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The reading and writing of data, one of the most fundamental aspects of any Von Neumann 
computer, is surprisingly subtle and full of nuance. For example, consider access to a shared 
memory in a system with multiple processors. While a simple and intuitive approach known as 
strong consistency is easiest for programmers to understand,14 many weaker models are in widespread 
use (e.g., x86 total store ordering22); such approaches improve system performance, but at the cost 
of making reasoning about system behavior more complex and error-prone. Fortunately, a great 
deal of time and effort has gone into thinking about such memory models,24 and, as a result, most 
multiprocessor applications are not caught unaware.

Similar subtleties exist in local file systems—those systems that manage data stored in your 
desktop computer or your cell phone,13 or that serve as the underlying storage beneath large-
scale distributed systems such as HDFS (Hadoop Distributed File System).23 Specifically, a pressing 
challenge for developers trying to write portable applications on local file systems is crash consistency 
(i.e., making sure that application data can be correctly recovered in the event of a sudden power loss 
or system crash).

Crash consistency is important. Consider a typical modern photo-management application 
such as iPhoto, which stores not only the photos a user takes, but also information relevant to a 
photo library, including labels, events, and other photo metadata. No user wants a system that loses 
photos or other relevant information simply because a crash occurs while the photo-management 
application is trying to update its internal database.

Today, much of the burden of ensuring crash consistency is placed on the application developer, 
who must craft an update protocol that orchestrates modifications of the persistent state of the file 
system. Specifically, the developer creates a carefully constructed sequence of system calls (such as 

TRY IT YOURSELF!

Many application-level crash-consistency problems are exposed only under uncommon timing 
conditions or specific file system configurations, but some are easily reproduced. As an example, on 
a default installation of Fedora or Ubuntu with a Git repository, execute a git-commit, wait for five 
seconds, and then pull the power plug; after rebooting the machine, you will likely find the repository 
corrupted. Fortunately, this particular vulnerability is not devastating: if you have a clone of the 
repository, you can probably recover from it with a little bit of work. (Note: don’t do this unless you (a) 
are truly curious and (b) will be able to recover from any problems you cause.)
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file writes, renames, and other file system calls) that updates underlying files and directories in a 
recoverable way. The correctness of the application, therefore, inherently depends on the semantics 
of these system calls with respect to a system crash (i.e., the crash behavior of the file system).

Unfortunately, while the standardized file system interface has been in widespread use for many 
years, application-level crash consistency is currently dependent on intricate and subtle details of file 
system behavior. Either by design or by accident, many modern applications depend on particular 
file system implementation details, and thus are vulnerable to unexpected behaviors in response to 
system crashes or power losses when run on different file systems or with different configurations.

Recent research, including work performed by our group at the University of Wisconsin–
Madison,21 as well as elsewhere,29 has confirmed that crashes are problematic: many applications 
(including some that are widely used and were developed by experienced programmers) can lose 
or corrupt data on a crash or power loss. The impact of this reality is widespread and painful: users 
must be prepared to handle data loss or corruption,15 perhaps via time-consuming and error-prone 
backup and restore; application code might be tailored to match subtle file system internals, a blatant 
violation of layering and modularization; and adoption of new file systems is slowed because their 
implementations don’t match the crash behavior expected by applications.6 In essence, the file 
system abstraction, one of the basic and oldest components of modern operating systems, is broken.

This article presents a summary of recent research in the systems community that both identifies 
these crash consistency issues and points the way toward a better future. First, a detailed example 
illustrates the subtleties of the problem. Then the state of the art is summarized, showing that the 
problems we and others have found are surprisingly widespread. Some promising research in the 
community aims to remedy these issues, bringing new thinking and new techniques to bear on 
transforming the state of the art.

AN EXAMPLE
Let’s look at an example demonstrating the complexity of crash consistency: a simple DBMS 
(database management system) that stores its data in a single file. To maintain transactional 
atomicity across a system crash, the DBMS can use an update protocol called undo logging: before 
updating the file, the DBMS simply records those portions of the file that are about to be updated in 
a separate log file.11 The pseudocode is shown in Figure 1 (offset and size correspond to the portion 
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Incorrect Undo-logging Pseudocode
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of the dbfile that should be modified); whenever the DBMS is started, the DBMS rolls back the 
transaction if the log file exists and is fully written (determined using the size field). The pseudocode 
in Figure 1 uses POSIX system calls (POSIX is the standard file system interface used in Unix-like 
operating systems). In an ideal world, one would expect the pseudocode to work on all file systems 
that implement the POSIX interface. Unfortunately, the pseudocode does not work on any widely 
used file system configuration; in fact, it requires a different set of measures to make it work on each 
configuration.

Because file systems buffer writes in memory and send them to disk later, from the perspective 
of an application most file systems can reorder the effects of system calls before persisting them on 
disk. For example, in some file systems (ext2, ext4, xfs, and btrfs in their default configurations, but 
not ext3), the deletion of the log file can be reordered before the write to the database file. After a 
system crash in these file systems, the log file might be found already deleted from the disk, while 
the database has been updated partially. Other file systems can partially persist a system call in 
seemingly nonsensical ways. For example, in ext2 and nondefault configurations of ext3 and ext4, 
while writing (appending) to the log file, a crash might leave garbage data in the newly appended 
portions of the file; in such file systems, during recovery, one cannot differentiate whether the log 
file contains garbage or undo information.

Figure 2 shows the measures needed for undo logging to work on Linux file system configurations 
(“./” refers to the current directory); the red parts are the additional measures needed. Comments in 
the figure explain which measures are required by different file systems: we considered the default 
configurations of ext2, ext3, ext4, xfs, and btrfs, and the data-writeback configuration of ext3/4 
(denoted as ext3-wb and ext4-wb). Almost all measures simply resort to using the fsync() system 
call, which flushes a given file (or directory) from the buffer cache to the disk and is used to prevent 
the file system from reordering updates. The fsync() calls can be arbitrarily costly, depending 
on how the file system implements them; an efficient application will thus try to avoid fsync() 
calls when possible. With only a subset of the fsync() calls, however, an implementation will be 
consistent only on some file system configurations. 

Note that it is not practical to use a verified implementation of a single update protocol across all 
applications; the update protocols found in real applications vary widely and can be more complex 
than in figure 2. The choice can depend on performance characteristics; some applications might 
aim for sequential disk I/O and prefer an update protocol that does not involve seeking to different 
portions of a file. The choice can also depend on usability characteristics. For example, the presence 
of a separate log file unduly complicates common workflows, shifting the burden of recovery to 
include user involvement. The choice of update protocol is also inherently tied to the application’s 
concurrency mechanism and the format used for its data structures.

THE CURRENT STATE OF AFFAIRS
Given the sheer complexity of achieving crash consistency among different file systems, most 
developers write incorrect code. Some applications (e.g., Mercurial) do not even try to handle crashes, 
instead assuming that users will manually recover any data lost or corrupted as a result of a crash. 
While application correctness depends on the intricate crash behavior of file systems, there has been 
little formal discussion on this topic.

Two recent studies investigate the correctness of application-level crash consistency: one at 
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the University of Wisconsin–Madison21 and the other at Ohio State University and HP Labs.29 
The applications analyzed include distributed systems, version-control systems, databases, and 
virtualization software; many are widely used applications written by experienced developers, such 
as Google’s LevelDB and Linus Torvalds’s Git. Our study at the University of Wisconsin–Madison 
found more than 30 vulnerabilities exposed under widely used file system configurations; among the 
11 applications studied, 7 were affected by data loss, while 2 were affected by silent errors. The study 
from Ohio State University and HP Labs had similar results: they studied eight widely used databases 
and found erroneous behavior in all eight.

For example, we found that if a file system decides to reorder two rename() system calls in HDFS, 
the HDFS namenode does not boot2, and the reordering results in unavailability. Therefore, for 
portable crash consistency, fsync() calls are required on the directory where the rename() calls 
occur. Presumably, however, because widely used file system configurations rarely reorder the 
rename() calls, and Java (in which HDFS is written) does not directly allow calling fsync() on a 
directory, the issue is currently ignored by HDFS developers.

As another example, consider LevelDB, a key-value store that adds any inserted key-value pairs to 
the end of a log file. Periodically, LevelDB switches to a new log file and compacts the previous log 
file for faster record retrieval. We found that, during this switch, an fsync() is required on the log 
file that is about to be compacted;19 otherwise, a crash might result in some inserted key-value pairs 
disappearing.

Many vulnerabilities arise because application developers rely on a set of popular beliefs about 
crash consistency. Unfortunately, much of what seems to be believed about file system crash 
behavior is not true. Consider the following two myths:
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Undo-logging Pseudocode that Works Correctly in Linux File Systems
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• Myth 1: POSIX defines crash behavior. POSIX17 defines the standard file system interface (open, 
close, read, and write) exported by Unix-like operating systems and has been essential for building 
portable applications. Given this, one might believe that POSIX requires file systems to have a 
reasonable and clearly defined response to crashes, such as requiring that directory operations be 
sent to the disk in order.18 Unfortunately, there is little clarity as to what exactly POSIX defines with 
regard to crashes,3,4 leading to much debate and little consensus.

• Myth 2: Modern file systems require and implement in-order metadata updates. Journaling, a 
common technique for maintaining file system metadata consistency, commits different sets of file 
system metadata updates (such as directory operations) as atomic transactions. Journaling is popular 
among modern file systems and has traditionally committed metadata updates in order;12 hence, it 
is tempting to assume that modern file systems guarantee in-order metadata updates. Application 
developers should not assume such guarantees, however. Journaling is an internal file system 
technique; some modern file systems, such as btrfs, employ techniques other than journaling and 
commonly reorder directory operations. Furthermore, even file systems that actually use journaling 
have progressively reordered more operations while maintaining internal consistency. Consider 
ext3/4: ext3 reorders only overwrites of file data, while ext4 also reorders file appends. According to 
Theodore Ts’o, a maintainer of ext4, future journaling file systems might reorder more (though ext4 
is unlikely to).

Should file system developers be blamed for designing complicated file systems that are 
unfavorable for implementing crash consistency? Some complex file system behaviors can (and 
should) be fixed. Most behaviors that make application consistency difficult, however, are essential 
for general-purpose file systems.

To illustrate, consider reordering, the behavior that is arguably the least intuitive and that 
causes the most crash-consistency vulnerabilities. In our study, a file system that provided in-
order operations (and some minimal atomicity) exposed only 10 vulnerabilities, all with minor 
consequences; in comparison, 31 vulnerabilities were exposed in btrfs and 17 in ext4. In current 
environments with multiple applications running simultaneously, however, a file system requires 
reordering for good performance. If there is no reordering, fsync() calls from important applications 
will be made to wait for writes from nonessential tasks to complete. Indeed, ext3 in its default 
configuration provides an (almost) in-order behavior, but has been criticized for unpredictably slow 
fsync() calls.7

MOVING FORWARD
Fortunately, not all is bleak in the world of crash consistency. Recent research points toward a 
number of interesting and plausible solutions to the problems outlined in this article. One approach 
is to help developers build correct update protocols. At least two new open-source tools are publicly 
available for consistency testing (though neither is mature yet): ALICE,20 the tool created for our 
research study at the University of Wisconsin–Madison, and a tool designed by Linux kernel 
developers9 for testing file system implementations. ALICE is more effective for testing applications 
since it verifies correctness on a variety of simulated system crashes for a given application test case. 
In contrast, the kernel tool verifies correctness only on system crashes that occur with the particular 
execution path traversed by the file system during a run of the given test case. 

Two other testing tools are part of recent research but are not yet publicly available: BOB21 from 
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our study, and the framework used by researchers from Ohio State University and HP Labs.29 Both of 
these are similar to the kernel tool.

A second approach to better application crash consistency is for file systems themselves to provide 
better, more easily understood abstractions that enable both correctness and high performance for 
applications. One solution would be to extend and improve the current file system interface (in the 
Unix world or in Windows). However, the interface has been built upon many years of experience 
and standardization, and is hence resistant to change.16 The best solution would provide better 
crash behavior with the current file system interface. As previously explained, however, in-order 
updates (i.e., better crash behavior) are not practical in multitasking environments with multiple 
applications. Without reordering in these environments, the performance of an application 
depends significantly on the data written by other applications in the background and will thus be 
unpredictable. 

There is a solution. Our research group is working on a file system that maintains order only 
within an application. Constructing such a file system is not straightforward; traditional file systems 
enforce some order between metadata updates10 and therefore might also enforce order between 
different applications (if they update related metadata). Another possible approach, from HP Labs,26 
does change the file system interface but keeps the new interface simple, while being supported on a 
production-ready file system.

A third avenue for improving the crash consistency of applications goes beyond testing and seeks 
a way of formally modeling file systems. Our study introduces a method of modeling file systems 
that completely expresses their crash behavior (abstract persistence models). We modeled five file 
system configurations and used the models to discover application vulnerabilities exposed in each 
of the modeled file systems. Researchers from MIT5 have more broadly considered different formal 
approaches to modeling a file system and found Hoare logic to be the best. 

Beyond local file systems, application crash consistency is an interesting problem in proposed 
storage stacks that will be constructed on the fly, mixing and matching different layers such as block 
remappers, logical volume managers, and file systems.27,28 An expressive language is required for 

THE UNSPOKEN AGREEMENT

What can applications rely on? File system developers seem to agree on two rules that govern what 
information is preserved across system crashes. The first is subtle: information already on disk (file data, 
directory entries, file attributes, etc.) is preserved across a system crash, unless one explicitly issues an 
operation affecting it.

The second rule deals with fsync() and similar constructs (msync(), O_SYNC, etc.) in Unix-like 
operating systems. An fsync() on a file guarantees that the file’s data and attributes are on the storage 
device when the call returns, but with some subtleties. A major subtlety in fsync() is the definition of 
storage device: after information is sent to the disk by fsync(), it can reside in an on-disk cache and 
hence can be lost during a system crash (except in some special disks). Operating systems provide ad-
hoc solutions to flush the disk cache to the best of their ability; since you might be running atop a fake 
hard drive,8 nothing is promised. Another subtlety relates broadly to directories: directory entries for a 
file and the file itself are separate entities and can each be sent separately to the disk; an fsync() on 
one does not imply the persistence of the others.
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specifying the complex storage guarantees and requirements of the different layers in such storage 
stacks. Our group is also working on such a language, along with methods to prove the overall 
correctness of the entire storage stack.1

CONCLUSION
This article aims to convince readers that application-level crash consistency is a real and important 
problem. Similar problems have been faced before in other areas of computer systems, in the 
domains of multiprocessor shared memory and distributed systems. Those problems have been 
overcome by creating new abstractions, understanding various tradeoffs, and even thinking 
about the problem with analogies to baseball.25 Similar solutions are possible for application crash 
consistency, too, but only with the involvement of the wider systems community.

REFERENCES

1.    Alagappan, R., Chidambaram, V., Sankaranarayana Pillai, T., Arpaci-Dusseau, A. C., Arpaci-
Dusseau, R. H. 2015. Beyond storage APIs: provable semantics for storage stacks. In the 15th 
Workshop on Hot Topics in Operating Systems, Kartause Ittingen, Switzerland (May).

2.    Al-Kiswany, S. 2014. Namenode fails to boot if the file system reorders rename operations;  
http://issues.apache.org/jira/browse/HDFS-6820.

3.    Aurora, V. 2009. POSIX v. reality: a position on O_PONIES; http://lwn.net/Articles/351422/.
4.    Austin Group Defect Tracker. 2013. 0000672: Necessary step(s) to synchronize filename 

operations on disk; http://austingroupbugs.net/view.php?id=672.
5.    Chen, H., Ziegler, D., Chlipala, A., Kaashoek, M. F., Kohler, E., Zeldovich, N. 2015. Specifying 

crash safety for storage systems. In the 15th Workshop on Hot Topics in Operating Systems, 
Kartause Ittingen, Switzerland (May).

BEST PRACTICES FOR APPLICATION DEVELOPERS

Developers can alleviate the problem of crash consistency within their applications by following these 
recommended practices:

Use a library. Implementing consistency directly atop the file system interface is like pleading 
insanity in court: you do it only if you have no other choice. Whenever possible, a wiser strategy is to 
use a library, such as SQLite, that implements crash consistency below your application.

Document guarantees and requirements. Consistency guarantees provided by applications 
can be confusing; some developers can be unclear about the guarantees provided by their own 
applications. Documenting file system behaviors that the application requires to maintain consistency 
is more complicated, since both application developers and users are often unclear about file system 
behavior. The best documentation is a list of supported file system configurations.

Test your application. Because of the confusing crash behavior exhibited by file systems, it 
is important to test applications. Among the tools publicly available for finding application crash 
vulnerabilities, ALICE21 has been used successfully for testing 11 applications; it also clearly shows which 
program lines lead to a vulnerability. The public version of ALICE, however, does not work with mmap() 
memory and some rare system calls. There is another tool designed for testing file systems9 that works 
with any application that runs on Linux, but it is less effective.



FILE SYSTEMS

8

6.    Corbet, J. 2009. Ext4 and data loss; https://lwn.net/Articles/322823/.
7.    Corbet, J. 2009. That massive filesystem thread; http://lwn.net/Articles/326471/.
8.    Davies, C. 2011. Fake hard drive has short-term memory not 500GB. SlashGear;  

http://www.slashgear.com/fake-hard-drive-has-short-term-memory-not-500gb-08145144/.
9.   Edge, J. 2015. Testing power failures; https://lwn.net/Articles/637079/.
10.  Ganger, G. R., Patt, Y. N. 1994. Metadata update performance in file systems. In Proceedings of 

the 1st Symposium on Operating Systems Design and Implementation: 49–60, Monterey, California 
(November).

11.  Garcia-Molina, H., Ullman, J. D., Widom, J. 2008. Database Systems: The Complete Book. Prentice 
Hall Press.

12.  Hagmann, R. 1987. Reimplementing the Cedar file system using logging and group commit. In 
Proceedings of the 11th ACM Symposium on Operating Systems Principles, Austin, Texas (November).

13.  Kim, H., Agrawal, N., Ungureanu, C. 2012. Revisiting storage for smartphones. In Proceedings of 
the 10th Usenix Symposium on File and Storage Technologies, San Jose, California (February).

14.  Lamport, L. 1979. How to make a multiprocessor computer that correctly executes multiprocess 
programs. IEEE Transactions on Computers 28(9): 690-691.

15.  Mercurial. 2014. Dealing with repository and dirstate corruption;  
http://mercurial.selenic.com/wiki/RepositoryCorruption.

16.  Microsoft. Alternatives to using transactional NTFS;  
https://msdn.microsoft.com/en-us/library/windows/desktop/hh802690(v=vs.85).aspx.

17.  Open Group Base Specifications. 2013. POSIX.1-2008 IEEE Std 1003.1;  
http://pubs.opengroup.org/onlinepubs/9699919799/.

18.  Sankaranarayana Pillai, T. 2013. Possible bug: fsync() required after calling rename();  
https://code.google.com/p/leveldb/issues/detail?id=189.

19.  Sankaranarayana Pillai, T. 2013. Possible bug: Missing a fsync() on the log file before compaction; 
https://code.google.com/p/leveldb/issues/detail?id=187.

20.  Sankaranarayana Pillai, T., Chidambaram, V. Alagappan, R., Al-Kiswany, S., Arpaci-Dusseau, A. 
C., and Arpaci-Dusseau, R. H. ALICE: Application-Level Intelligent Crash Explorer;  
http://research.cs.wisc.edu/adsl/Software/alice/.

21.  Sankaranarayana Pillai, T., Chidambaram, V., Alagappan, R., Al-Kiswany, S., Arpaci-Dusseau, 
A. C., Arpaci-Dusseau, R. H. 2014. All file systems are not created equal: on the complexity of 
crafting crash-consistent applications. In Proceedings of the 11th Symposium on Operating Systems 
Design and Implementation, Broomfield, Colorado (October).

22.  Sewell, P., Sarkar, S., Owens, S., Nardelli, F. Z., Myreen, M. O. 2010. x86-TSO: a rigorous and 
usable programmer’s model for x86 multiprocessors. Communications of the ACM 53(7): 89-97.

23.  Shvachko, K., Kuang, H., Radia, S., Chansler, R. 2010. The Hadoop Distributed File System. In 
Proceedings of the 26th IEEE Symposium on Mass Storage Systems and Technologies, Incline Village, 
Nevada (May).

24.  Sorin, D. J., Hill, M. D., Wood, D. A. 2011. A Primer on Memory Consistency and Cache Coherence. 
Morgan & Claypool Publishers.

25.  Terry, D. 2011. Replicated data consistency explained through baseball. MSR Technical Report 
(October).

26.  Verma, R., Mendez, A. A., Park, S., Mannarswamy, S. S., Kelly, T. P., Morrey, C. B., III. 2015. 

http://mercurial.selenic.com/wiki/RepositoryCorruption
https://msdn.microsoft.com/en-us/library/windows/desktop/hh802690(v=vs.85).aspx
http://pubs.opengroup.org/onlinepubs/9699919799/
https://code.google.com/p/leveldb/issues/detail?id=189


FILE SYSTEMS

9

Failure-atomic updates of application data in a Linux file system. In Proceedings of the 13th Usenix 
Symposium on File and Storage Technologies, Santa Clara, California (February).

27.  VMWare. Software-defined storage (SDS) and storage virtualization; http://www.vmware.com/
software-defined-datacenter/storage.

28.  VMWare. The VMware perspective on software-defined storage; http://www.vmware.com/files/
pdf/solutions/VMware-Perspective-on-software-defined-storage-white-paper.pdf.

29.  Zheng, M., Tucek, J., Huang, D., Qin, F., Lillibridge, M., Yang, E. S., Zhao, B. W., Singh, S. 2014. 
Torturing databases for fun and profit. In Proceedings of the 11th Symposium on Operating Systems 
Design and Implementation, Broomfield, Colorado (October).

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

THANUMALAYAN SANKARANARAYANA PILLAI (madthanu@cs.wisc.edu), VIJAY CHIDAMBARAM 
(vijayc@cs.wisc.edu), and RAMNATTHAN ALAGAPPAN (ra@cs.wisc.edu) are Ph.D. candidates in the 
department of computer sciences at the University of Wisconsin–Madison. Chidambaram is joining the 
faculty at the University of Texas at Austin.
SAMER AL-KISWANY (samera@cs.wisc.edu) is a postdoctoral fellow in the department of computer 
sciences at the University of Wisconsin–Madison. He obtained his Ph.D. from the University of British 
Columbia, Canada.
ANDREA ARPACI-DUSSEAU (dusseau@cs.wisc.edu) and REMZI ARPACI-DUSSEAU (remzi@cs.wisc.edu) 
are professors of computer sciences at the University of Wisconsin–Madison.
© 2015 ACM 1542-7730/15/0500 $10.00

http://www.vmware.com/software-defined-datacenter/storage
http://www.vmware.com/software-defined-datacenter/storage
http://www.vmware.com/files/pdf/solutions/VMware-Perspective-on-software-defined-storage-white-paper.pdf
http://www.vmware.com/files/pdf/solutions/VMware-Perspective-on-software-defined-storage-white-paper.pdf

