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Abstract—Data deduplication has gained wide acclaim as a
mechanism to improve storage efficiency and conserve network
bandwidth. Its most critical phase, data chunking, is responsible
for the overall space savings achieved via the deduplication
process. However, modern data chunking algorithms are slow
and compute-intensive because they scan large amounts of data
while simultaneously making data-driven boundary decisions.

We present SeqCDC, a novel chunking algorithm that lever-
ages lightweight boundary detection, content-defined skipping,
and SSE/AVX acceleration to improve chunking throughput
for large chunk sizes. Our evaluation shows that SeqCDC
achieves 10× higher throughput than unaccelerated and 1.2×–
1.35× higher throughput than vector-accelerated data chunking
algorithms while minimally affecting deduplication space savings.

Index Terms—Data storage, Data deduplication, SIMD, Cloud
computing

I. INTRODUCTION

Data generation rates have skyrocketed in recent years,
leading to the explosion of the amount of data stored on
the cloud [1]. Cloud storage providers employ numerous
mechanisms to deal with this data influx, such as distributed
file systems [2], [3], novel storage architectures [4], [5], data
compression [6], [7] and data deduplication [8], [9].

Data deduplication has been widely employed in production
by cloud storage providers such as Microsoft [10], EMC [11]
and IBM [12]. A large percentage of the data stored by these
providers is redundant [10]. Data deduplication helps identify
and eliminate these redundant portions, reducing storage costs
by up to 80% [11], [13]. Deduplication is performed at the
chunk-level, after dividing files into chunks [14].

The division of files into chunks is achieved using data
chunking algorithms [15], which dictate the space savings
achieved by the deduplication system as a whole. Data chunk-
ing algorithms fall into two categories: fixed-size and content-
defined chunking (CDC). Fixed-size chunking divides files
into chunks of an equal pre-specified size. While this approach
has been used by traditional backup systems such as Venti [13]
and OceanStore [16], it achieves poor space savings due to its
vulnerability to insertions and deletions (byte-shifting) [15].

To mitigate byte-shifting, modern deduplication systems
instead resort to Content-Defined Chunking (CDC) algo-
rithms [15], [17]–[22]. These algorithms make data-driven
boundary decisions using the file’s contents, effectively han-
dling the byte-shifting problem. Numerous data chunking
algorithms are in use today and can be broadly divided into
hash-based [15], [19], [20], [22] and hashless algorithms [17],

[21], [23]. Hash-based algorithms use rolling hash functions
to derive chunk boundaries, while hashless algorithms treat
each byte as a value and derive chunk boundaries using
conditions based on local minima or maxima. Note that in
either case, a fingerprint is generated using collision-resistant
hash algorithms [24] after a chunk boundary is identified.

CDC algorithms suffer from four limitations that impact
their throughput. First, they rely on expensive rolling hash
functions [15], [20] and minima-maxima searches [17], [21]
to determine chunk boundaries. Second, they sequentially
scan the ingested data stream. This reduces throughput and
increases end-to-end processing time, as real systems store ter-
abytes of data. Third, they fail to utilize the SIMD capabilities
of modern CPUs to accelerate data processing. Finally, they
are designed to target datasets that benefit from smaller chunks
of size 512B – 4KB. Such small chunks increase metadata
overhead [8] and impact system throughput due to the random
access and frequent transfer of small chunks.

State-of-the-art CDC techniques have aimed to solve some
of these shortcomings. FastCDC [19] replaced the expensive
Rabin’s hash algorithm [15] with Gear hashing [20] to reduce
boundary-detection overhead. AE [17] and RAM [21] reduce
the overhead by avoiding hashing entirely, instead relying
on minima/maxima to determine chunk boundaries. SS-CDC
[18] and our previous work, VectorCDC [25], accelerate CDC
algorithms with SSE/AVX instructions [26] offered by modern
CPUs. However, these studies only address a few specific
limitations and fail to do so effectively.

We present SeqCDC, a novel CDC algorithm that com-
prehensively addresses the limitations of modern CDC algo-
rithms. SeqCDC uses three optimizations to improve chunk-
ing throughput: lightweight boundary judgment, content-based
data skipping, and vector acceleration. Lightweight bound-
ary judgment reduces boundary detection overhead by us-
ing monotonically increasing/decreasing sequences, avoiding
complex hashing and minima-maxima searches (§III-A). To
avoid scanning the entire source data, SeqCDC skips scan-
ning selective data regions. However, to minimize the impact
on deduplication efficiency, data skipping is regulated using
content-based heuristics i.e. content-based skipping (§III-C).
SeqCDC has been designed with vector acceleration in focus,
and uses SSE/AVX instructions [26] to improve chunking
throughput (§III-D). Finally, SeqCDC scales its throughput
with chunk size, i.e., it offers higher throughput at the larger
chunk sizes favored by deduplication systems (§VI-B).

Our evaluation compares SeqCDC to seven unaccelerated



2

and three vector-accelerated chunking algorithms using a
variety of real-world datasets (§VI). We show that SeqCDC
improves chunking throughput by 10× over unaccelerated and
1.2×–1.35× over vector-accelerated CDC algorithms, while
achieving comparable deduplication space savings. Our code
is publicly available with DedupBench1 [27].

II. BACKGROUND AND MOTIVATION

Data deduplication [10], [15] is used by cloud storage
providers to detect duplicate data, allowing them to eliminate
the costs associated with its storage and transmission. Data
deduplication consists of the following steps [8]:

• File Chunking: Splitting a file into chunks using a data
chunking algorithm is one of the primary steps in data
deduplication. Deduplicating these chunks provides more
space savings than file-level deduplication [15].

• Chunk Hashing: Each data chunk is hashed using
a collision-resistant hashing algorithm, such as SHA-
256 [24] or MD5 [28], to obtain a fingerprint.

• Fingerprint Comparison: The fingerprint is compared
against a database of previously observed fingerprints. A
duplicate fingerprint, i.e., one observed before, indicates
an underlying duplicate chunk, which can be eliminated.

• Data Storage: Non-duplicate data chunks are saved on
the storage medium, and their fingerprints are added to
the fingerprint database.

Chunking is a critical part of this pipeline; it occurs on
the critical path during data uploads and directly impacts
the overall space savings and throughput associated with
deduplication systems. Space savings represent the total space
conserved by using deduplication, measured as:

Space savings =
Original Size−Deduplicated Size

Original Size
(1)

The size of the fingerprint database is tied to the average
chunk size. Smaller average sizes lead to more chunks and
more fingerprints, thus increasing the size of the database and
associated fingerprint comparison overheads. To minimize this
overhead, systems in production favor larger chunk sizes.

A. Content-Defined Chunking (CDC) Algorithms

While fixed-size chunking has been used before [13], it
is vulnerable to byte shifting, achieving poor space savings
[15]. Content-Defined Chunking (CDC) algorithms [17]–[23]
instead determine chunk boundaries based on data contents.

These algorithms slide a fixed-size window over the data
within the source file. When the window’s data meets pre-
specified conditions, they insert a chunk boundary at the end
of it. By repeating this across the entire file, they divide it
into chunks. Each CDC algorithm has tunable parameters to
change the average size of generated chunks. CDC algorithms
can be classified into hash-based and hashless algorithms [27].

1https://github.com/UWASL/dedup-bench

Hash-based chunking algorithms, such as Rabin’s chunk-
ing [15], insert chunk boundaries only when the hash value of
the window’s data matches a pre-specified mask. The hashing
algorithms used here are typically not collision-resistant. For
instance, with Rabin’s Chunking (RC) [15], chunk boundaries
are inserted when the lower order 13 bits of the hash value
are zero. While Rabin’s chunking achieves high deduplication
ratios, it is very slow. TTTD [22] uses Rabin’s hashing but
improves space savings by simultaneously checking for two
hash value conditions. The secondary condition is always
computed but only used if a boundary is not found beyond
a pre-specified size with the primary condition.

The CRC [18] and Gear [20] hashing functions have lower
overheads than Rabin’s hashing. FastCDC (FCDC) [19] uses
Gear hashing and implements two optimizations to improve
chunking throughput: sub-minimum skipping and chunk size
normalization. Sub-minimum skipping skips scanning data up
to the minimum chunk size at the beginning of each chunk.
Chunk size normalization dynamically relaxes the boundary
condition to ensure that generated chunks are close to the
expected average chunk size.

Hashless algorithms such as Asymmetric Extremum
(AE) [17] and Rapid Asymmetric Maximum (RAM) [21] also
slide fixed-size windows over the source data. AE attempts to
identify a window such that the starting byte’s value is greater
than all the bytes before it and not less than the other bytes
within the window. When such a window is found, AE inserts
a chunk boundary at the end of the window. AE is 4−5× faster
than Rabin’s chunking. Rapid Asymmetric Maximum [21]
inserts chunk boundaries when a byte is found outside the
window whose value is greater than the maximum-valued
byte within the window. These algorithms avoid hashing when
determining chunk boundaries, reducing boundary-detection
overhead and achieving high chunking throughput [25], [29].

B. Chunking Throughput Analysis

These existing CDC algorithms suffer from high overheads
during boundary detection. Hash-based algorithms [15], [19],
[22] rely on rolling hashes to detect boundaries, while hashless
algorithms rely on maximum/minimum values identified by an
Extreme Byte Search [25], paired with Range Scans.

Boundary detection overhead. Figure 1 shows the total
time spent in different phases across the deduplication pipeline
when chunking 30 GB of random data. We use the Intel
Icelake machine described in §VI for this experiment. We
use MurmurHash3 [30] as the fingerprinting algorithm which
generates a 128-bit digest, similar to MD5 [28]. We target an
average chunk size of 16 KB for all CDC algorithms.

Figure 1 shows that the total time spent in the fingerprinting
phase is only 2 − 3% across all CDC algorithms, indicating
that data chunking is the main bottleneck in the pipeline. Hash-
based algorithms FastCDC [19], Rabin-Karp [15], and TTTD
[22] spend 57−59% of their time in the rolling hash phase and
38 − 39% to check whether the generated hash matches the
boundary condition. On the other hand, the hashless algorithm
RAM [21] spends 96.32% of its time on extreme byte searches
while another 0.8% is spent in the range scan phase to detect

https://github.com/UWASL/dedup-bench
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Fig. 1: Percentage of time spent by CDC algorithms in
different phases while deduplicating 30 GB of randomized
data.

boundaries. These results show the high overheads involved
in rolling-hashes and minima/maxima searches, motivating the
need for a lightweight boundary detection condition.

Large chunk sizes. As noted above, deduplication systems
in production prefer a smaller number of larger size chunks
to minimize fingerprinting overheads. However, state-of-the-
art CDC algorithms are designed for smaller chunk sizes, i.e.,
their throughput remains constant across chunk sizes.

Figure 2 shows the throughput achieved by AE [17], CRC
[18], FastCDC (FCDC) [19], Gear-based chunking [20], RAM
[21], Rabin’s Chunking (RC) [15] and TTTD [22] when
chunking a 1GB file containing random data.We compare the
chunking throughput of these algorithms across three average
chunk sizes: 4 KB, 8 KB, and 16 KB. This experiment was run
on a machine with an Intel Icelake CPU, the details of which
are in §VI. We use minimum and maximum chunk sizes of
0.5 and 2× the average chunk size for applicable algorithms,
similar to previous studies [17], [19], [21], [27].

We note that the throughputs of these algorithms do not
scale with chunk size, as they always process the entire
data stream. One of our motivating factors was to achieve
higher throughput for large chunk sizes used in production.
When targeting larger chunk sizes, most of the scanned data
does not qualify as chunk boundaries. To minimize wasteful
computation at larger chunk sizes, we propose skipping data
regions during scanning. As random skipping can severely
degrade the space savings achieved by deduplication, we use
content-defined data skipping to skip scanning only certain
regions (§III-C) using data-based heuristics. At larger chunk
sizes, SeqCDC can afford to skip larger amounts of data
without impacting space savings, leading to higher throughput.

C. Accelerating CDC algorithms with vector instructions

Vector instruction sets [26] are supported by most mod-
ern Intel and AMD CPUs. These instructions allow for the
execution of arithmetic/logical operations simultaneously on
multiple pieces of data, i.e., the Single-Instruction Multiple-
Data (SIMD) paradigm. To do this, they rely on special
vector registers provided within the CPU, packing multiple
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Fig. 2: Chunking throughput on randomized data across dif-
ferent chunk sizes

values into them and operating on all the values with a single
operation such as an addition or subtraction. Depending on
the amount of data they process at once, these instructions
can be classified as SSE-128, AVX-256, and AVX-512, i.e.,
128-bit, 256-bit, or 512-bit. While AVX-512 instructions are
only supported by the newest Intel and AMD CPUs, SSE-128
and AVX-256 support has been available since 2003 and 2011.

Vector instructions have previously been used to accelerate
mathematical operations [31], [32] and multimedia applica-
tions [33]. SS-CDC [18] previously attempted to accelerate
hash-based CDC algorithms, such as CRC-32 and Gear [20],
using AVX-512 instructions. They decouple the rolling hash
and boundary detection phases to accelerate them separately.
However, many hash-based algorithms such as FastCDC [19]
and TTTD [22] use minimum chunk size skipping to improve
throughput. Running the rolling hash phase on the entire
source data and identifying boundaries later in a separate
phase eliminates this throughput benefit. Additionally, due to
the dependency between adjacent bytes when calculating hash
values, accelerating rolling hash algorithms is complicated. To
solve this, SS-CDC resorted to processing different regions
of the data simultaneously with AVX-512 instructions, i.e,
rolling with multiple heads. As this requires expensive vector
scatter/gather instructions, the speedups achieved are
limited, as shown by our previous work VectorCDC [25].

VectorCDC [25] instead accelerates hashless algorithms
such as AE [17] and RAM [21] with vector instructions. It
identifies two phases common to these algorithms, the Extreme
Byte Search and Range Scan phases, accelerating them us-
ing different vector-based techniques. Using these techniques,
VectorCDC [25] achieved orders of magnitude higher speedup
for hashless algorithms than what SS-CDC [18] achieved for
hash-based ones. While beneficial, vector-acceleration alone
cannot improve chunking throughput at larger sizes (§VI-B).

Despite being hashless, SeqCDC does not follow the same
paradigm as AE and RAM. SeqCDC uses content-defined
skipping (§III-C). Additionally, instead of relying on mini-
mum/maximum byte values to detect chunk boundaries, Se-
qCDC uses monotonically increasing/decreasing sequences
(§III). Thus, VectorCDC’s approach is incompatible with Se-
qCDC, motivating a new vector-compatible design.

III. SEQCDC’S DESIGN

SeqCDC is designed to insert chunk boundaries when
fixed-length sequences of monotonically increasing/decreas-
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Fig. 3: An example of a chunk generated by SeqCDC

ing bytes are detected. SeqCDC can operate in either
Increasing mode, i.e., targeting increasing order sequences
or Decreasing mode targeting decreasing-order sequences.
Note that these two modes are exclusive of each other. Figure
3 shows an example of SeqCDC’s operation. §III-E discusses
how SeqCDC is resistant to byte shifting.

SeqCDC utilizes three parameters: SeqLength, SkipTrig-
ger and SkipSize, each described in detail in the following
subsections. SeqCDC includes four optimizations we discuss
in detail: lightweight boundary detection, ignoring data at
the beginning of a chunk, content-based data skipping, and
acceleration with vector instructions. Finally, to combat patho-
logical data patterns, SeqCDC uses minimum and maximum
chunk sizes, similar to existing CDC algorithms [19], [22].

A. Lightweight Boundary Detection

To avoid complex hashing operations, SeqCDC treats each
byte within the data stream as an independent value similar
to existing hashless CDC algorithms [17], [21]. However, to
improve chunking throughput even further, SeqCDC reduces
the overheads associated with boundary detection by avoiding
minima/maxima searches.

Instead, SeqCDC looks for fixed-length monotonically in-
creasing/decreasing sequences of bytes and inserts chunk
boundaries at their end, whenever such sequences are detected.
The sequence must have a length of SeqLength to be consid-
ered a boundary candidate.

Modes of operation. SeqCDC can be used in
Increasing or Decreasing mode. Both these modes
are exclusive of each other. While in Increasing mode,
SeqCDC targets monotonically increasing sequences. On the
other hand, it targets monotonically decreasing sequences in
Decreasing mode. Depending upon dataset characteristics,
one mode may be more effective than the other.

Figure 3 shows an example of SeqCDC operating in
Increasing mode with a SeqLength of 3. A chunk bound-
ary is inserted after the byte with value 98, as it forms an
increasing sequence with the bytes preceding it.

B. Ignoring Sub-minimum Regions

SeqCDC utilizes the concept of ignoring data at the begin-
ning of each chunk introduced within previous literature [19],
[22] to increase chunking throughput. SeqCDC skips scanning
data of size (minimum chunk size - SeqLength) at the begin-
ning of chunks ("Sub Minimum Region" in Figure 3).

Increasing the minimum chunk size allows SeqCDC to skip
over larger amounts of data at the beginning of each chunk,
increasing chunking throughput. However, when performed

Fig. 4: Accelerating SeqCDC with AVX-512 instructions. Note
that all byte values shown are in hexadecimal format.

excessively, this may negatively impact space savings on some
datasets. The minimum chunk size for SeqCDC is 25-50% the
average chunk size, similar to existing algorithms [19], [22].

C. Content-based Data Skipping

SeqCDC additionally improves chunking throughput by
skipping scanning certain data regions when looking for chunk
boundaries ("Skipped Region" in Figure 3). Randomly
skipping data regions can lead to missed boundaries, lowering
byte-shifting resistance and negatively affecting space savings.
To avoid this, SeqCDC adopts a novel content-based data
skipping mechanism, i.e., data regions are skipped over only
when skip conditions are met.

SeqCDC skips scanning data within unfavorable regions,
i.e., data regions with byte sequences in an order opposing the
target sequence. For instance, regions with decreasing order
sequences are considered unfavorable in Increasing mode.
When SkipTrigger pairs of bytes in opposing order are de-
tected, SeqCDC decides that the current region is unfavorable
and skips scanning the next few bytes, hoping to land in a
favorable region with bytes in the chosen order. For instance,
in Figure 3, the skip condition is triggered after the byte with
a value of 5, causing the next SkipSize bytes to be ignored.
The SkipSize is kept small at 100-700 bytes, to avoid skipping
over large sections of data. After a skip is triggered, SeqCDC
resets its counters and resumes scanning for boundaries.

Larger SkipSizes improve chunking throughput. While larger
SkipSizes are feasible for larger chunks, they may result
in a disproportionately high amount of data skipped within
smaller chunks, negatively affecting space savings. SeqCDC
overcomes this by adjusting the SkipSize, depending on the
expected average chunk size.

Data skipping can potentially impact byte-shifting resis-
tance. SeqCDC therefore trades off a small reduction in space
savings for higher chunking throughput. §III-E discusses this
trade-off in greater detail. Additionally, in our evaluation
(§VI-A), we show that this design decision minimally impacts
space savings in real datasets.

D. Accelerating SeqCDC with vector instructions

VectorCDC [25] demonstrated the throughput benefits that
can be obtained by using vector instructions to accelerate
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data chunking algorithms. However, VectorCDC’s approach
cannot be directly applied to accelerate SeqCDC (§II-C), as
SeqCDC relies on detecting monotonically increasing/decreas-
ing sequences for chunk boundaries. We propose an alternate
vector-based method to accelerate SeqCDC in this section.

Figure 4 shows an example of accelerating SeqCDC oper-
ating with a SeqLength of 3 and Increasing mode using
AVX-512 instructions [26]. The figure shows a byte range
with byte values 0xAF–0x1E that need to be scanned for
boundaries. A chunk boundary sequence starting at byte 12
exists in this region and is shown with a cross-stitched pattern.
Let us assume scanning begins at byte 0xAF.

Scan Procedure. We start by loading the 64 bytes 0xAF–
0x14 into a vector register V1 in packed fashion (Step 1).
We then load bytes at an offset of 1 from this position, i.e.,
0x41–0x11 into another vector register V2. We repeat this
process for a total of SeqLength vector registers, i.e., until V3

in this case.
In Step 2, we run a vector comparison operation

mm512_cmpgt between V2 and V1. This operation compares
pairwise bytes in both registers to see if the byte from V2

is greater than its counterpart from V1. For instance, byte
0x41 from V2 is compared against byte 0xAF from V1 as
they are both the first bytes in their respective registers. The
operation generates a 64-bit mask M1, containing set bits for
all positions where the byte from V2 is greater than that of V1.
We repeat this operation between registers V3 and V2 as well
to generate mask M2.

In Step 3, we run a single vector comparison operation
between registers V2 and V1. This is a mm512_cmplt, which
compares pairwise bytes, checking for bytes in V2 lesser than
those in V1. The operation generates a bit mask M3. Note that
this is the opposite comparison operation to the one from Step
2.

Following this, we check for boundaries and opposing byte
pairs (detailed below) before moving the scan position by 64
bytes, i.e., to byte 0x11. Effectively, we are scanning for
chunk boundaries and content-defined skips 64 bytes at a time.
Finally, note that while trailing bytes 0x11 and 0xA4 are used
in Steps 1 and 2, we have not scanned for boundary sequences
beginning at these bytes yet. Thus, they are used again when
scanning moves ahead.

Boundary Detection. To detect boundaries, we use the
masks obtained in Step 2. Each of these masks contains set
bits corresponding to increasing byte pairs. If we combine all
the masks using a bitwise AND operation, the resulting mask
only contains set bits in positions with increasing bytes from
all pairwise vector comparisons. If a bit at index k is set within
M1, it indicates that the byte at index k in V2 is greater than
the one at index k from V1. Similarly, a set bit index k in M2

indicates that the byte at index k in V3 is greater than the byte
at index k from V2.

For instance, in Figure 4, the bit at index 61 in mask M1

represents a comparison between byte 0x13 from V2 and byte
0x12 from V1 and will have a set bit. Similarly, the bit with
index 61 in M2 will be set as it compares byte 0x14 from V3

with byte 0x13 from V2. Thus, the resulting mask obtained
using M1&M2 will have a set bit at index 61.

Boundaries can be detected by examining the resulting
combined mask M1&M2. If the mask contains any set bits (has
a non-zero value), a chunk boundary is declared at SeqLength
bytes ahead of the first set bit’s position.

Content-defined skipping. To detect opposing pairs of
bytes, we use mask M3 obtained in Step 3. This mask
contains set bits at all positions where a byte from V2 is
lesser than its counterpart from V1. Thus, the total opposing
byte pairs observed in the current scanned region equals the
number of set bits in M3. We keep a running total of the
number of these opposing byte pairs. When the running total
exceeds SkipTrigger, a content-defined skip of SkipSize bytes
is initiated as described in §III-C. The exact position to jump
from is determined using the first set bit that causes the total
to exceed SkipTrigger.

Accelerated x86 Intrinsics. Intel and AMD CPUs support
many other hardware-accelerated intrinsics. Forward Scan
(builtin_ffs) is used to find the first set bit in 32/64-
bit integers. Parallel Bit Deposit (pdep) is used to deposit
contiguous low bits into a destination integer. Trailing Zero
Count (tzcnt) is used to count the number of trailing zeros
in an integer. Population Count (popcnt) is used to count the
number of set bits in an integer. While these are hardware-
accelerated, they fall under other CPU instruction sets, i.e.,
they are not vector instructions.

Boundary detection needs to identify the first set bit in a
mask, while content-defined skips need to identify the first set
bit that causes the running total to exceed SkipTrigger, i.e.,
the nth set bit. We use hardware-accelerated x86 intrinsics
[34] for both of these; builtin_ffs for boundary detection,
and a combination of pdep and tzcnt for content-defined
skipping. In addition, we use popcnt within content-defined
skipping to count the total number of set bits in the opposing
slope mask. Note that the performance of these intrinsics varies
across CPU architectures.

E. Discussion - Impact of insertions and deletions

Inserting or deleting bytes from the middle of a file causes
the data bytes to shift, resulting in changes to certain chunk
boundaries. Byte shifting can span one or more bytes and take
the form of insertions or deletions. In general, sub-minimum
and content-defined skipped regions affect SeqCDC’s byte-
shifting resistance. Figure 5 shows three chunks with four
boundary sequences B1 - B4. Each chunk has a corresponding
sub-minimum region (M1 - M3) at the beginning of the chunk.
The figure also shows two regions V1 and V2 skipped via
SeqCDC’s content-defined skipping i.e., using SkipTrigger,
and five byte shifts S1 − S5.

Skipped region impact: When byte-shifts occur, bound-
aries may be moved in and out of skipped regions (both sub-
minimum and content-defined). This occurs with large byte-
shifts when boundaries are close to these regions. For instance,
consider S1 in Figure 5 which occurs in the sub-minimum
region M1. If byte-shift S1 causes a boundary previously
hidden within M1 to be pushed outside, a new chunk may
be created, thus splitting Chunk 1. This may in turn lead B2

to be pushed into M2, affecting a few subsequent chunks
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Fig. 5: Handling byte-shifts with SeqCDC

as well. Similarly, a deletion may cause B2 to be hidden
within M1, leading to chunk mergers. Additionally, boundaries
may be moved in and out of regions previously skipped with
SkipTrigger and SkipSize by shifts such as S2, causing chunk
splits and mergers.

While this behavior can theoretically impact a large number
of chunks, it only impacts a limited number of chunks within
real datasets. This is why many CDC algorithms, such as
FastCDC [19] and TTTD [22] use sub-minimum skips in
production. SeqCDC also minimizes the impact caused by
content-defined skipping by keeping the SkipSize under 705
bytes. Thus, despite data skipping, SeqCDC achieves com-
petitive space savings with other CDC algorithms, as shown
in §VI-A. Finally, we note that all CDC algorithms have
pathological data patterns i.e. data engineered to ensure that
they are ineffective.

In the rest of this section, we focus on the more common
kind of byte-shifting i.e. those that do not result in new
boundaries being uncovered or hidden, simply being shifted
instead.

Within the boundary sequence. The probability of byte
shifting occurring within a boundary sequence is rare in
real datasets, as SeqLength typically ranges from 3 to 7
bytes (§IV-B). If byte shifting occurs within a sequence, the
boundary may no longer exist. Thus, scanning will continue
until the next sequence is detected. In Figure 5, S3 may cause
B2 to exist no longer. Thus, the next boundary will be after
B3, causing Chunks 1 and 2 to be merged while subsequent
chunks are unaffected.

Between sequences and outside skipped regions. Byte-
shifts such as S4 are the ones most commonly seen in real
datasets. They occur outside of skipped regions and do not
drastically change the chunk structure. If S4 does not create
a new boundary sequence, the existing boundary sequence
B3 shifts. Thus, Chunk 2 changes while subsequent chunks
are unaffected. On the other hand, if S4 does create a new
boundary sequence, a boundary is inserted after it, changing
Chunk 2. Depending on the shift position, the next boundary
detected may be B3 or B4, resulting in a changed Chunk 3
as well. Thus, Chunks 2 and 3 are affected while others are
unaffected.

Maximum chunk size. If a shift S5 causes the maximum
chunk size to be reached, a boundary is inserted at the
maximum chunk size, similar to existing algorithms [17], [19],
[21]. This will cause the chunk to split into multiple chunks.
For instance, if a boundary is inserted after S5 in Figure 5,
Chunk 3 will be split into two if no subsequent boundary
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sequences are hidden.

IV. DERIVING PARAMETER VALUES

A. Mathematical analysis without data skipping

Let us consider the base SeqCDC algorithm without min-
imum chunk size or content-defined data skipping. SeqCDC
uses k-length subsequences to identify chunk boundaries; thus,
the average chunk size depends on the value of k. Note that
we frame our discussion around strictly increasing k-length
subsequences, but the calculations remain the same for strictly
decreasing ones as well.

In mathematical terms, we have a sequence S = (xi)
n
i=1

of integer terms from {0, 1, . . . , 255}. S simulates a stream
of random bytes and hence is an independent identically
distributed sequence [35]. The problem is to estimate, on scan-
ning S, how often we encounter a k-length strictly increasing
contiguous subsequence. There is a constraint; we only count
non-overlapping sequences.

In this setting, S can be viewed as a concatenation of
components, each of which is a maximally strictly increasing
subsequence. Note that a component can still be a singleton.

Let λk be the rate of k-length strictly increasing subse-
quences occurring in stream S. λk can be calculated as:

λk =
Expected k-length subsequences per component

Expected length of component
.

In Appendix E, we calculate that

λk =
m+ 1

m

⌊m/k⌋∑
j=1

1

mkj

(
m

kj

)(
1 +

1

kj

)−1

,

where m is the total number of possible values for a single
byte i.e., m = 256.

Using λk, the total number of k-length subsequences in
S can be calculated as λk × length(S). Assuming each
subsequence is a chunk boundary i.e., no minimum chunk size
skipping, the average chunk size for each k can be denoted
as:

Avg Chunk Size (k) =
length(S)

λk × length(S)
=

1

λk
(2)

Figure 6 shows the average chunk sizes obtained using
Monte-Carlo simulations on random data, compared against
those obtained theoretically using λk, for different values of
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Dataset Size Information XC

DEB 40 GB 65 Debian VM Images from
VMware Marketplace [36] 9.59%

DEV 230 GB 100 backups of a Rust [37]
nightly build server 69.37%

DKR 110 GB 200 Docker Images [38] for
storage and database solutions 10.21%

LNX 65 GB 160 Linux kernel distributions
in TAR format [39] 9.65%

RDS 122 GB 100 Redis [40] snapshots with
redis-benchmark runs 33.45%

TPCC 106 GB 25 snapshots of a MySQL [41]
VM running TPC-C [42]. 22.25%

TABLE I: Dataset information. Note that XC is the space
savings achieved using 16 KB fixed-size chunks.

k. Note that k is the same as SeqLength and that our Monte-
Carlo results are the averages of 50 runs. We observe that
the actual and expected average chunk sizes only differ by a
maximum of 3% across all k values.

B. Deriving parameter values for real datasets

While the theoretical analysis above provides some guide-
lines on how to choose SeqLength, it is not always accurate
due to the following reasons:

• Real datasets have patterns which are vastly different
from randomized data. As a result, the parameter values
derived by many previous CDC algorithms [15], [17],
[21] using random data do not match those used in
production.

• Content-defined skipping influences the average chunk
size and is mathematically complex to model. (§III-E)

• SeqCDC uses minimum and maximum chunk sizes,
which influence the average chunk size.

To address these issues, we propose a dataset-specific pro-
cess to obtain parameter values. SeqCDC has three config-
urable parameters apart from its mode: SeqLength, SkipTrigger
and SkipSize. To obtain the parameter value combination
needed to generate a given average chunk size, we follow the
steps below. We have automated these steps and released the
associated code with our implementation (§V)

1) We first perform Monte-Carlo simulations [43] on ran-
domized data streams with data skipping enabled, to
identify the maximum and minimum values for each
parameter that result in a chunk size close to the target.
For example, to identify the parameter values for an av-
erage size of 16 KB, we identify candidate combinations
resulting in average chunk sizes of 14 – 18 KB. For
instance, the SkipSize for a 16 KB target size varied
between 320 bytes – 704 bytes.

2) We use the parameter values obtained here as the bounds
for a parameter grid-search on each dataset. The incre-
ments chosen for each parameter dictate the computa-
tional cost of the parameter search. For instance, we
varied SkipSize from 320 – 704 bytes in increments of
32 bytes. The limits and increments in parameter values
that we chose resulted in a total of 480 combinations
for each chunk size. Note that these can be increased or
reduced, depending on available computational resources.

Dataset SeqLength SkipTrigger SkipSize
DEB 5 40 640
DEV 5 35 576
DKR 5 35 384
LNX 6 55 320
RDS 6 60 384

TPCC 5 45 704

TABLE II: SeqCDC parameter values for 16 KB chunks

3) Following this, for each dataset, we perform a parameter
grid-search with all combinations between the chosen
limits and increments to determine the best configuration.
As parameter grid searches are computationally expen-
sive, we uniformly sample 10% of the dataset and use this
sample for the grid search. Our underlying assumption is
that duplication patterns do not change significantly in
different dataset regions, which holds true for all real-
world datasets we analyzed.

4) We choose the top five parameter combinations from the
grid search that result in the closest average chunk size
to the target size, while achieving the best combination
of space savings and throughput. We run each of these
on the entire dataset, and report the results from the best
combination in §VI.

Table II shows our final chosen combination for each dataset
to generate chunks with 16 KB average size. Note that the
entire parameter search is a one-time procedure in production
for any given dataset.

V. IMPLEMENTATION

We implemented a native (unaccelerated) version of Se-
qCDC using approximately 250 lines of C++ code. We op-
timized the computation of SeqLength and SkipTrigger using
the std::signbit function to reduce the number of branch
conditions. We have automated the parameter search process
described in §IV-B to run with any given dataset, using 150
lines of Python and Shell code. We have released the code for
these publicly with DedupBench [27].

We implemented the vector acceleration described in §III-D
using an additional 350 lines of C++ code. We have imple-
mented SSE-128, AVX-256 and AVX-512 compatible accel-
erations for SeqCDC. SeqCDC is compatible with all file and
data formats.

x86 intrinsics performance. As noted in §III-D, the per-
formance of popcnt, pdep and tzcnt may vary across
CPU architectures. In order to estimate their performance
on a given CPU, we implemented an x86 intrinsics micro-
benchmark using approximately 250 lines of C++ code.

VI. EVALUATION

In this section, we evaluate SeqCDC’s space savings, chunk
size distribution, and chunking throughput and compare it to
the state-of-the-art CDC algorithms.

Testbed. We use machines with Intel Skylake and Icelake
CPUs from CloudLab Wisconsin [44] for our evaluation. The
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Skylake machine (c220g5) consists of two 10-core Intel Xeon
Silver 4114 CPUs with hyperthreading, 192 GB of RAM,
and a 10 GBps Intel NIC, The Icelake machine (sm220u)
consists of two 16-core Intel Xeon Silver 4314 CPUs with
hyperthreading, 256 GB of RAM and a 100 GBps Mellanox
NIC. Unless otherwise mentioned, we show results from the
Icelake machine. All our results are the average of 5 runs with
a standard deviation of less than 5%.

Alternatives. We evaluate the following hash-based CDC
algorithms:

• CRC: A chunking algorithm using CRC-32 [18].

• FCDC: FastCDC [19] with a normalization level of 2.

• GEAR: Gear-based chunking [20].

• RC: A hash-based CDC using Rabin’s fingerprinting
algorithm [15].

• SS-CRC: AVX-512 version of CRC, accelerated with SS-
CDC [18].

• SS-Gear: AVX-512 version of Gear, accelerated with SS-
CDC [18].

• TTTD: Two-Threshold Two-Divisor Algorithm, based on
Rabin’s fingerprinting with a backup divisor [22].

We also evaluate the following hashless CDC algorithms:

• AE: The Asymmetric Extremum [17] algorithm.

• RAM: Rapid Asymmetric Maximum [21].

• VRAM: SSE-128, AVX-256, and AVX-512 versions of
RAM accelerated with VectorCDC [25].

• SEQ: Native version of SeqCDC. We only report the
results for SeqCDC in Increasing mode. The results
for Decreasing mode are similar.

• VSEQ: SSE-128, AVX-256, and AVX-512 versions of
SeqCDC in Increasing mode.

We use minimum and maximum chunk sizes of 1
2× and

2× the expected average chunk size, in line with previous
studies [19], [22]. The only exception is that for a small
average chunk size of 4 KB, we use a minimum size of 1
KB.

SeqCDC uses a smaller context window of size SeqLength
to determine chunk boundaries while hash-based algorithms
use larger windows, typically between 32− 64 bytes. A com-
mon concern is whether hash-based algorithms can achieve
throughput similar to SeqCDC with smaller context windows.
We have experimented with reduced context windows for
hash-based algorithms in Appendix B. The results show that
hash-based algorithms’ throughputs are unaffected by window
size, i.e., reducing the window sizes of hash-based algorithms
with smaller windows does not improve their throughput, as
the bottleneck is in the rolling-hash process.

Datasets. Table I shows the datasets used in our evaluation
as well as the space savings achieved by using fixed-size
chunking (XC) with an average size of 16 KB. The datasets
represent diverse workloads such as database backups, docker
images, VMs, and Linux kernel code. We have made the DEB
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Fig. 7: Space Savings with 16 KB chunks. Note that SEQ is
unaccelerated SeqCDC.
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Fig. 8: SeqCDC’s Space Savings vs Chunk Size across datasets

dataset publicly available2 [45].

A. Space Savings

Figure 7 shows the space savings achieved by all the
alternatives across datasets with 16 KB chunks. Appendix
C shows the detailed average chunk sizes exhibited by all
algorithms. By comparing the space savings achieved by
fixed-size chunking (XC) on all datasets (Table I) to those
achieved by the CDC algorithms (Figure 7), we note that CDC
algorithms achieve superior space savings to XC. For instance,
XC achieves a space savings of only 22.25% on TPCC, while
CDC algorithms achieve 81-87%. The detailed results for all
chunk sizes, algorithms, and dataset combinations are in the
Appendix in Table III.

CDC comparison. From Figure 7, we see that SeqCDC
(SEQ) achieves similar space savings to all the other CDC

2https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25

https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25
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algorithms on these datasets with 16 KB chunks. The best
algorithm for space savings varies depending on the dataset.
For instance, RC, FCDC, and TTTD achieve the best space
savings on DEV, RDS, and TPCC respectively. The detailed
results for all chunk sizes are in the Appendix A. On all
datasets and chunk sizes, SeqCDC either is the best or
achieves space savings within 6% of the best performer.

We note that CRC suffers from poor space savings of
20.88% on DKR, while other CDC algorithms achieve 62–
64%. This is due to the dataset characteristics, resulting in
CRC being unable to find boundaries. As shown in Appendix
C, this also causes CRC to exhibit a much higher average
chunk size on DKR compared to other CDC algorithms.

Finally, Deduplication Elimination Ratio (DER), a metric
alternative to space savings, has been sometimes used in
previous literature to compare CDC algorithms [17], [23].
While they are different forms of the same metric, space
savings is easier to interpret [46] and is more commonly used
[19], [20], [25], [27]. We analyzed the DER exhibited by all
CDC algorithms across datasets and found that the trends were
similar to those shown in Figure 7. We omit those results from
this section, but provide them in Appendix D for completeness.

Dataset characteristics. Figure 8 shows the space savings
variation across chunk sizes for all our datasets using SeqCDC;
the results are similar for other CDC algorithms. The space
savings achieved decrease with increasing chunk size across
datasets.

The space savings degradation between 4 KB and 16 KB
average chunk sizes on the DEV, DKR, RDS, and TPCC datasets
is 0.5–6%. However, as the total number of chunks at 16 KB
is far lower than that at 4 KB, the size of the fingerprint
database and fingerprinting overheads are significantly lower.
Similarly, the best chunk size configuration for the DEB dataset
is 8 KB. This demonstrates why deduplication systems favor
larger chunk sizes on some datasets.

On the other hand, the LNX dataset presents a case favoring
smaller chunk sizes. The space savings degradation for LNX in
Figure 8 moving from average chunk sizes of 4 KB to 16 KB
is 29.87%. This far outweighs any gains within fingerprint
indexing.

Vector acceleration. We observed that vector accelera-
tion minimally impacts the space savings achieved by CDC
algorithms, in line with previously observed results [18],
[25]. For instance, SS-CRC and CRC achieve the same space
savings values. We have excluded these results from Figure
7 for clarity. Similarly, vector acceleration does not impact
SeqCDC’s space savings.

B. Chunking Throughput: Unaccelerated CDC

Figure 9 shows the chunking throughput for all unacceler-
ated CDC algorithms on DEB and TPCC. The results for other
datasets are similar. When examining chunking throughputs
across average chunk sizes, we note that the throughput
minimally scales with size for all algorithms other than SEQ,
similar to our analysis in §II-B.

Among the hash-based algorithms, RC [15] and TTTD [22]
are the slowest, only achieving 0.12 − 0.22 GB/s. TTTD is
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Fig. 9: Chunking throughput of native CDC algorithms. Note
that SEQ is unaccelerated SeqCDC.

slightly faster than Rabin’s chunking due to sub-minimum
skipping (§II-A). The poor chunking throughput of both al-
gorithms is due to the high computational cost of Rabin’s
hashing, as pointed out in previous literature [19]. GEAR
chunking [20] uses the faster gear hash algorithm allowing it to
reach 0.95− 0.98 GB/s. FastCDC (FCDC) fares significantly
better and achieves 2.5 − 3.5 GB/s, largely due to sub-
minimum skipping and using the Gear hashing algorithm.
FCDC’s throughput increases between average chunk sizes of
4 KB to 8 KB due to the increased ratio of the sub-minimum
region size to chunk size (25% to 50%).

Hashless algorithms such as AE [17] and RAM [21] achieve
higher chunking throughput than all hash-based algorithms
except FCDC. They both achieve throughputs of 1.5−1.9GB/s
across datasets. FCDC is only faster than AE and RAM because
it uses sub-minimum skipping; they do not.

Unaccelerated SeqCDC (SEQ) consistently achieves higher
chunking throughput than all other CDC algorithms at average
chunk sizes of 8 KB and 16 KB. At a chunk size of 8 KB, it
achieves 5.3 − 5.4 GB/s, 1.3× and 2.8× better than FCDC
and AE respectively. At a chunk size of 16 KB, it achieves a
chunking throughput of ˜8.8−10GB/s, 2.15× and 4.6× better
than FCDC and AE respectively. SEQ’s increase in throughput
from 8 KB to 16 KB is primarily due to a larger amount of
skipped data, i.e., lower SkipTriggers and higher SkipSizes.

At a chunk size of 4 KB, SeqCDC constrains the amount of
data skipped by using higher SkipTriggers and lower SkipSizes.
As expected, this results in lower throughputs. However,
SeqCDC still achieves 2.9GB/s, 1.16× and 1.5× faster than
FCDC and AE respectively. Thus, native SeqCDC is faster
than other native CDC algorithms by 1.5×–2.8× at larger
chunk sizes and 16% at smaller chunk sizes.

C. Chunking Throughput: Vector-accelerated CDC

Figure 10 shows the throughput of native algorithms with
their respective AVX-512 accelerated versions; CRC and Gear
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Fig. 10: Chunking speedups on DEB with 16 KB chunks

accelerated with SS-CDC [18], RAM accelerated with Vector-
CDC [25] and SeqCDC accelerated with the method described
in §III-D. Figure 10b shows that VSEQ-512 achieves the
highest throughput among all vector-accelerated algorithms,
at 30.5GB/s. It is also 10× faster than FCDC, the fastest non-
vector alternative.

Vector speedups. SS-CRC and SS-Gear (Figure 10a)
achieve low speedups over their native counterparts due to the
use of scatter / gather instructions to overcome dependencies
between adjacent bytes (§II-C). Hashless vector-based algo-
rithms such as VRAM and VSEQ do not suffer from these
limitations. It is important to note that while VSEQ achieves
the highest throughput overall, its speedup over its native
counterpart is lower than that of VRAM (Figure 10b). VSEQ-
512 achieves a 3.05× speedup over SEQ while VRAM-512
achieves a 16× speedup over RAM. Thus, SeqCDC is not as
vector-friendly as RAM.

Accelerating FastCDC. SS-CDC’s [18] proposed method
can accelerate any hash-based algorithm using AVX-512 in-
structions (§II-C). However, they decouple the rolling hash
and boundary detection phases to accomplish this. FastCDC
uses the Gear rolling hash algorithm [19] to detect boundaries,
and optimizes its throughput via sub-minimum skipping, i.e.,
skipping data regions. SS-CDC’s decoupling causes the rolling
hash to be run on the entire incoming data stream, nullifying
the throughput benefit of sub-minimum skipping. We observed
no throughput benefits when accelerating FastCDC with vector
instructions, similar to the results in earlier studies [25].

For the rest of our evaluation, we use only VSEQ and VRAM.
VSEQ vs VRAM. Figure 11 compares the two best per-

forming alternatives VSEQ-512 and VRAM-512 across differ-
ent chunk sizes on DEB and TPCC. The figure shows that
VRAM cannot scale its throughput with increasing chunk
sizes, similar to its native counterpart RAM. Thus, vector-
acceleration alone cannot fix the inability of CDC algorithms
to scale their throughput with chunk size. VSEQ can accom-
plish this due to its changing SkipSize, similar to SEQ.

At lower chunk sizes such as 4 KB, we note that VRAM
outperforms VSEQ. However, at 8 KB this performance gap
quickly closes. At 16 KB, VSEQ outperforms VRAM by 1.23−
1.35×. This gap increases further at larger chunk sizes. Thus,
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Fig. 11: Chunking throughput of vector-accelerated CDC
algorithms. Note that VSEQ is vector accelerated SeqCDC.

while VRAM is faster at smaller chunk sizes, VSEQ is 1.23−
1.35× faster than VRAM at the larger chunk sizes favored by
deduplication systems.

Throughput breakdown. Figure 12 shows the impact of
each optimization (§III) on SeqCDC’s throughput. We use
16 KB chunks for this experiment.

BASE represents native SeqCDC running with only
lightweight boundary judgement and sub-minimum skipping
i.e. without content-defined skipping. SEQ enables content-
defined skipping. VBASE-512 represents an AVX-512 ac-
celerated SeqCDC without content-defined skipping. Finally,
VSEQ-512 uses both AVX-512 acceleration and content-
defined skips.

We note that content-defined skipping is beneficial on all
datasets without AVX-512 acceleration, albeit to different
extents. For instance, content-defined skipping allows SEQ to
achieve 1.8× higher throughput than BASE on RDS. On the
other hand, it only achieves 1.39× on DEB.

When pairing content-defined skips with AVX-512 accelera-
tion, the landscape changes. We notice three kinds of behavior
between VBASE-512 and VSEQ-512 in Figure 12. On RDS,
the benefits are still significant, with VSEQ-512 achieving a
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Fig. 12: SeqCDC’s throughput breakdown at 16 KB with native
and AVX-512 instructions
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Fig. 13: Chunk size distribution (CDF) at an average chunk
size of 16 KB

3.03× higher throughput than VBASE-512. On DEV, DEB,
and TPCC, the speedups are slightly lower at 1.11×–1.41×.
Finally, on DKR and LNX, skipping is not that beneficial,
improving throughput only by 1.05×–1.06×.

Despite being hardware-accelerated, keeping track of op-
posing slopes and jump positions does not require vector
instructions; it uses Bit Manipulation Instructions (BMI and
BMI-2) [47]. Such intermingling of vectorized and non-
vectorized code regions leads to lower performance gains [48],
and may outweigh the benefits of content-defined skips on
certain datasets. Thus, while SeqCDC’s content-defined skip-
ping is almost always beneficial without vector instructions,
its benefits depend on dataset characteristics when paired with
vector instructions.

D. Backward compatibility with AVX-256 and SSE-128

Only a handful number of newer Intel and AMD processors
support AVX-512 instructions. However, SSE-128 and AVX-
256 instructions have been supported by Intel and AMD since
2003 and 2011 respectively. Thus, most CPUs available today
support one of the three classes of vector instructions.

While SeqCDC’s design described in §III-D uses AVX-512
instructions, SeqCDC can be accelerated with SSE-128/AVX-
256 instructions as well. Figures 14a and 14c show the benefits

of accelerating SeqCDC with SSE-128, AVX-256, and AVX-
512 instructions on two different CPU architectures: Intel
Skylake and Intel Icelake. We use the DEB dataset.

We note that VSEQ-128 and VSEQ-256 achieve significant
speedups over SEQ on both architectures. For instance with
16 KB chunks, VSEQ-128 achieves a 1.57×–2.19× speedup
on both architectures. Similarly, VSEQ-256 at 16 KB achieves
a 2.52×–3.34× speedup. Thus, SeqCDC retains most of its
throughput benefits when accelerated with SSE-128 and AVX-
256 instructions, and is compatible with most modern CPUs.

Note that the speedups slightly vary across architectures.
For instance, VSEQ-512 achieves a 5.8× speedup over SEQ
on the Skylake while it achieves 3.05× on the Icelake machine.
This is largely tied to CPU microarchitecture and x86 intrinsic
performance as described in §III-D.

SeqCDC vs VRAM. Figures 14b and 14d compare VSEQ
with the best performing vector accelerated alternative, VRAM,
using SSE-128, AVX-256 and AVX-512 instructions on Intel
Skylake and Icelake architectures. We use DEB with 16 KB
chunks for this experiment. We see that VSEQ maintains its
performance advantage over VRAM with all vector instruction
families, further cementing its effectiveness and backward
compatibility.

E. Chunk Size Distribution
CDC algorithms are expected to achieve a uniform chunk

size distribution, loosely centered around the average chunk
size. Figure 13 shows a CDF of chunk sizes from all algo-
rithms at an average size of 16 KB on the DEB and TPCC
datasets. Hash-based algorithms’ distributions are shown using
solid lines, while hashless algorithms use patterned lines.

The exhibited average chunk size needs to be similar for a
fair comparison of deduplication efficiency. From Figure 13,
we note that the average chunk sizes exhibited by all CDC
algorithms are similar. The only exception is CRC which is
very sensitive to parameter changes and exhibits a slightly
larger average chunk size on all datasets. Excluding CRC,
the maximum difference between the exhibited average chunk
sizes of all algorithms is 5.8% and 2.6% of the target average
chunk size, on DEB and TPCC, respectively. The detailed
average chunk sizes for all algorithms across datasets can be
found in Appendix C. Note that the details for other target
sizes were similar, but have been omitted from Appendix C
due to space constraints.

Hash-based algorithms exhibit uniform distributions be-
tween the minimum and maximum chunk sizes. Rabin’s
Chunking (RC) and TTTD exhibit similar distributions since
TTTD only differs from RC by the use of a backup divisor.
CRC and GEAR exhibit similar smooth patterns as well.
FastCDC (FCDC) is an exception, exhibiting a split pattern
centered around the average chunk size. This is because it
switches masks and relaxes boundary conditions past the
average chunk size i.e., chunk size normalization (§II-A). AE
and RAM exhibit nearly identical tighter distributions when
compared to hash-based algorithms.

Despite being hashless, SeqCDC exhibits a chunk size
distribution similar to hash-based algorithms. We observed
similar results across all our datasets and chunk sizes.
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Fig. 14: Chunking Throughput on DEB with SSE-128, AVX-256 and AVX-512 Instructions

Vector acceleration. Chunk size distributions remain unaf-
fected by vector acceleration for all CDC algorithms.

VII. ADDITIONAL RELATED WORK

Accelerating deduplication. Numerous efforts have been
made to accelerate the other phases involved in data deduplica-
tion. StoreGPU [49] uses GPUs, Silo [50] uses locality-based
optimizations and other work [51], [52] focuses on using faster
hashing algorithms to improve fingerprint indexing. History-
aware rewriting [53] and FG-DEFRAG [54] improve restore
performance by reducing fragmentation in stored chunks. HY-
DRAstor [55] and Extreme Binning [56] improve scalability
by building deduplication on top of distributed storage.

While SeqCDC is compatible with many of these ap-
proaches, they are orthogonal to ours as we focus on the file
chunking phase within deduplication.

Other chunking optimizations. RapidCDC [57] and
QuickCDC [58] use locality-based optimizations to speed up
chunking for duplicate chunks. MUCH [59] and P-Dedupe
[60] parallelize chunking using multiple threads. SeqCDC is
compatible with any of these techniques as they all rely on im-
plementing optimizations on top of existing CDC algorithms.

MII [61] uses a sequence-based approach to chunk data
but their approach results in inflexible chunk sizes and low
throughput. Our previous work [62] discussed SeqCDC briefly.
However, it does not present a methodology to accelerate
SeqCDC with vector instructions or compare its performance
with other vector-accelerated CDC algorithms.

Decentralized deduplication. Some deduplication systems
adopt a decentralized approach [63], [64], adopting a dis-
tributed index on top of distributed file systems such as HDFS
[3]. These efforts focus on improving coordination between
nodes, distributing load among nodes, and managing a large-
scale fingerprint index. They all still use the data chunking

techniques we discussed in §II. These efforts are orthogonal
to SeqCDC, and SeqCDC is compatible with these systems.

Secure deduplication systems. Several efforts build end-
to-end deduplication systems for encrypted data [65]. They
mainly target encryption schemes [66], [67] for the underlying
data or focus on reducing attacks on the system [68]. SeqCDC
is compatible with all these approaches.

VIII. CONCLUSION

Deduplication systems in production employ larger chunk
sizes due to reduced fingerprinting overheads. However, state-
of-the-art CDC algorithms are designed to target smaller
average chunk sizes, suffering from poor chunking throughput
at larger sizes.

We present SeqCDC, a CDC algorithm that achieves higher
chunking speeds than the state-of-the-art. SeqCDC leverages
hashless lightweight boundary judgement, content-based data
skipping, and SSE/AVX acceleration to improve chunking
throughput by 10× over unaccelerated and 1.2×−1.35× over
vector accelerated CDC algorithms while achieving similar
deduplication space savings. We hope that our work inspires
a new generation of vector-friendly data chunking algorithms
to accelerate data deduplication.

IX. FUTURE WORK

SeqCDC currently uses fixed parameters to generate chunks
for specific target sizes. A future direction is to explore
dynamic parameters that can be relaxed or tightened. This
could be tied to the amount of data scanned within the current
chunk, the distance of the current position from the target
chunk size, and the sizes of previously generated chunks.

SeqCDC relies on Bit Manipulation Instructions (BMI) to
accelerate content-defined skipping. Other CPU architectures,
such as ARM [69], [70] and IBM Power [71], support vector
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instructions but not equivalents for BMI instructions. An alter-
native vector-compatible design for these CPUs is necessary.
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Fig. 1: Chunking throughput on DEB with 16 KB aver-
age chunk size. Note that SEQ is SeqCDC without vector-
acceleration.

APPENDIX A
SPACE SAVINGS ACROSS CHUNK SIZES

Table I shows the space savings achieved by all the alter-
natives described in our evaluation on all our datasets. The
best-performing algorithm for each dataset and chunk size
combination has been highlighted using bold text. Note that
there may sometimes be multiple best performers.

SeqCDC (SEQ) achieves space savings within 4% of the
best performer on all datasets except LNX and within 6% of
the best performer on LNX.

APPENDIX B
REDUCING THE WINDOW SIZE FOR HASH-BASED

ALGORITHMS

One of the concerns associated with our evaluation was
that hash-based algorithms (such as Rabin-Karp chunking [1])
use large context windows while SeqCDC bases its boundary
decisions on the last SeqLength bytes, which are typically
smaller. This section examines whether hash-based algorithms
can achieve better throughputs with small context windows.

Figure 1 shows the throughput achieved by Rabin-Karp
chunking with three different configurations and SeqCDC
on DEB with a 16KB average chunk size. Note that the
y-axis has been cropped to 200 MB/s to avoid SeqCDC
skewing the graph. We use an Intel Icelake machine (sm220u)
from CloudLab [2] for this experiment. The alternatives are
described below:

• RC: Rabin-Karp [1] chunking.
• RC-SM: Rabin-Karp chunking [1] with a small context

window of 6 bytes, equal to SeqCDC’s SeqLength.
• RC-IND: Rabin-Karp chunking [1] with no rolling hashes

and a small context window of 6 bytes, i.e, independently
calculating each window’s hash.

Dataset CDC 4KB 8KB 16KB
AE 41.99% 33.69% 21.94%

CRC 41.65% 35.23% 26.59%
FCDC 43.83% 36.10% 28.90%
GEAR 39.49% 33.12% 28.68%

DEB RC 44.38% 36.16% 27.94%
RAM 42.98% 34.21% 22.61%
TTTD 45.06% 37.13% 27.94%
SEQ 42.77% 37.76% 26.97%
AE 98.00% 97.75% 97.26%

CRC 98.15% 98.09% 97.70%
FCDC 98.17% 98.06% 97.91%
GEAR 98.14% 98.07% 97.92%

DEV RC 98.21% 98.12% 97.98%
RAM 98.05% 97.79% 97.31%
TTTD 98.22% 97.97% 97.97%
SEQ 98.13% 98.03% 97.80%
AE 59.41% 45.35% 34.84%

CRC 62.43% 48.70% 34.84%
FCDC 59.16% 43.92% 35.89%
GEAR 57.80% 40.94% 33.32%

LNX RC 67.02% 50.90% 35.40%
RAM 57.94% 45.62% 33.56%
TTTD 68.46% 51.06% 35.96%
SEQ 63.13% 49.46% 35.63%
AE 94.66% 92.94% 91.04%

CRC 94.66% 93.72% 91.81%
FCDC 93.82% 92.17% 92.50%
GEAR 92.44% 93.01% 90.90%

RDS RC 94.31% 92.27% 91.76%
RAM 95.67% 94.09% 91.99%
TTTD 95.2% 92.80% 92.49%
SEQ 94.86% 92.54% 91.13%
AE 86.58% 84.96% 81.58%

CRC 87.23% 86.79% 86.27%
FCDC 87.18% 86.74% 86.26%
GEAR 86.96% 86.64% 86.30%

TPCC RC 87.24% 86.80% 86.25%
RAM 86.71% 85.21% 81.68%
TTTD 87.29% 86.84% 86.28%
SEQ 87.04% 86.68% 85.72%

TABLE I: Space savings of CDC techniques. Note that the
best algorithm at each configuration is shown using bold text
and that SEQ is native (unaccelerated) SeqCDC.

• SEQ: SeqCDC without vector-acceleration.

Figure 1 shows that there are no throughput gains achieved
by reducing the context window of Rabin-Karp chunking [1] to
6 bytes (RC-SM). This is because the performance bottleneck
is the sliding operation, which moves one byte at a time
across the input stream, regardless of the context window
size. Furthermore, avoiding rolling hashes and calculating each
window’s hash independently (RC-IND) results in a throughput
drop of 62.5%, showing that rolling hashes are far more
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Algorithm Avg Chunk Size DER Space Savings
AE 16407 1.281 21.94%

CRC 18563 1.362 26.59%
FastCDC 16367 1.408 28.90%

Gear 16034 1.402 28.68%
Rabin 16202 1.388 27.94%
RAM 16407 1.292 22.61%
TTTD 16713 1.388 27.94%

SeqCDC 15760 1.369 26.94%

TABLE II: DEB with 16 KB target average chunk size

Algorithm Avg Chunk Size DER Space Savings
AE 16401 36.5 97.26%

CRC 19102 44.48 97.70%
FastCDC 16351 47.88 97.91%

Gear 16035 47.99 97.92%
Rabin 16254 49.6 97.98%
RAM 16401 37.16 97.31%
TTTD 16648 49.58 97.97%

SeqCDC 15932 45.39 97.80%

TABLE III: DEV with 16 KB target average chunk size

efficient than their independent counterparts, aligning with
previous literature [1], [3]. For comparison, SeqCDC achieves
9.66 GB/s on the same dataset and configuration, while the
best throughput achieved by all Rabin-Karp configurations is
0.12 GB/s.

APPENDIX C
AVERAGE CHUNK SIZES

Tables II - VII show the actual average chunk sizes exhibited
by all CDC algorithms on all datasets when targeting an
average chunk size of 16 KB. Note that we have omitted the
results for other target chunk sizes due to space constraints.
We note that SeqCDC exhibits average chunk sizes close to
those of other algorithms with our chosen parameters, making
deduplication efficiency comparisons fair. We discuss a few
specific cases below.

CRC [4] is very sensitive to parameter changes, with small
parameter changes resulting in up to 4 KB changes in the
exhibited average chunk size. We have chosen parameters for
CRC resulting in the closest average chunk size to the target
size of 16 KB on all datasets. However, as shown in Tables
II - VII, CRC exhibits a slightly larger chunk size than other
CDC algorithms.

On RDS (Table VI), hash-based algorithms are unable to
find chunk boundaries, resulting in up to 10 KB higher chunk
sizes than expected. We could not find suitable parameters for
these algorithms to address this issue. While using FastCDC
with a higher normalization factor controls the chunk size, it
results in a severe drop in space savings and was not used.
To make comparisons fair, we have chosen a configuration
for SeqCDC that exhibits an average chunk size close to that
of FastCDC [5] on this dataset. Note that SeqCDC achieves
higher space savings with its actual best configuration.

Finally, on LNX (Table V), while FastCDC exhibits a
slightly larger average chunk size than expected, other hash-
based algorithms such as Rabin [1] and TTTD [3] do not.
Hence, we have chosen SeqCDC’s parameters such that its
average chunk size is close to that of these algorithms.

Algorithm Avg Chunk Size DER Space Savings
AE 16142 2.704 63.02%

CRC 20335 1.264 20.88%
FastCDC 16765 2.786 64.10%

Gear 16509 2.816 64.48%
Rabin 16549 2.834 64.72%
RAM 16501 2.693 62.87%
TTTD 16282 2.796 64.24%

SeqCDC 16827 2.643 62.16%

TABLE IV: DKR with target 16 KB average chunk size

Algorithm Avg Chunk Size DER Space Savings
AE 16366 1.535 34.84%

CRC 20813 1.534 34.84%
FastCDC 18329 1.56 35.89%

Gear 16671 1.5 33.32%
Rabin 15826 1.548 35.40%
RAM 16155 1.505 33.56%
TTTD 16437 1.562 35.96%

SeqCDC 16404 1.55 35.63%

TABLE V: LNX with 16 KB target average chunk size

APPENDIX D
DEDUPLICATION ELIMINATION RATIO

Deduplication Elimination Ratio (DER) has been used to
compare the efficiency of CDC algorithms by a few previous
studies [6], [7]. It is defined as:

DER =
Original Size

Deduplicated Size
(1)

While this is a comparable metric to Space Savings used
by our paper, it is harder to interpret [8]. As a result, Space
Savings has been used by many previous studies [1], [5],
[9]–[12]. While we use Space Savings as the primary metric
everywhere in our paper, we provide the corresponding DER
values for all datasets and CDC algorithms at a target chunk
size of 16 KB in Tables II - VII for reference.

Figure 2 shows the DERs achieved by all CDC algorithms
on DEB with a target average chunk size of 16 KB. The figure
shows that SeqCDC achieves a DER of 1.369, higher than
AE [6] and RAM [13], but slightly lower than Rabin [1] and

Algorithm Avg Chunk Size DER Space Savings
AE 17013 11.16 91.04%

CRC 23526 12.21 91.81%
FastCDC 21590 13.34 92.50%

Gear 26001 11.2 90.90%
Rabin 23831 12.13 91.76%
RAM 17013 12.48 91.99%
TTTD 21756 13.32 92.49%

SeqCDC 20755 11.24 91.13%

TABLE VI: RDS with 16 KB target average chunk size

Algorithm Avg Chunk Size DER Space Savings
AE 16435 5.428 81.58%

CRC 17413 7.286 86.27%
FastCDC 16410 7.278 86.26%

Gear 16088 7.3 86.30%
Rabin 16350 7.274 86.25%
RAM 16435 5.457 81.68%
TTTD 16135 7.287 86.28%

SeqCDC 16001 7.003 85.72%

TABLE VII: TPCC with 16 KB target average chunk size
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Fig. 2: Deduplication Elimination Ratio on DEB with a 16 KB
target average chunk size. Note that SEQ is SeqCDC.

FastCDC [5]. This corroborates the trend demonstrated by
Space Savings. The results are similar across datasets and
chunk sizes. Finally, Tables II - VII show that the trends
exhibited by Space Savings and DER are the same across all
other datasets as well.

APPENDIX E
DERIVING THE VALUE OF λk

A. Renewal-theory Viewpoint

A renewal process is a counting process for which the
inter-arrival intervals are positive, independent, and identically
distributed random variables (i.i.d) [14]. These processes are
called renewal processes because the process probabilistically
starts over at each arrival epoch. In particular, our process
of scanning the stream and reporting contiguous maximal
increasing subsequences (components) is thereby a renewal
process. Each component is an interval of consecutive in-
dices where the sequence is strictly increasing. Every time
an increase fails, a component “terminates” and a new one
“restarts.” To our practical use, it will be important to learn
that renewal processes have the properties of the strong law
of large numbers, as this will be fundamental in calculating
expectations.

We can start by calculating the probability pstart that a
given index i ∈ {1, 2, . . . , n} is the start of a component by
noticing that this occurs if and only if xi−1 ≥ xi, or that
i = 1. Thus, assuming n → ∞,

pstart =
1

n
+ (1− 1

n
) Pr(xi−1 ≥ xi) ≈ Pr(xi−1 ≥ xi)

=

m−1∑
k=0

Pr(xi−1 = k) Pr(xi ≤ k)

=
1

m2

m−1∑
k=0

(k + 1) =
m+ 1

2m
. (2)

By renewal theory and the strong law of large numbers, the
average number of inter-arrival intervals (starts) equals the
reciprocal of the mean interval length. Therefore, in our case,
the expected component length is the reciprocal of the start
(renewal) probability:

E[L] = 1/pstart =
2m

m+ 1
. (3)

We now proceed to calculate E
[
⌊L/k⌋

]
, the expected num-

ber of non-overlapping k-blocks per component. At the end we
are to use this towards calculating λk = E

[
⌊L/k⌋

]
/E[L]. This

relation is justified, since the average event rate per element
is

Event rate =
Expected number of events per component

Expected number of elements per component
,

where the event here is finding a k-length increas-
ing/decreasing contiguous subsequence.

B. Tail Probability

Starting at some random position, let us calculate the proba-
bility Rs that, moving forward, we witness s increasing terms
in S. Well, the number of ways for choosing s elements is gen-
erally ms. However, increasing terms have to be distinct and
uniquely ordered, hence we have m(m−1) · · · (m−s+1)/s!
selections. Thus, for any s ≥ 1 the probability is given by

Rs =
m(m− 1) · · · (m− s+ 1)

ms s!
=

(
m
s

)
ms

. (4)

We will use Rs to calculate the probability Ts = Pr(L ≥ s),
where L is the length of a component. The connection between
the two viewpoints is a size-bias relation. Namely, for each
s ≥ 1 we have

Rs =
1

E[L]

∞∑
u=s

Tu,

since the fraction of indices whose forward chain length
is at least s equals (expected number of such indices per
component)/(expected component length). From this relation
one can recover Ts from the more easily calculated Rs:

Ts = E[L] (Rs −Rs+1). (5)

C. Expected Number of Non-overlapping k-blocks

Let k be the block length of interest (in our initial case
k = 5). We can use the indicator decomposition to apply
linearity of expectation:

E
⌊
L

k

⌋
= E

∑
j≥1

1{L ≥ kj} =
∑
j≥1

Pr(L ≥ kj) =
∑
j≥1

Tkj .

(6)
Finally, to get the event rate per element we can now

calculate

λk =
E
[
⌊L/k⌋

]
E[L]

=
1

E[L]

⌊m/k⌋∑
j=1

Tkj =

⌊m/k⌋∑
j=1

(Rkj −Rkj+1)

=

⌊m/k⌋∑
j=1

(
m
kj

)
mkj

−
(

m
kj+1

)
mkj+1

=

⌊m/k⌋∑
j=1

(
m
kj

)
(kj)(m+ 1)

(kj + 1) mkj+1

=
m+ 1

m

⌊m/k⌋∑
j=1

1

mkj

(
m

kj

)(
1 +

1

kj

)−1

. (7)
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