Provisioning in an Elastic
and Me tered Environment

This scenario assumes an environment where users are
charged (proportional to the cumulative CPU-hours used)
and have a more complex tradeoff between cost and time-
to-solution to make, for example, they aim for the best ap-
plication turnaround within a certain dollar budget. We aim
to inform the user’s provisioning decisions by revealing the
details of this trade-off. Specifically, this scenario helps the
user to answer the following question: What is the allocation
size, and how should it be partitioned and configured to best
fit the constraints and optimization criterion?

Figure 7 shows, on different Y-axes, the application ex-
ecution time and allocation cost (measured as number of
nodes x allocation time) for different cluster sizes, different
partitioning, and different chunk size. Similar to Scenario
I, Figure 7 shows that the predictor captures the system
performance with reasonable accuracy.

Figure 7 also shows that the an allocation of 11 nodes,

with partitioning of 8 application, 2 storage nodes, and chunk
size of 256KB offers the lowest cost. However, this figure
points out an interesting case for the analysis of cost vs.
time-to-solution: The user can analyze the plot to verify
that an option with an allocation of 20 nodes actually offers
almost 2x higher performance at a marginal 2% higher cost.

3.4 Increasing workflow complexity: Montage

This section aims to answer the following question: “Can
the predictor support user decisions for more complex appli-
cations than the one presented in §3.3”. To answer this ques-
tion, we focus on evaluating how accurate the estimates are
for Montage [16], a complex astronomy workflow composed
of 10 different stages (Figure 8) with varying characteristics.

To verify that the predictor can support user’s decision,
we have executed Montage for different deployments sizes on
TB20. For this application, we use clients collocated with
storage nodes, verifying yet another configuration parame-
ter. We omit chunk size variations since it does not impact
actual Montage (also well captured by the predictor).
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Final Image

Information
is used to
schedule
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Information
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schedule

the
mBackgrou
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Figure 8: Montage workflow.

Workflow characteristics. The I/O communication in-
tensity between workflow stages is highly variable (presented
in Table 1 for the workload we use). Overall the workflow
generates over 650 files with sizes from 1KB to over 100MB
and about 3GB of data are read/written from storage.

Stage Data #Files | File Size
stageln 109MB | 57 1.7MB-2.1MB
mProject 438MB | 113 3.3MB-4.2MB
mlImgTbl 17KB 1

mOverlaps 17KB 1

mDiff 148MB | 285 100KB - 3MB
mFitPlane 576KB | 142 4KB
mConcatFit 16KB 1

mBgModel 2KB 1

mBackground | 438MB | 113 3.3MB - 4.2MB
mAdd 330MB | 2 165MB
mJPEG 4.7MB 1

stageOut 170MB | 2 4.7MB-165MB

Table 1: Characteristics of Montage workflow stages

Evaluation of the Results. Figure 9 shows the exe-
cution time, actual and predicted, for Montage on different
cluster sizes. The average summarizes 20 trials. The stan-
dard deviation is approximately 3% and omitted to reduce
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the storage manager on TB20.

clutter. Figure 9 shows that, overall, the predictor captures
well the application performance. The increased workflow
complexity is a challenge: the predictor is not as accurate
as for the BLAST application presented earlier (here the av-
erage prediction error is 9%, the smallest is than 1%, and
the maximum prediction error is 15%). However, the over-
all accuracy is “good-enough” to support the provisioning
decisions, and the difference is barely visible in the plot.

4. RELATED WORK

This section describes previous work on different approaches

to predict storage system performance and tune its configu-
ration parameters.
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Model based analysis. A number of projects use model-
based approach to estimate the storage system performance
with a given configuration or workload. Ergastulum [7]
targets centralized storage solution based on one enclosure
to recommend an initial system configuration, and Hippo-
drome [6] relies on Ergastulum to improve the configuration
based on online monitoring of the workload. By consider-
ing a distributed system, our solution handles more complex
interaction among the system components and more config-
uration options.

Simulation based systems. IMPIOUS (Imprecisely Model-
ing Parallel I/O is Usually Successful) [19] is a trace-driven
simulator that uses an abstract storage system models de-
signed to capture the key mechanism of parallel file sys-
tems. The simulator is oversimplified to be able to simu-
late thousands of client and storage nodes. Consequently
the simulator is not accurate, producing performance esti-
mates that under- or over- estimates the performance by up
to 60%. PFSsim is a trace-driven simulator designed specifi-
cally for evaluating I/O scheduling algorithms in parallel file
systems. PFSsim simulates the storage system at low com-
ponent level, simulating the network using OMNeT++ [26]
and disks using DiskSim [1]. Liu et al. [17,18] build a simu-
lation framework for simulating the storage system of super-
computing machines. The framework simulates all hardware
components including compute ad IO nodes, storage subsys-
tem, and the supercomputing interconnect. Similar to this
work, Thereska et al. [23] proposed a predictor mechanism



for a distributed storage system with a detailed model. To
provide such information, they propose Stardust [24] a de-
tailed monitoring information system that required changes
to the storage system and kernel modules to add monitor-
ing points. This approach enabled their predictor to achieve
prediction within 18% of the actual predictions depending
on the workload. Our approach has achieved similar accu-
racy on our target workloads, however with a lightweight
approach to seed the model, not requiring changes to the
system design or kernel modules.

Unlike these efforts, our approaches targets simulating a
generic distributed storage system architecture in a cluster
infrastructure (not special supercomputer machines) with-
out simulating particular storage system operations. Our
approach avoids detailed low-level simulation (e.g., disk or
packet level simulation), without significantly compromis-
ing accuracy, enabling our framework to efficiently simulate
large-scale deployments.

An important difference to past work on storage systems
simulation is our focus on a whole workflow application and
the potential interaction among the workflow’s phases in-
stead of the average performance for a batch [6,7] of opera-
tions, and of predicting performance of the system from the
perspective of one client [23] at a time. Additionally, our
work targets the partitioning problem of splitting the nodes
among application and intermediate storage.

Monitoring based tuning. Behzad et al. [8] present an auto
tuning framework for HDF5 IO library. The proposed so-
lution injects optimization parameters into parallel HDF5
I/O calls. Further, the framework monitors the I/O per-
formance, and explores the tuning parameter space using a
genetic algorithm. Zhang et al. [29] propose an approach to
determine the storage bottleneck for workflow applications
using a set of benchmarks and target workflow application
runs.

The approach we propose enables a richer exploration of
the system at a lower cost since the predictor is able to
estimate performance of a scenario that adds or reduces re-
sources and change the configuration without requiring new
runs of the application for new generations of the genetic al-
gorithm. Additionally, we target simulating generic POSIX-
based storage system not a specific I/O library.

5. SUMMARY AND DISCUSSION

Summary. This paper makes the case for a prediction
mechanism to support automating provisioning choices for
workflow applications. We focus on predicting the perfor-
mance of workflow applications when running on top of an
intermediate object-based storage system. We propose a
solution based on a queue-based model with a number of at-
tractive properties: a generic and uniform system model;
supported by a simple system identification process that
does not require specialized probes or system changes to
perform the initial benchmarking; with a low runtime to ob-
tain predictions; and, finally, with adequate accuracy for the
cases we study.

This paper focuses on predicting the application time-to-
solution (turnaround time) of the applications and bench-
marks, but we note that the model and approach presented
apply to other optimization metrics (e.g., cost, amount of
data transferred).

We intend to expand this work in multiple directions:
(i) explore a richer space of configuration parameters, (ii)
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evaluate the system using additional benchmarks and ap-
plications, (iii) enable different optimization criteria [22] in-
cluding energy [11], and (iv) explore different optimization
solvers to search the configuration space.

The discussion below aims to clarify our understanding of
the limitations of our work and the lessons we have learned.

What are the main sources of inaccuracies? Cur-
rently, there are sources of inaccuracies at multiple levels:
First, the model does not capture all the details of the stor-
age system (e.g., support services like garbage collection
or storage node heartbeats; the control paths are simpli-
fied to match what we believe generic object-based storage
would do - while we know that a FUSE-based implemen-
tation would need more complex control paths; we model
all control messages as having the same size) and the en-
vironment (e.g., contention at the network fabric level or
scheduling). Second, we constrain and simplify system iden-
tification even further at the cost of additional accuracy loss.
Third, we do not model the infrastructure in detail (e.g., we
do not model the network protocols or the spinning disks).
Finally, so far the application driver uses an idealized image
of the workflow application (e.g., all pipelines are launched
in the simulation exactly at the same time while in the ac-
tual experiments coordination overheads make them slightly
staggered). We believe the latter one is the main reason of
current inaccuracies in the system. In fact, our initial eval-
uation verified that for Montage the overhead can be up to
5% of the total time.

Can the prediction mechanism support the devel-
opment process of a storage system? Do you have
specific experience in this context? One of the lessons
we have learned so far is the utility of the mechanism to
support the development of the storage system itself. Back
of the envelope calculations are a common mechanism to
evaluate expected performance bounds for a given system.
The predictor takes this a step further and is useful in com-
plex scenarios where back of the envelope estimates are in-
tractable. Not only the developers can use it to evaluate the
potential gains of implementing a new complex optimiza-
tions or to study the impact of faster network and nodes,
but to obtain a performance baseline to detect performance
anomalies.

More concretely, we have encountered a number of situ-
ations where the predicted and actual performance differed
significantly. In some cases these highlighted simplifications
in the model or in our simulator. But, there were cases that
highlighted complex performance-related anomalies in the
storage system such as: non-trivial implementation prob-
lems (e.g., limited randomness in the data placement deci-
sions that led to an artificial bottleneck, or unreasonable
locking overheads). Similarly, the prediction mechanism
helped us revisit assumptions about the middleware stack
the storage system is implemented over (e.g., significant im-
pact of the TCP connection initiation timeout of 3s in some
scenarios). Finally, the predictions highlighted shortcomings
of the seeding process or incorrect assumptions about the de-
ployment platform (e.g., we were ignoring platform hetero-
geneity). A technical report describes this experience [13].

How general is the proposed prediction mecha-
nism? We have designed the predictor to model a generic



object-based storage system and all the system identification
process to work at the application level only (thus, easily
portable across storage systems and deployment platforms).
While so far we have evaluated the predictor in depth only
for the DSS/WASS storage system we have encouraging pre-
liminary experience with using it to predict the relative ap-
plication performance on two other storage solutions, Ceph
and GlusterF'S, for a limited number of scenarios.
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