
46 COMMUNICATIONS OF THE ACM | OCTOBER 2015 | VOL. 58 | NO. 10

practice

I
M

A
G

E
 B

Y
 C

W
A

 S
T

U
D

I
O

S

DOI:10.1145/2788401

 Article development led by
 queue.acm.org

Rethinking the fundamental
abstractions of the file system.

BY T.S. PILLAI, V. CHIDAMBARAM, R. ALAGAPPAN,
S. AL-KISWANY, A.C. ARPACI-DUSSEAU, AND
R.H. ARPACI-DUSSEAU

T H E R E A D I N G A N D writing of data, one of the most
fundamental aspects of any von Neumann computer,
is surprisingly subtle and full of nuance. For example,
consider access to a shared memory in a system with
multiple processors. While a simple and intuitive
approach known as strong consistency is easiest
for programmers to understand,14 many weaker
models are in widespread use (for example, x86 total
store ordering22); such approaches improve system
performance, but at the cost of making reasoning
about system behavior more complex and error
prone. Fortunately, a great deal of time and effort has
gone into thinking about such memory models,24 and,
as a result, most multiprocessor applications are not
caught unaware.

Similar subtleties exist in local file systems—those
systems that manage data stored in your desktop
computer, on your cellphone,13 or that serve as the
underlying storage beneath large-scale distributed systems
such as Hadoop Distributed File System (HDFS).23

Specifically, a pressing challenge for
developers trying to write portable ap-
plications on local file systems is crash
consistency (that is, ensuring applica-
tion data can be correctly recovered in
the event of a sudden power loss or sys-
tem crash).

Crash consistency is important.
Consider a typical modern photo-man-
agement application such as iPhoto,
which stores not only the photos a user
takes, but also information relevant
to a photo library, including labels,
events, and other photo metadata. No
user wants a system that loses photos
or other relevant information simply
because a crash occurs while the pho-
to-management application is trying to
update its internal database.

Much of the burden today in ensur-
ing crash consistency is placed on the
application developer, who must craft
an update protocol that orchestrates
modifications of the persistent state
of the file system. Specifically, the de-
veloper creates a carefully constructed
sequence of system calls (such as file
writes, renames, and other file-system
calls) that updates underlying files and
directories in a recoverable way. The
correctness of the application, there-
fore, inherently depends on the seman-
tics of these system calls with respect
to a system crash (that is, the crash be-
havior of the file system).

Unfortunately, while the standard-
ized file-system interface has been
in widespread use for many years,
application-level crash consistency is
currently dependent on intricate and
subtle details of file-system behavior.
Either by design or by accident, many
modern applications depend on par-
ticular file-system implementation de-
tails and thus are vulnerable to unex-
pected behaviors in response to system
crashes or power losses when run on
different file systems or with different
configurations.

Recent research, including work
performed by our group at the Univer-
sity of Wisconsin–Madison,21 as well as
elsewhere,29 has confirmed that crash-
es are problematic: many applications

Crash
Consistency

http://dx.doi.org/10.1145/2788401

OCTOBER 2015 | VOL. 58 | NO. 10 | COMMUNICATIONS OF THE ACM 47

48 COMMUNICATIONS OF THE ACM | OCTOBER 2015 | VOL. 58 | NO. 10

practice

Because file systems buffer writes
in memory and send them to disk lat-
er, from the perspective of an applica-
tion most file systems can reorder the
effects of system calls before persist-
ing them on disk. For example, with
some file systems (ext2, ext4, xfs, and
btrfs in their default configurations,
but not ext3), the deletion of the log
file can be reordered before the write
to the database file. On a system crash
in these file systems, the log file might
be found already deleted from the
disk, while the database has been up-
dated partially. Other file systems can
persist a system call partially in seem-
ingly nonsensical ways: in ext2 and
nondefault configurations of ext3 and
ext4, while writing (appending) to the
log file, a crash might leave garbage
data in the newly appended portions
of the file; in such file systems, dur-
ing recovery, one cannot differentiate
whether the log file contains garbage
or undo information.

Figure 2 shows the measures need-
ed for undo logging to work on Linux
file-system configurations (“./” refers
to the current directory); the red parts
are the additional measures needed.
Comments in the figure explain which
measures are required by different file
systems: we considered the default
configurations of ext2, ext3, ext4, xfs,
and btrfs, and the data=writeback
configuration of ext3/4 (denoted
as ext3-wb and ext4-wb). Almost all
measures simply resort to using the
fsync() system call, which flushes a
given file (or directory) from the buf-
fer cache to the disk and is used to
prevent the file system from reorder-
ing updates. The fsync() calls can be
arbitrarily costly, depending on how
the file system implements them; an
efficient application will thus try to
avoid fsync() calls when possible.
With only a subset of the fsync()
calls, however, an implementation
will be consistent only on some file-
system configurations.

Note that it is not practical to use
a verified implementation of a single
update protocol across all applica-
tions; the update protocols found in
real applications vary widely and can
be more complex than in Figure 2. The
choice can depend on performance
characteristics; some applications
might aim for sequential disk I/O and

(including some widely used and de-
veloped by experienced programmers)
can lose or corrupt data on a crash or
power loss. The impact of this reality
is widespread and painful: users must
be prepared to handle data loss or cor-
ruption,15 perhaps via time-consuming
and error-prone backup and restore;
applications might tailor their code to
match subtle file-system internals, a
blatant violation of layering and mod-
ularization; and adoption of new file
systems is slowed because their imple-
mentations do not match the crash be-
havior expected by applications.6 In es-
sence, the file-system abstraction, one
of the basic and oldest components of
modern operating systems, is broken.

This article presents a summary of
recent research in the systems com-
munity that both identifies these crash
consistency issues and points the way
toward a better future. First a detailed
example illustrates the subtleties of
the problem. We summarize the state
of the art, illustrating the problems we
(and others) have found are surpris-
ingly widespread. Some of the prom-
ising research in the community aims
to remedy these issues, bringing new
thinking and new techniques to trans-
form the state of the art.

An Example
Let’s look at an example demonstrat-
ing the complexity of crash consis-
tency: a simple database manage-
ment system (DBMS) that stores its
data in a single file. To maintain
transactional atomicity across a sys-
tem crash, the DBMS can use an up-
date protocol called undo logging:
before updating the file, the DBMS
simply records those portions of the
file that are about to be updated in a
separate log file.11 The pseudocode is
shown in Figure 1; offset and size
correspond to the portion of the db-
file that should be modified, and
whenever the DBMS is started, the
DBMS rolls back the transaction if
the log file exists and is fully written
(determined using the size field). The
pseudocode in Figure 1 uses POSIX
system calls (POSIX is the standard
file-system interface used in Unix-like
operating systems). In an ideal world,
one would expect the pseudocode to
work on all file systems implement-
ing the POSIX interface. Unfortunate-
ly, the pseudocode does not work on
any widely used file-system configura-
tion; in fact, it requires a different set
of measures to make it work on each
configuration.

Figure 1. Incorrect undo-logging pseudocode.

Making a backup in the log file

Actual Update

Deleting the log file

Log file can end up with garbage,
in ext2, ext3-wb, ext4-wb

write(log) and write(dbfile)
can re-order in all
considered configurations

creat(log) can be re-ordered after
write (dbfile), according to warnings
in Linux manpage. Occurs on ext2.

write(dbfile) can re-order after unlink(log)
in all considered configurations except
ext3’s default mode

If durability is desired, in all considered configurationsFigure 2. Undo-logging pseudocode that works correctly in Linux file systems.

Making a backup in the log file

Actual Update

Deleting the log file

Log file can end up with garbage,
in ext2, ext3-wb, ext4-wb

write(log) and write(dbfile)
can re-order in all
considered configurations

creat(log) can be re-ordered after
write (dbfile), according to warnings
in Linux manpage. Occurs on ext2.

write(dbfile) can re-order after unlink(log)
in all considered configurations except
ext3’s default mode

If durability is desired, in all considered configurations

OCTOBER 2015 | VOL. 58 | NO. 10 | COMMUNICATIONS OF THE ACM 49

practice

prefer an update protocol that does
not involve seeking to different por-
tions of a file. The choice can also de-
pend on usability characteristics. For
example, the presence of a separate
log file unduly complicates common
workflows, shifting the burden of re-
covery to include user involvement.
The choice of update protocol is also
inherently tied to the application’s
concurrency mechanism and the for-
mat used for its data structures.

Current State of Affairs
Given the sheer complexity of achiev-
ing crash consistency among different
file systems, most developers write in-
correct code. Some applications (for
example, Mercurial) do not even try
to handle crashes, instead assuming
that users will manually recover any
data lost or corrupted as a result of a
crash. While application correctness
depends on the intricate crash behav-
ior of file systems, there has been little
formal discussion on this topic.

Two recent studies investigate the
correctness of application-level crash
consistency: one at the University of
Wisconsin–Madison21 and the other at
Ohio State University and HP Labs.29
The applications analyzed include
distributed systems, version-control
systems, databases, and virtualiza-
tion software; many are widely used
applications written by experienced
developers, such as Google’s LevelDB
and Linus Torvalds’s Git. Our study at
the University of Wisconsin–Madison
found more than 30 vulnerabilities
exposed under widely used file-system
configurations; among the 11 appli-
cations studied, seven were affected
by data loss, while two were affected
by silent errors. The study from Ohio
State University and HP Labs had sim-
ilar results: they studied eight widely
used databases and found erroneous
behavior in all eight.

For example, we found that if a
file system decides to reorder two
rename() system calls in HDFS,
the HDFS namenode does not boot2
and results in unavailability. There-
fore, for portable crash consistency,
fsync() calls are required on the di-
rectory where the rename() calls oc-
cur. Presumably, however, because
widely used file-system configurations
rarely reorder the rename() calls, and

Java (in which HDFS is written) does
not directly allow calling fsync() on
a directory, the issue is currently ig-
nored by HDFS developers.

As another example, consider Lev-
elDB, a key-value store that adds any
inserted key-value pairs to the end
of a log file. Periodically, LevelDB

switches to a new log file and com-
pacts the previous log file for faster
record retrieval. We found that, dur-
ing this switching, an fsync() is re-
quired on the old log file that is about
to be compacted;19 otherwise, a crash
might result in some inserted key-val-
ue pairs disappearing.

Many application-level crash-consistency problems are exposed only under uncommon
timing conditions or specific file-system configurations, but some are easily
reproduced. As an example, on a default installation of Fedora or Ubuntu with a Git
repository, execute a git-commit, wait for five seconds, and then pull the power plug;
after rebooting the machine, you will likely find the repository corrupted. Fortunately,
this particular vulnerability is not devastating: if you have a clone of the repository, you
likely can recover from it with a little bit of work. (Note: do not do this unless you are
truly curious and will be able to recover from any problems you cause.)

Try It Yourself!

What can applications rely on? File-system developers seem to agree on two rules
that govern what information is preserved across system crashes. The first is subtle:
information already on disk (file data, directory entries, file attributes, among others) is
preserved across a system crash, unless one explicitly issues an operation affecting it.

The second rule deals with fsync() and similar constructs (msync(), O _ SYNC,
and so on) in Unix-like operating systems. An fsync() on a file guarantees the file’s
data and attributes are on the storage device when the call returns, but with some
subtleties. A major subtlety with fsync() is the definition of storage device: after
information is sent to the disk by fsync (), it can reside in an on-disk cache and hence
can be lost during a system crash (except in some special disks). Operating systems
provide ad hoc solutions to flush the disk cache to the best of their ability; since you
might be running atop a fake hard drive,8 nothing is promised. Another subtlety relates
broadly to directories: directory entries of a file and the file itself are separate entities
and can each be sent separately to the disk; an fsync() on one does not imply the
persistence of others.

The Unspoken Agreement

Developers can alleviate the problem of crash consistency within their applications by
following these recommended practices:

Use a library. Implementing consistency directly atop the file-system interface is like
pleading insanity in court: you do it only if you have no other choice. A wiser strategy is to
use a library, such as SQLite, that implements crash consistency below your application
whenever possible.

Document guarantees and requirements. Consistency guarantees provided by
applications can be confusing; some developers can be unclear about the guarantees
provided by their own applications. Documenting file-system behaviors that the
application requires to maintain consistency is more complicated, since both
application developers and users are often unclear about file-system behavior. The best
documentation is a list of supported file-system configurations.

Test your applications. Because of the confusing crash behavior exhibited by file
systems, it is important to test applications. Among the tools publicly available for
finding application crash vulnerabilities, ALICE21 has been used successfully for testing
eleven applications; ALICE also clearly shows which program lines lead to a vulnerability.
The public version of ALICE, however, does not work with mmap() memory and some
rare system calls. There is another tool designed for testing file systems9 that works with
any application that runs on Linux, but it is less effective.

Best Practices for
Application Developers

50 COMMUNICATIONS OF THE ACM | OCTOBER 2015 | VOL. 58 | NO. 10

practice

Recent research
has confirmed
that crashes are
problematic:
many applications
(including some
widely used
and developed
by experienced
programmers)
can lose or corrupt
data on a crash
or power loss.

ficult, however, are essential for gener-
al-purpose file systems.

To illustrate, consider reordering,
the behavior that is arguably the least
intuitive and causes the most crash-
consistency vulnerabilities. In our
study, a file system that provided in-
order operations (and some minimal
atomicity) exposed only 10 vulner-
abilities, all of minor consequences;
in comparison, 31 were exposed in
btrfs and 17 in ext4. In current envi-
ronments with multiple applications
running simultaneously, however,
a file system requires reordering for
good performance. If there is no re-
ordering, fsync() calls from impor-
tant applications will be made to wait
for writes from nonessential tasks to
complete. Indeed, ext3 in its default
configuration provides an (almost) in-
order behavior, but has been criticized
for unpredictably slow fsync() calls.7

Moving Forward
Fortunately, not all is bleak in the
world of crash consistency, and re-
cent research points toward a number
of interesting and plausible solutions
to the problems outlined in this ar-
ticle. One approach is to help devel-
opers build correct update protocols.
At least two new open source tools
are available publicly for consistency
testing (though neither is mature yet):
ALICE,20 the tool created for our re-
search study at the University of Wis-
consin–Madison, and a tool designed
by Linux kernel developers9 for test-
ing file-system implementations. AL-
ICE is more effective for testing appli-
cations since it verifies correctness on
a variety of simulated system crashes
for a given application test case. In
contrast, the kernel tool verifies cor-
rectness only on system crashes that
occur with the particular execution
path traversed by the file system dur-
ing a run of the given test case.

Two other testing tools are part of
recent research but are not yet pub-
licly available: BOB21 from our study,
and the framework used by research-
ers from Ohio State University and HP
Labs.29 Both of these are similar to the
kernel tool.

A second approach for better ap-
plication crash consistency is for file
systems themselves to provide better,
more easily understood abstractions

Many vulnerabilities arise because
application developers rely on a set of
popular beliefs to implement crash
consistency. Unfortunately, much of
what seems to be believed about file-
system crash behavior is not true. Con-
sider the following two myths:

 ˲ Myth 1: POSIX defines crash be-
havior. POSIX17 defines the standard
file-system interface (open, close,
read, and write) exported by Unix-
like operating systems and has been
essential for building portable appli-
cations. Given this, one might believe
that POSIX requires file systems to
have a reasonable and clearly defined
response to crashes, such as requir-
ing that directory operations be sent
to the disk in order.18 Unfortunately,
there is little clarity as to what exactly
POSIX defines with regard to crash-
es,3,4 leading to much debate and little
consensus.

 ˲ Myth 2: Modern file systems re-
quire and implement in-order meta-
data updates. Journaling, a common
technique for maintaining file-system
metadata consistency, commits dif-
ferent sets of file-system metadata up-
dates (such as directory operations) as
atomic transactions. Journaling is pop-
ular among modern file systems and
has traditionally committed metadata
updates in order;12 hence, it is tempt-
ing to assume modern file systems
guarantee in-order metadata updates.
Application developers should not as-
sume such guarantees, however. Jour-
naling is an internal file-system tech-
nique; some modern file systems, such
as btrfs, employ techniques other than
journaling and commonly reorder di-
rectory operations. Furthermore, even
file systems that actually use journal-
ing have progressively reordered more
operations while maintaining internal
consistency. Consider ext3/4: ext3 reor-
ders only overwrites of file data, while
ext4 also reorders file appends; accord-
ing to Theodore Ts’o, a maintainer
of ext4, future journaling file systems
might reorder more (though unlikely
with ext4).

Should file-system developers be
blamed for designing complicated file
systems that are unfavorable for im-
plementing crash consistency? Some
complex file-system behaviors can
(and should) be fixed. Most behaviors
that make application consistency dif-

OCTOBER 2015 | VOL. 58 | NO. 10 | COMMUNICATIONS OF THE ACM 51

practice

that enable both correctness and high
performance for applications. One so-
lution would be to extend and improve
the current file-system interface (in the
Unix world or in Windows); however,
the interface has been built upon many
years of experience and standardiza-
tion, and is hence resistant to change.16
The best solution would provide better
crash behavior with the current file-sys-
tem interface. As previously explained,
however, in-order updates (that is, bet-
ter crash behavior) are not practical in
multitasking environments with multi-
ple applications. Without reordering in
these environments, the performance
of an application depends significantly
on the data written by other applica-
tions in the background and will thus
be unpredictable.

There is a solution. Our research
group is working on a file system that
maintains order only within an appli-
cation. Constructing such a file system
is not straightforward; traditional file
systems enforce some order between
metadata updates10 and therefore might
enforce order also between different ap-
plications (if they update related meta-
data). Another possible approach, from
HP Labs,26 does change the file-system
interface but keeps the new interface
simple, while being supported on a pro-
duction-ready file system.

A third avenue for improving the
crash consistency of applications goes
beyond testing and seeks a way of for-
mally modeling file systems. Our study
introduces a method of modeling file
systems that completely expresses
their crash behavior via abstract per-
sistence models. We modeled five file-
system configurations and used the
models to discover application vulner-
abilities exposed in each of the mod-
eled file systems. Researchers from
MIT5 have more broadly considered
different formal approaches for model-
ing a file system and found Hoare logic
to be the best.

Beyond local file systems, applica-
tion crash consistency is an interesting
problem in proposed storage stacks
that will be constructed on the fly, mix-
ing and matching different layers such
as block remappers, logical volume
managers, and file systems.27,28 An ex-
pressive language is required for speci-
fying the complex storage guarantees
and requirements of the different lay-

ers in such storage stacks. Our group is
also working on such a language, along
with methods to prove the overall cor-
rectness of the entire storage stack.1

Conclusion
This article aims to convince readers
that application-level crash consis-
tency is a real and important problem.
Similar problems have been faced be-
fore in other areas of computer sys-
tems, in the domains of multiproces-
sor shared memory and distributed
systems. Those problems have been
overcome by creating new abstrac-
tions, understanding various trade-
offs, and even thinking about the
problem with analogies to baseball.25
Similar solutions are possible for ap-
plication crash consistency, too, but
only with the involvement of the wider
systems community.

 Related articles
 on queue.acm.org

Abstraction in Hardware System Design
Rishiyur S. Nikhil
http://queue.acm.org/detail.cfm?id=2020861

Storage Systems: Not Just a Bunch of Disks
Anymore
Erik Riedel
http://queue.acm.org/detail.cfm?id=864059

Keeping Bits Safe: How Hard Can It Be?
David S. H. Rosenthal
http://queue.acm.org/detail.cfm?id=1866298

References
1. Alagappan, R., Chidambaram, V., Sankaranarayana

Pillai, T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.
Beyond storage APIs: Provable semantics for storage
stacks. In Proceedings of the 15th Workshop on Hot
Topics in Operating Systems (Kartause Ittingen,
Switzerland, May 2015).

2. Al-Kiswany, S. Namenode fails to boot if the file
system reorders rename operations, 2014; http://
issues.apache.org/jira/browse/HDFS-6820.

3. Aurora, V. POSIX v. reality: A position on O PONIES,
2009; http://lwn.net/Articles/351422/.

4. Austin Group Defect Tracker. 0000672: Necessary
step(s) to synchronize filename operations on disk,
2013; http://austingroupbugs.net/view.php?id=672.

5. Chen, H., Ziegler, D., Chlipala, A., Kaashoek, M. F.,
Kohler, E., Zeldovich, N. Specifying crash safety for
storage systems. In Proceedings of the 15th Workshop
on Hot Topics in Operating Systems (Kartause
Ittingen, Switzerland, May 2015).

6. Corbet, J. Ext4 and data loss, 2009; https://lwn.net/
Articles/322823/.

7. Corbet, J. That massive filesystem thread, 2009;
http://lwn.net/Articles/326471/.

8. Davies, C. Fake hard drive has short-term memory
not 500GB. SlashGear, 2011; http://www.slashgear.
com/fake-hard-drive-has-short-term-memory-not-
500gb-08145144/.

9. Edge, J. Testing power failures, 2015; https://lwn.net/
Articles/637079/.

10. Ganger, G.R., Patt, Y.N. 1994. Metadata update
performance in file systems. In Proceedings of the
1st Symposium on Operating Systems Design and
Implementation. (Monterey, CA, Nov. 1994), 49–60.

11. Garcia-Molina, H., Ullman, J.D., Widom, J. Database
Systems: The Complete Book. Prentice Hall Press, 2008.

12. Hagmann, R. Reimplementing the Cedar file system
using logging and group commit. In Proceedings of the
11th ACM Symposium on Operating Systems Principles,
(Austin, TX, Nov. 1987).

13. Kim, H., Agrawal, N., Ungureanu, C. Revisiting storage
for smartphones. In Proceedings of the 10th Usenix
Symposium on File and Storage Technologies (San
Jose, CA, Feb. 2012).

14. Lamport, L. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Trans. Computers 28, 9 (1979), 690–691.

15. Mercurial. Dealing with repository and dirstate
corruption, 2014; http://mercurial.selenic.com/wiki/
RepositoryCorruption.

16. Microsoft. Alternatives to using transactional NTFS;
https://msdn.microsoft.com/en-us/library/windows/
desktop/hh802690(v=vs.85).aspx.

17. Open Group Base Specifications. POSIX.1-2008
IEEE Std 1003.1, 2013; http://pubs.opengroup.org/
onlinepubs/9699919799/.

18. Sankaranarayana Pillai, T. Possible bug: fsync()
required after calling rename(), 2013; https://code.
google.com/p/leveldb/issues/detail?id=189.

19. Sankaranarayana Pillai, T. Possible bug: Missing
a fsync() on the log file before compaction,
2013; https://code.google.com/p/leveldb/issues/
detail?id=187.

20. Sankaranarayana Pillai, T., Chidambaram, V.
Alagappan, R., Al-Kiswany, S., Arpaci-Dusseau, A.C.
and Arpaci-Dusseau, R.H. ALICE: Application-Level
Intelligent Crash Explorer; http://research.cs.wisc.
edu/adsl/Software/alice/.

21. Sankaranarayana Pillai, T., Chidambaram, V.,
Alagappan, R., Al-Kiswany, S., Arpaci-Dusseau, A.C.
and Arpaci-Dusseau, R.H. 2014. All file systems
are not created equal: on the complexity of crafting
crash-consistent applications. In Proceedings of the
11th Symposium on Operating Systems Design and
Implementation (Broomfield, CO, Oct. 2014).

22. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z. and
Myreen, M.O. x86-TSO: A rigorous and usable
programmer’s model for x86 multiprocessors.
Commun. ACM 53, 7 (July 2010): 89–97.

23. Shvachko, K., Kuang, H., Radia, S. and Chansler, R. The
Hadoop Distributed File System. In Proceedings of the
26th IEEE Symposium on Mass Storage Systems and
Technologies (Incline Village, NV, May 2010).

24. Sorin, D.J., Hill, M.D., Wood, D.A. A Primer on Memory
Consistency and Cache Coherence. Morgan &
Claypool Publishers, 2011.

25. Terry, D. Replicated data consistency explained
through baseball. MSR Technical Report (Oct. 2011).

26. Verma, R., Mendez, A.A., Park, S., Mannarswamy,
S.S., Kelly, T.P., and Morrey III, C.B. Failure-atomic
updates of application data in a Linux file system. In
Proceedings of the 13th Usenix Symposium on File and
Storage Technologies (Santa Clara, CA, Feb. 2015).

27. VMWare. Software-defined storage (SDS) and storage
virtualization; http://www.vmware.com/software-
defined-datacenter/storage.

28. VMWare. The VMware perspective on software-
defined storage; http://www.vmware.com/files/pdf/
solutions/VMware-Perspective-on-software-defined-
storage-white-paper.pdf.

29. Zheng, M., Tucek, J., Huang, D., Qin, F., Lillibridge,
M., Yang, E. S., Zhao, B. W., Singh, S. Torturing
databases for fun and profit. In Proceedings of the
11th Symposium on Operating Systems Design and
Implementation (Broomfield, CA, Oct. 2014).

T. Sankaranarayana Pillai, Vijay Chidambaram,
and Ramnatthan Alagappan (madthanu, vijayc, ra @
cs.wisc.edu) are Ph.D. candidates in the Department of
Computer Science at the University of Wisconsin–Madison.
Chidambaram is joining the faculty at the University of
Texas at Austin.

Samer Al-Kiswany (samera@cs.wisc.edu) is a
postdoctoral fellow in the Department of Computer
Science at the University of Wisconsin–Madison.

Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau
(dusseau, remzi @cs.wisc.edu) are professors of computer
science at the University of Wisconsin–Madison.

Copyright held by authors.
Publication rights licensed to ACM. $15.00

