
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Accelerating Data Chunking in Deduplication Systems using Vector Instructions

SREEHARSHA UDAYASHANKAR, University of Waterloo, Canada

ABDELRAHMAN BABA, University of Waterloo, Canada

SAMER AL-KISWANY, University of Waterloo, Canada

Content-defined Chunking (CDC) algorithms dictate the overall space savings that deduplication systems achieve. However, due
to their need to scan each file in its entirety, they are slow and often the main performance bottleneck within data deduplication.
We present VectorCDC, a method to accelerate hashless CDC algorithms using vector CPU instructions, such as SSE / AVX. We
analyzed the state-of-the-art chunking algorithms and discovered that hashless algorithms primarily use two data processing patterns
to identify chunk boundaries: Extreme Byte Searches and Range Scans. VectorCDC presents a vector-friendly approach to accelerate
these two patterns. Using VectorCDC, we accelerated three state-of-the-art hashless chunking algorithms: RAM, AE, and MAXP. Our
evaluation shows that VectorCDC is effective on Intel, AMD, ARM, and IBM CPUs, achieving 8.35×–26.2× higher throughput than
existing vector-accelerated algorithms, and 15.3×–207.2× higher throughput than existing unaccelerated algorithms. VectorCDC
achieves this without affecting the deduplication space savings.

CCS Concepts: • Information systems → Cloud based storage; Deduplication; • Networks → Cloud computing; • Computer
systems organization → Single instruction, multiple data.

Additional Key Words and Phrases: Content-defined chunking, SSE/AVX instructions, AVX-512, ARM NEON, IBM VSX

ACM Reference Format:
Sreeharsha Udayashankar, Abdelrahman Baba, and Samer Al-Kiswany. 2025. Accelerating Data Chunking in Deduplication Systems
using Vector Instructions. 1, 1 (January 2025), 27 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

The amount of data generated and stored on the Internet is growing at an exponential rate [1], and is expected to
exceed 180 zettabytes per year in 2025. Storage capacity alone is not well positioned to handle this data influx, with
the total installed storage capacity in 2020 only being 6.7 zettabytes [1]. Cloud storage providers instead support this
data growth using alternatives such as novel storage paradigms [2, 3], distributed file systems [4, 5] and caches [6, 7],
mechanisms such as data deduplication [8, 9], alongside additional investments in data protection [10].

Previous studies by Microsoft [11] and EMC [12] show that a large amount of redundancy exists in the data stored
on the cloud, especially in file system backups [8, 11], virtual machine backups [12, 13] and shared documents [14]. The
redundancy ratios in these workloads are significant, ranging from 50% to 75%. Mechanisms such as data deduplication
[8] and compression [13] are used to conserve storage space by identifying redundant data, eliminating it, andminimizing
its storage impact, thereby improving efficiency and reducing costs.

Authors’ Contact Information: Sreeharsha Udayashankar, s2udayas@uwaterloo.ca, University of Waterloo, Waterloo, Canada; Abdelrahman Baba,
ababa@uwaterloo.ca, University of Waterloo, Waterloo, Canada; Samer Al-Kiswany, alkiswany@uwaterloo.ca, University of Waterloo, Waterloo, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Udayashankar et al.

Data deduplication consists of four phases [9]; Data Chunking, Chunk Fingerprinting, Metadata Creation, and Data

Storage. Data chunking and chunk fingerprinting are the most computationally intensive [8, 15] of these. While chunk
fingerprinting has received significant optimization attention, with faster hashing algorithms [16, 17] and GPUs [18, 19],
data chunking optimizations have not kept up (§3.1).

In the data chunking phase, the incoming data is divided into small chunks, typically of size 1 − 64 KB. Numerous
data chunking algorithms exist in current literature [20–25] and can be broadly classified into hash-based and hashless
algorithms [15]. As chunking occurs whenever new data is uploaded, this phase is on the critical path, and directly
impacts system performance.

Previous efforts have explored accelerating chunking by using vector instructions. SS-CDC [26] uses vector instruc-
tions to accelerate hash-based data chunking algorithms, such as Rabin-Karp chunking [23] and Gear-based chunking
[22]. Unfortunately, this approach only leads to modest improvements in chunking throughput, up to 3.13×, as shown
in §3.2. Parallelizing hash-based chunking using vector instructions is complicated because these algorithms use the
rolling hash of a sliding window of bytes to detect boundaries, inherently creating a computational dependency between
adjacent bytes. Consequently, SS-CDC processes different regions of the data in parallel using slow scatter / gather
vector instructions, limiting its performance (§3.2).

We posit that hashless chunking algorithms are better candidates for vector acceleration. Although they achieve
slightly lower space savings compared to their hash-based counterparts (§6), they are up to 2× faster and use sim-
ple mathematical operations (e.g., finding a maximum value) that can be accelerated more efficiently using vector
instructions. We analyzed state-of-the-art hashless algorithms to understand their design and identify opportunities
to leverage vector instructions. We identified that all state-of-the-art hashless algorithms consist of two processing
patterns. The first pattern involves finding local minima or maxima in a data region, which we call Extreme Byte Search,
and the second pattern involves scanning a range of bytes to find values that are greater or lesser than a target value,
which we call Range Scan. We found that, unlike rolling hash functions, these patterns can be efficiently accelerated
using vector instructions.

Using these insights, we present VectorCDC, a technique for accelerating hashless chunking algorithms using vector
instructions. VectorCDC uses a novel design to accelerate the two aforementioned patterns. We accelerate the extreme
byte searches with a novel tree-based search that divides a region of bytes into multiple sub-regions, processes each
region using vector instructions, and uses a tree-based approach to combine their results. We accelerate range scans
with packed scanning, which packs multiple adjacent bytes into vector registers and compares them using a single
vector operation.

We implemented VectorCDC using five different vector instruction sets: SSE-128, AVX-256, and AVX-512 on Intel /
AMD CPUs; NEON-128 on ARM CPUs; and VSX-128 on IBM Power CPUs. We used VectorCDC to accelerate three
state-of-the-art hashless chunking algorithms; RAM [24], AE [20], and MAXP [27], creating VRAM, VAE, and VMAXP,
respectively. We compared the performance of our accelerated algorithms with that of state-of-the-art hash-based
algorithms, hashless algorithms, and SS-CDC [26] accelerated algorithms using 10 diverse datasets.

Our evaluation (§6) shows that VectorCDC-based algorithms achieve 8.35×–26.2× higher chunking throughput than
those accelerated with SS-CDC. VRAM, VAE, and VMAXP also achieve 5.51×–17.6× higher throughput compared to
their unaccelerated hashless counterparts, without affecting deduplication space savings. Furthermore, they achieve
15.3×–207.2× higher throughput compared to unaccelerated hash-based algorithms. Finally, VectorCDC-accelerated
algorithms retain their performance advantage across all five vector instruction sets.

Manuscript submitted to ACM



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 3

We have made our code publicly available by integrating it with DedupBench1 [15]. Due to the large sizes of our
datasets (§6), we were unable to release all of them. Instead, we have publicly released one of our datasets (DEB) on
Kaggle2 [28] and provided detailed descriptions to facilitate the recreation of others for future experiments, similar to
previous literature [20, 21, 24].

The rest of this paper is organized as follows: we discuss relevant background about deduplication and vector
instructions in Section 2. Section 3 motivates our work by discussing deduplication performance bottlenecks and
the inefficiencies encountered by previous work when accelerating hash-based CDC algorithms. Section 4 outlines
VectorCDC’s design while Section 5 discusses implementation challenges across vector instruction sets. Section 6 details
our evaluation efforts on diverse datasets. We discuss related work in Section 7 and conclude our paper in Section 8.

2 Background

Data deduplication consists of four phases [9]:

• Data Chunking: Data is divided into small chunks typically of size 1 − 64KB using a chunking algorithm. All
chunking algorithms have configurable parameters that control the average size of generated chunks.

• Fingerprinting and Comparison: Chunks are hashed using a collision-resistant hashing algorithm such as
MurmurHash3 [16] or SHA-256 [29] to generate fingerprints. Fingerprints are compared against those previously
seen to identify duplicate chunks.

• Metadata Creation: Metadata, i.e., file recipes required to reconstruct the original data from stored chunks, are
created.

• Metadata and Chunk Storage: Non-duplicate chunks and recipes are saved on the storage medium. Fingerprints
are stored on the fingerprint database and cached in an in-memory index.

Data chunking and fingerprinting are typically the most computationally intensive phases in deduplication [8].
While fingerprinting has been accelerated up to 53× using GPUs [18, 19] and faster hashing algorithms [16, 30], data
chunking acceleration has only received limited attention and adds significant overhead on the deduplication critical
path (§3.1).

2.1 Data Chunking

Data chunking algorithms can generate fixed-size or variable-sized chunks. Dividing the data into fixed-size chunks is
fast, but results in poor space savings on most datasets (§6). This is due to the byte-shifting problem [23], where adding
a single byte causes all subsequent chunks to appear different, despite the data stream largely being unchanged. Thus,
while traditional backup systems such as Venti [31] and OceanStore [32] use fixed-size chunks, modern deduplication
systems employ content-defined chunking (CDC) algorithms [23] to generate variable-sized chunks.

Chunk boundaries in CDC algorithms are derived from the data itself, i.e., they are content-defined. These boundaries
are chosen such that most byte shifts cause them to shift by the corresponding amount, leaving subsequent chunks
unaffected and preserving the ability to detect duplication. Numerous CDC algorithms have been proposed in previous
literature [20–25, 27] and can be broadly classified into hash-based and hashless algorithms [15].

2.1.1 Hash-based algorithms. These algorithms [21–23, 25] slide a fixed-size window over the data. When the hash
value of the window’s contents matches a target mask, they insert a chunk boundary, creating a new data chunk lying
1https://github.com/UWASL/dedup-bench
2https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25

Manuscript submitted to ACM

https://github.com/UWASL/dedup-bench
https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25


157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Udayashankar et al.

(a) Sliding window and rolling hash (b) Minimum chunk sizes and sub-minimum skipping

Fig. 1. Hash-based chunking algorithms

between the current and previous chunk boundaries. Note that these hash-based CDC algorithms are only used during
the Data Chunking phase and do not affect the Fingerprinting and Comparison phase.

Algorithms such as Rabin-Karp chunking [23] and CRC [26] slide a window over the source data and compute
the hash of the window’s contents using rolling hash algorithms. Figure 1a shows an example of data chunking with
such algorithms. In the Rabin-Karp chunking algorithm [23], a chunk boundary is declared when the lower k bits of
the sliding window’s hash value equals zero. If the current window’s hash value does not meet this condition, the
window is slid by a byte. To minimize the overhead of recomputing the hash value, the new value is calculated as a
function of the old hash value, the incoming byte, and the outgoing byte (Figure 1a), i.e., a rolling hash. This creates
a dependency between adjacent bytes, complicating acceleration efforts with SIMD instructions (§3.2). Additionally,
despite the development of more lightweight rolling hash algorithms such as CRC [26] and Gear-Hash [22], hash-based
chunking remains computationally expensive (§6.2).

Some hash-based algorithms like TTTD [25] and FastCDC [21] use minimum and maximum values to limit the
chunk sizes. To improve chunking throughput, these algorithms skip scanning data lying before the minimum chunk
size at the beginning of each chunk. Figure 1b shows an example of such algorithms with the sub-minimum regions
highlighted using a dashed pattern. To offset the impact of skipping the sub-minimum regions and tighten chunk size
distributions around the average, FastCDC [21] uses dynamically changing masks, i.e., relaxes the boundary detection
condition by reducing k when required. TTTD [25] uses two different boundary masks to do the same.

2.1.2 Hashless algorithms. Hashless CDC algorithms such as AE [20], RAM [24], and MAXP [27] treat bytes as
individual values and use local minima/maxima to identify chunk boundaries. They also slide one or more windows
over the source data but do not use rolling hashes and, as a result, are faster than most hash-based algorithms by 2–3×.

AE. Figure 2a shows an example chunk generated by the Asymmetric Extremum (AE) [20] algorithm. AE has two
modes of operation: AE-Min and AE-Max, depending on whether it uses local minima or maxima; Figure 2a shows
AE-Max. In each chunk, AE-Max tries to find a target byte that is greater than all the bytes before it. Once the target byte
is identified, AE-Max scans a fixed-size window of bytes after the target to identify the maximum-valued byte among
them. If the target byte is greater than this maximum-valued byte, it inserts a chunk boundary after the fixed-size
window, as shown in Figure 2a.

Similarly, AE-Min tries to find a target byte that is less than all the bytes before it. When such a byte is identified,
AE-Min scans a fixed-size window of bytes after the target to identify the minimum-valued byte within. If the target
byte is lesser than this minimum-valued byte, it inserts a chunk boundary after the fixed-size window.
Manuscript submitted to ACM



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 5

(a) AE-Max (b) MAXP

(c) RAM

Fig. 2. Hashless chunking algorithms

MAXP. Figure 2b shows an example chunk generated by MAXP [27]. MAXP identifies target bytes in the data stream
that are local maxima, i.e., they are greater than a fixed number of bytes before and after them. When such target bytes
are found, chunk boundaries are inserted at their locations, as shown in the figure. Note that MAXP’s window sizes are
typically 70-80% smaller than AE [20] and RAM [24] to generate the same target average chunk size. MAXP has also
been referred to as Local Maximum Chunking (LMC) in previous literature.

MAXP works by sliding two fixed-size windows over the data, tracking the maximum values from both windows.
These windows are located one byte apart, as shown in Figure 2b, and the byte between them is the target byte. When
the target byte’s value is greater than the maximum value from both windows, a chunk boundary is inserted as the
target byte is a local maximum.

RAM. Figure 2c shows an example chunk generated by the Rapid Asymmetric Maximum (RAM) [24] algorithm.
RAM begins by scanning a fixed-size window at the beginning of each chunk to find the maximum valued byte (F1 in
the figure). It then begins scanning at the first byte outside the window, serially comparing these bytes against this
maximum value. A chunk boundary is inserted when the first byte that exceeds or equals the maximum is found, e.g.,
F3 in Figure 2c.

As they do not possess explicit dependencies between adjacent bytes, we argue that hashless algorithms are better
candidates for SIMD acceleration efforts.

2.2 Deduplication Metrics

Previous literature [15, 21, 23, 33] outlines three important metrics for deduplication systems: Space Savings, Chunk
Size Distribution, and Chunking Throughput. We describe these in detail in this section.

2.2.1 Space savings. Space savings [15, 33] is one of the primary metrics used to evaluate deduplication systems in
production. It represents the overall disk space conserved by using the deduplication system, i.e. size of data stored on

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Udayashankar et al.

disk after deduplication. The space savings achieved are largely dictated by the choice of the data chunking algorithm
and its associated parameters. It is defined as:

𝑆𝑝𝑎𝑐𝑒 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 (%) = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒 − 𝐷𝑒𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒
× 100 (1)

2.2.2 Chunking throughput. Chunking throughput is defined as the speed at which the deduplication system divides
incoming data into chunks. As CDC algorithms are content-dependent, they need to scan every byte of an incoming
data stream before making content-defined boundary decisions. Their speed depends on their computational complexity.
Hash-based algorithms utilize expensive rolling-hash algorithms to determine chunk boundaries (§2.1), typically
resulting in lower throughputs than their hashless counterparts. Chunking throughput is defined as:

𝐶ℎ𝑢𝑛𝑘𝑖𝑛𝑔 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎𝑙𝑙 𝑐ℎ𝑢𝑛𝑘 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠
(2)

2.2.3 Chunk size distribution. Content-defined chunking (CDC) algorithms generate variable-sized chunks of a target
average chunk size. They try to ensure that the sizes of generated chunks are as close to the target average as possible.
However, due to underlying algorithmic characteristics, each algorithm has a unique chunk size distribution pattern.
For instance, FastCDC [21] exhibits two distinct smooth distributions, changing its pattern at the target average chunk
size. This is because it switches masks past the target average size and relaxes boundary conditions. On the other hand,
algorithms such as TTTD [25] exhibit a smooth distribution between their minimum and maximum specified chunk
sizes. Chunk size distributions are typically represented using cumulative distribution function (CDF) plots.

Space savings are inversely proportional to the target average chunk size, i.e., the greater the average chunk size, the
lower the space savings achieved in general [11]. This is because the probability of finding duplicate chunks is higher at
smaller chunk sizes. The degree of space savings degradation with increasing chunk size depends on algorithmic and
dataset characteristics.

All chunks generated by CDC algorithms are subsequently hashed using a collision-resistant algorithm [16] to
generate fingerprints, as described above. The set of unique fingerprints observed thus far is stored in a fingerprint
database. New incoming chunks are hashed, and their fingerprints are compared against this database to detect
duplicates. Thus, smaller and more numerous chunks result in a larger database; specifically, the fingerprint database
size is inversely proportional to the chosen average chunk size. A large number of small chunks can negatively impact
system throughput, both due to the increased fingerprint database size and the random data accesses caused by these
chunks. Thus, CDC algorithms in production typically target average chunk sizes between 2KB–64KB.

2.3 Vector Instructions

Vector instructions [34] are special Single-Instruction Multiple-Data (SIMD) instructions supported by most modern
processors. They rely on special vector registers for their operations. These registers come in multiple sizes; depending
on the width of the vector register they use, vector instructions can be classified into different families [34]. The most
common vector register sizes are 128 bits, 256 bits, and 512 bits, i.e., 16, 32, and 64 bytes wide.

Vector instructions support the execution of an operation on multiple pieces of data by packing them into vector
registers; for instance, eight 16-bit values 𝑎-ℎ can be densely packed into a 128-bit vector register 𝑉1. To add 𝑎-ℎ to
eight other values 𝑖-𝑝 , we can pack 𝑖-𝑝 into another register 𝑉2. We can now add them pairwise with a single vector
addition operation VADD (𝑉1,𝑉2) using 𝑉1 and 𝑉2 as operands, instead of eight separate integer arithmetic operations.
Manuscript submitted to ACM



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 7

0

10

20

30

40

SHA1 SHA-256 SHA-512 MD5 MurmurHash3 xxHash3

Ti
m

e 
(S

ec
on

ds
)

Fingerprinting Algorithm

Data Chunking Fingerprinting

Fig. 3. Time taken for Data Chunking vs Fingerprinting while deduplicating randomized data with FastCDC [21] and an 8 KB average
chunk size.

Vector instructions support various arithmetic operations [35], including pairwise addition, subtraction,multiplication,
and maximum/minimum on packed values. Additionally, they support logical operations such as bitwise AND (&)
and bitwise OR (|). They have been previously used to accelerate matrix multiplication [36], sorting [37], multimedia
applications [38], fluid simulations [39], hash tables [40], and relational databases [41]. The supported vector instruction
types and their relative performance vary across CPU manufacturers.

2.3.1 Intel and AMD. Vector instructions on x86 platforms can be classified into three families: SSE-128, AVX-256, and
AVX-512 [34]. SSE-128 instructions use 128-bit registers and have been supported by Intel and AMD processors since
1999 [42] and 2003 [43], respectively. AVX-256 instructions were introduced by Intel and AMD in 2011 [42], and use
256-bit registers. Finally, only a handful of the newest Intel and AMD processors, since 2017 [44] and 2022 [45], which
have 512-bit wide vector registers support AVX-512 instructions.

2.3.2 ARM. ARM processors have supported NEON-128 instructions, an equivalent to SSE-128, since 2011 [46]. Modern
ARM processors also support vector widths of 256 bits and higher with the SVE/SVE2 instruction sets, which have
been available since 2021 [47]. These two instruction sets differ in the kinds of instructions supported. For instance,
NEON-128 does not support native VMASK operations, which are used to create integer masks by extracting one out of
every k bits in a vector register, while SVE / SVE2 does. This can lead to performance differences in applications that
need the VMASK operation [40].

2.3.3 IBM Power. IBM’s Power [48] architecture supports AltiVec / VSX-128 vector instructions [49], an equivalent to
SSE-128, since the 1990s. This instruction set supports equivalents for most SSE instructions but lacks VMASK support.

3 Motivation

3.1 Performance bottlenecks in data deduplication

Although both data chunking and fingerprinting have traditionally been considered themain bottlenecks in deduplication
[8], this has changed with the advent of new hashing algorithms and acceleration methods for fingerprinting. Figure 3
is a stacked bar plot showing the time taken by the data chunking and fingerprinting phases during deduplication. For
fingerprinting, we use five different collision-resistant hashing algorithms [50–54]. For data chunking, we use FastCDC
[21], the fastest unaccelerated chunking algorithm (§6.2), with an 8 KB average chunk size. We use 30 GB of randomized
data and an Intel Emerald Rapids machine described in §6 for this experiment.

Manuscript submitted to ACM



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Udayashankar et al.

Fig. 4. SS-CDC [26]: Accelerating the rolling hash phase

Figure 3 shows that fingerprinting and data chunking take nearly equal time with traditional collision-resistant
hashing algorithms, such as SHA1 [51] and SHA-256 [52]. Fingerprinting takes longer than data chunking with other
algorithms, such as MD5 [50] and SHA-512 [52]. This indicates that both phases used to be the performance bottlenecks
in deduplication, aligning with previous literature [8].

However, recent research has introduced faster hashing algorithms such as MurmurHash3 [53] and xxHash3 [55]
that generate 128-bit digests equivalent to MD5 [56]. These hashing algorithms are being used for fingerprinting [17] or
as weak fingerprints followed by a byte-by-byte comparison [57]. Figure 3 shows that fingerprinting takes significantly
lower time than chunking with these new hashing algorithms, as they are 10 × −15× faster than their counterparts on
CPUs. Using GPUs can further accelerate fingerprinting speeds by up to 53× [18, 19].

Thus, as a result of its computationally intensive nature and position on the critical path, data chunking is a prime

target for acceleration.

3.2 Accelerating hash-based algorithms with vector instructions

To address the data chunking bottleneck, SS-CDC [26] proposed using AVX-512 instructions to accelerate hash-based
CDC algorithms. They decouple the rolling hash and boundary detection phases, running the rolling hash on the entire
source data to identify boundary candidates in the first phase, and determining boundaries sequentially in the second.
This allows both stages to be independently accelerated with AVX instructions.

Figure 4 shows how SS-CDC [26] accelerates the first rolling hash phase of hash-based CDC algorithms. SS-CDC
uses AVX-512 registers to create multiple rolling-heads (Head 1 - Head k), i.e., calculating the rolling hash on bytes from
multiple regions of the file independently and in parallel. Each rolling head maintains its own hash value in the hash
value register and independently calculates the contributions of incoming and outgoing bytes.

To use vector instructions, they first collect the outgoing bytes for each head into a vector register 𝑉1. Similarly,
they collect all the incoming bytes into another vector register 𝑉2. This is shown in Step 1 in Figure 4 and uses
Manuscript submitted to ACM



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 9

0

1

2

3

4

4KB 8KB 16KB

Th
ro

ug
hp

ut
 (G

B/
s)

Fig. 5. SS-CDC [26] throughputs on randomized data with AVX-512 instructions

gather instructions. The hash values for each head are stored in a separate register 𝑉3. In Step 2, SS-CDC removes the
contributions of all outgoing bytes from the hash values with a single vector operation and adds the contributions of all
incoming bytes with another.

Step 3 compares all the hash values against the pre-specified boundary condition (such as the lower x bits being
equal to zero in Rabin-Karp chunking [23]). Whenever any of the hash values match the boundary condition, they
mark the current position as a boundary candidate in a separate bitmap in Step 4 using scatter instructions. This
rolling hash phase is run on the entire incoming data stream/file. In the second phase, they scan the bitmap using vector
instructions to determine the actual boundaries among all candidates, taking into account the minimum and maximum
chunk sizes.

This approach introduces two problems. First, many hash-based algorithms, such as TTTD and FastCDC, skip
scanning data up to the minimum chunk size to improve throughput (§2.1). Decoupling the rolling hash and boundary
detection phases causes the rolling hash to be run on the entire incoming data stream, nullifying these optimizations.

Second, to load incoming and outgoing bytes from different regions in the file, SS-CDC [26] uses AVX gather

instructions. To populate the candidate bitmap when boundary candidates are discovered, they use scatter instructions.
These scatter and gather instructions are slow [58], limiting performance gains. Finally, scatter instructions are
only available on processors supporting certain instruction sets [35], limiting SS-CDC’s usage to a handful of the newest
Intel and AMD processors (§2.3).

Figure 5 shows the chunking throughput obtained by running SS-CDC accelerated versions of CRC (SS-CRC) and
Gear-based chunking (SS-Gear) [26] against their native unaccelerated counterparts. This experiment used randomized
data, an Intel Emerald Rapids machine described in §6 and AVX-512 instructions. We ran each algorithm with chunk
sizes of 4 − 16 KB. SS-CRC achieves 1.2 GB/s, a speedup of 2.58× over CRC. Similarly, SS-Gear achieves 3.3 GB/s, a
speedup of 3.13× over Gear. These small speedups result from the challenges associated with hash-based algorithms
that are described above.

Hashless algorithms do not possess explicit dependencies between adjacent bytes. They treat each byte as an
independent value and use maximum / minimum values from data regions to determine chunk boundaries. VectorCDC
chooses hashless algorithms over their hash-based counterparts as they are better candidates for SIMD acceleration.

Manuscript submitted to ACM



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Udayashankar et al.

Fig. 6. Accelerating Extreme Byte Searches. Note that the byte values shown are in hexadecimal format.

4 VectorCDC Design

Hashless CDC algorithms such as AE [20], RAM [24], and MAXP [27] slide windows over the source data to determine
chunk boundaries. We identify two common processing patterns across all hashless CDC algorithms: the Extreme

Byte Search and Range Scan. We accelerate each of these patterns using different vector-based techniques, which are
discussed in detail below.

While we use the AVX-512 instruction set as an example to describe our acceleration techniques in this section,
they can be implemented on any CPU with a vector instruction set supporting VMAX, VCMP and VMASK operations.
SSE-128 and AVX-256 instruction sets [35] fall under this umbrella, as do ARM and IBM processors with NEON-128 [46]
and AltiVec / VSX-128 [48] instructions, respectively. Thus, VectorCDC is compatible with a wide range of processors,
unlike SS-CDC [26], which relies on scatter instructions only available in AVX-512 instruction sets. Finally, while
other minima/maxima-based hashless algorithms can also be accelerated using VectorCDC, their native versions are
slower [20, 24, 27] than AE, RAM, and MAXP and have been omitted from the rest of our paper.

4.1 Tree-based Extreme Byte Search

Hashless CDC algorithms such as AE [20], RAM [24], and MAXP [27] all consist of a subsequence that identifies the
extreme byte (maximum/minimum) in a fixed-size window. The size of this window depends upon the expected average
chunk size and can be as large as 4 − 8KB. As this subsequence may need to be performed more than once per chunk,
we propose accelerating it using a novel tree-based search approach. Let us consider the search for a maximum value
using AVX-512 instructions (Figure 6). Note that the same method can be used with other vector instruction sets as well
as to find minimum values.

We first divide the fixed-size window into smaller sub-regions, loading all the bytes into AVX-compatible m512i
variables in Step 1. We load these bytes in a packed fashion i.e. each m512i variable contains 64 adjacent bytes. We
then use vector mm512_max instructions to find the pairwise maximum among packed byte pairs (Step 2). For instance,
among the bytes 0xE1 and 0x21, byte value 0xE1 is the maximum. The resulting pairwise maximums are packed into a
destination variable (𝑉5 in the figure).

Step 3 compares these resulting variables 𝑉5 and 𝑉6 from Step 2 using mm512_max instructions to find the pairwise
maximums. We repeat this process, building a tree of m512i variables until we are left with a single variable 𝑉7
Manuscript submitted to ACM



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 11

Fig. 7. Accelerating Range Scans. Note that the byte values shown are in hexadecimal format.

containing the maximum-valued 64 bytes from across the entire region. We scan these bytes sequentially in Step K to
determine the maximum valued byte.

4.2 Packed Scanning for Range Scans

Hashless CDC algorithms also consist of a range scan subsequence, where bytes are serially compared against a target
value. We propose to accelerate this scanning process using vector instructions. Let us consider a case where we
compare bytes sequentially to see if they are greater than or equal to a target value (such as in RAM [24]). Figure 7
shows our proposal to accelerate this using packed scanning with AVX-512 instructions. Note that the same methods
are applicable for other vector instruction sets as well.

We first load the target value (0xF4 in Figure 7) into an AVX-compatible m512i variable𝑉1. We then pack 64 adjacent
bytes from the scan region into another m512i variable 𝑉2. We compare these 2 registers using mm512_cmpge vector
compare instructions, which generate a 64-bit integer mask containing the comparison results. If this mask has a value
greater than 0, a chunk boundary exists within the scanned 64 bytes. Its exact position is determined using the mask
value. If the mask equals 0, no boundary exists within the scanned region and we proceed with loading the next 64
bytes into 𝑉2 to repeat the process.

Range Scans can be run with one of five comparators: Greater-Than (GT ), Lesser-Than (LT ), Greater-Than or
Equals (GEQ), Less-Than or Equals (LEQ), and exactly Equals (EQ). Each of these comparators uses a different vector
compare instruction; for instance, the GEQ comparator uses mm512_cmpge instructions while the LEQ comparator uses
mm512_cmple instructions. The same comparators also use different comparison instructions in different instruction
sets; for instance, the GEQ comparator uses mm512_cmpge instructions with the AVX-512 instruction set while it uses
mm256_cmpge with AVX-256.

It is worth noting that our packed scanning approach is compatible with sub-minimum skipping. Unlike SS-CDC’s
approach, chunk boundary detection and insertion can both occur in Range Scans, i.e., whenever a chunk boundary is
detected, the next minimum_chunk_size bytes can be skipped.

4.3 Putting it together: AE-Max, AE-Min, MAXP, and RAM

RAM [24] first scans a fixed-size window at the beginning of the chunk to find a maximum value (Figure 2c). After
this, it inserts a chunk boundary at the first byte outside the window, which is at least as large as the maximum valued
byte (§2.1). With VectorCDC, we accelerate RAM as a combination of an Extreme Byte Search to find a maximum value,

Manuscript submitted to ACM



573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Udayashankar et al.

followed by a Range Scan with the GEQ comparator that compares this maximum value against bytes until a chunk
boundary is found.

AE-Max [20] scans for a byte larger than all the bytes before it i.e., a target byte (Figure 2a). Once found, a fixed-size
window after this byte is scanned to determine the maximum valued byte within. If the target byte is larger than the
maximum valued byte, a chunk boundary is inserted; otherwise, scanning continues for a new target byte (§2.1). With
VectorCDC, we accelerate AE-Max as a combination of multiple Range Scans with the GT comparator to find target
bytes, each followed by a single Extreme Byte Search for a maximum value.

AE-Min [20] scans for a byte with lesser value than all those before it (§2.1). Once found, a fixed-size window after
this byte is scanned to determine the minimum value within. If the target byte has a lesser value than the minimum
valued byte, a chunk boundary is inserted; otherwise, scanning continues for a new target byte. Similar to AE-Max, we
accelerate AE-Min as a combination of multiple Range Scans with the LT comparator to find target bytes, each followed
by a single Extreme Byte Search for a minimum value.

Finally, MAXP [27] scans for a target local maxima that is exactly centered between two fixed-size windows (Figure
2b). A chunk boundary is inserted right after such a byte is found (§2.1). Thus, each chunk in MAXP can be represented
as a combination of multiple Range Scans with the GT comparator, each followed by two Extreme Byte Searches for
maximum values.

5 Implementation

We accelerate AE [20], MAXP [27], and RAM [24] using VectorCDC with 3000 lines of C++ code. We implemented
SSE-128, AVX-256, AVX-512, NEON-128, and VSX-128 versions of all algorithms. We also implemented Extreme Byte

Searches for minima and maxima, as well as Range Scan functionalities with the GT, GEQ, LT, LEQ, and EQ comparators
on all five vector instruction sets. We have made our code publicly available with DedupBench3 [15].

Note that while ARM processors support VCMP and VMAX operations, they lack native support for VMASK

instructions, which are used during range scans to generate a single mask containing the comparison results. This
is a common issue encountered by ARM developers trying to port x86 code [59]. We chose an efficient alternative
implementation [59] to work around the lack of native VMASK support. However, this alternative implementation uses
multiple slow NEON-128 instructions, such as vshrn and vreinterpretq, as opposed to a single x86 mm_movemask
instruction. As shown in §6.4, this causes accelerated algorithms to achieve lower speedups on ARM CPUs compared to
Intel and AMD.

IBM processors also support VCMP and VMAX operations, but lack native VMASK support. However, the same
functionality can be achieved using one vec_bperm and two vec_extract instructions. As these instructions are
relatively inexpensive, they are an efficient alternative to VMASK. As shown in §6.4, this allows IBM processors to
achieve speedups equivalent to or greater than Intel and AMD processors when using VectorCDC.

6 Evaluation

In this section, we evaluate VectorCDC against the state-of-the-art CDC algorithms.
Testbed. We run all our experiments using machines from the Cloudlab [60] platform. We pick five machines with

diverse vector instruction set support; Table 1 shows the vector instruction sets supported by each machine. The details
of each machine are as follows:

3https://github.com/UWASL/dedup-bench

Manuscript submitted to ACM

https://github.com/UWASL/dedup-bench


625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 13

CPU / CPU Family SSE-128 AVX-256 AVX-512 NEON-128 VSX-128

Intel Emerald Rapids ✓ ✓ ✓ – –

Intel Skylake ✓ ✓ ✓ – –

AMD EPYC Rome ✓ ✓ – – –

ARM v8 Atlas – – – ✓ –

IBM Power 8 – – – – ✓

Table 1. Vector instruction sets supported by the different machines in our testbed.

• Intel Emerald Rapids: We use a c6620 machine from CloudLab Utah, which has a 28-core Intel Xeon Gold 5512U
with hyperthreading at 2.1 GHz, 128 GB of RAM, and one Intel NIC each of 25 GBps and 100 GBps. It supports
the SSE-128, AVX-256, and AVX-512 vector instruction sets.

• Intel Skylake: We use a c240g5 machine from CloudLab Wisconsin, which has two 10-core Intel Xeon Silver
4114 CPUs with hyperthreading at 2.2 GHz, 192 GB of RAM, one Mellanox 25 GBps NIC, and one onboard Intel
1 GBps NIC. It supports the SSE-128, AVX-256, and AVX-512 vector instruction sets.

• AMD EPYC Rome: We use a c6525-25g machine from CloudLab Utah, which has a 16-core AMD 7302P CPU
with hyperthreading at 3.0 GHz, 128 GB of RAM, and two Mellanox 25 GBps NICs. It supports the SSE-128 and
AVX-256 vector instruction sets.

• ARM v8 Atlas: We use a m400 machine from CloudLab Utah, which has an 8-core ARM Cortex A-57 CPU at 2.4
GHz, 64 GB of RAM, and a 10 GBps Mellanox NIC. It supports the NEON-128 vector instruction set.

• IBM Power 8: We use an ibm8335 machine from CloudLab Clemson, which has dual 10-core IBM Power8NVL
CPUs at 2.86 GHz with 8 hardware threads per core, 256 GB of RAM, and a 10 GBps Broadcom Xtreme II NIC. It
supports the VSX-128 vector instruction set.

While some ARM CPUs released after 2022 support higher vector widths with SVE instructions (§2.3), we could
not obtain such a machine for our experiments. Note that all our runs are on the Intel Emerald Rapids machine unless
otherwise specified. Our throughput results are the averages of 5 runs, and the standard deviation was less than 5%.

Alternatives. We evaluate the following hash-based CDC algorithms:

• CRC: Native (unaccelerated) version of the CRC-32 chunking algorithm from SS-CDC [26].

• FCDC: Native version of FastCDC [21].

• Gear: Native version of the Gear-hash based chunking algorithm [22].

• RC: Rabin’s chunking algorithm from LBFS [23].

• SS-CRC: AVX-512 version of CRC accelerated using SS-CDC [26].

• SS-Gear: AVX-512 version of Gear accelerated using SS-CDC [26].

• TTTD: Two-Threshold Two-Divisor algorithm [25].

We also evaluate the following hashless CDC algorithms:

• AE: Native version of the Asymmetric Extremum algorithm [20]. We evaluate both AE-Max and AE-Min.

• MAXP: Native version of the MAXP algorithm [27].

• RAM: The native Rapid Asymmetric Maximum [24] algorithm.
Manuscript submitted to ACM



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Udayashankar et al.

• VAE: Accelerated versions of AE-Max and AE-Min with VectorCDC.

• VMAXP : Accelerated versions of MAXP with VectorCDC.

• VRAM: Accelerated versions of RAM with VectorCDC.

Note that for each hashless algorithm accelerated with VectorCDC, we evaluate their SSE-128, AVX-256, AVX-512,
NEON-128, and VSX-128 versions on supporting CPU platforms from our testbed (Table 1).

Datasets. We use 10 diverse datasets to evaluate VectorCDC; Table 2 shows their details. The datasets represent
diverse workloads such as VM backups, database and map backups, web snapshots, and source code. Some datasets,
such as FLOW and WIKI, are similar to those used by previous studies [74]. We have publicly released the DEB dataset 4

[28].
We note that the selected datasets have diverse characteristics. They have varying sizes, ranging from 1 GB for WIKI

to 981 GB for MAPS. They have different file counts; datasets such as MAPS and NEWS consist of a few large files, while
others, such as FLOW and KUBE, consist of a large number of small files. We include files with varying formats, such as
OSM [75], RDB [76], TAR [67], VMDK / OVA [77], text files, and binary files across these datasets for comprehensive
coverage.

Finally, Table 2 shows the space savings achieved by using fixed-size chunking (XC) and the median of those achieved
by CDC algorithms (Median CDC) on these datasets with 8KB chunks. By comparing XC against Median CDC, we note
that the datasets possess varying degrees of byte-shifting. The difference in space savings between XC and Median CDC

in FLOW and KUBE is small (less than 6% ), indicating a smaller number of byte-shifts. DEV has a moderate amount of
byte-shifting, as shown by the ~15% difference between XC and Median CDC. Finally, CDC algorithms achieve a median

4https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25

Dataset Size Files Dataset Information XC Median CDC

DEB 40 GB 65
Debian [61] VM Images obtained from

the VMware Marketplace [62]
18.98% 34.64%

DEV 230 GB 100 Nightly backups of a Rust [63] build server 83.17% 98.05%
FLOW 8 GB 630341 C++ source code for 25 versions of TensorFlow [64] 90.69% 91.98%
KUBE 1.5 GB 117344 Go source code for 5 versions of Kubernetes [65] 64.52% 69.42%
LNX 65 GB 160 Linux kernel distributions [66] in TAR format [67] 19.87% 45.62%

MAPS 981 GB 15
OpenStreetMap [68] backups of Canada

extracted using GeoFabrik [69]
0.10% 68.57%

NEWS 478 GB 47
Complete snapshots of a news website across

47 consecutive days in TAR [67] format
38.95% 73.80%

RDS 122 GB 100 Redis [70] snapshots between redis-benchmark runs 33.54% 92.94%
TPCC 106 GB 25 25 snapshots of a MySQL [71] VM running TPC-C [72] 37.39% 86.64%

WIKI 1 GB 3134
Snapshots of the largest Wikipedia article [73] across

multiple days, chosen for extreme versioning.
1.31% 72.37%

Table 2. Dataset Information. Note that XC represents the space savings achieved by fixed-size chunking with 8KB chunks while
Median CDC is the median space savings achieved by CDC algorithms with an 8KB average chunk size.

Manuscript submitted to ACM

https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25


729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 15

(a) AE-Max / VAE-Max (b) AE-Min / VAE-Min

(c) MAXP / VMAXP (d) RAM / VRAM

Fig. 8. Chunk size CDFs of hashless algorithms and their AVX-512 accelerated versions on TPCC with an 8KB average chunk size

of more than 2× higher space savings than XC on DEB, LNX, MAPS, NEWS, RDS, TPCC, and WIKI, indicating that these data
sets have a large degree of byte-shifting.

Metrics. We evaluate the space savings, chunk size distribution, and chunking throughput achieved by each
alternative on all the described datasets.

6.1 Space Savings and Chunk Size Distributions

Figures 9a - 9j show the space savings achieved by all alternatives with 8KB chunks across datasets. We omit the results
for other chunk sizes as the trends were similar.

6.1.1 Vector-acceleration Impact. Vector-acceleration does not impact the space savings achieved by CDC algorithms.
Consequently, for clarity, we omit the space savings results for vector-accelerated algorithms from Figure 9. This aligns
with the results previously observed for SS-CRC and SS-GEAR [26].

AVX-512 acceleration does not impact the chunks generated by hashless algorithms. We compared the generated
chunks of vector-accelerated algorithms with their native counterparts and verified that they were identical. We present
only the chunk size distribution comparison in this paper due to space constraints.

Manuscript submitted to ACM



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Udayashankar et al.

25.0%

35.0%

45.0%

55.0%
Sp

ac
e 

Sa
vin

gs

(a) DEB

65.0%

75.0%

85.0%

95.0%

Sp
ac

e 
Sa

vin
gs

HashlessHash-based

(b) DEV

65.0%

75.0%

85.0%

95.0%

Sp
ac

e 
Sa

vin
gs

HashlessHash-based

(c) FLOW

65.0%

75.0%

85.0%

95.0%

Sp
ac

e 
Sa

vin
gs

HashlessHash-based

(d) KUBE

25.0%

35.0%

45.0%

55.0%

Sp
ac

e 
Sa

vin
gs

HashlessHash-based

(e) LNX

65.0%

75.0%

85.0%

95.0%

Sp
ac

e 
Sa

vin
gs

HashlessHash-based

(f) NEWS

65.0%

75.0%

85.0%

95.0%

Sp
ac

e 
Sa

vin
gs

HashlessHash-based

(g) RDS

65.0%

75.0%

85.0%

95.0%

Sp
ac

e 
Sa

vin
gs

HashlessHash-based

(h) TPCC

65.0%

75.0%

85.0%

95.0%

Sp
ac

e 
Sa

vin
gs

HashlessHash-based

(i) WIKI

25.0%

45.0%

65.0%

85.0%

Sp
ac

e 
Sa

vin
gs

Hashless

(j) MAPS

Fig. 9. Space Savings with 8KB chunks. Note that the legend entries are in the same order as the plot bars.

Figure 8 shows the chunk size distributions exhibited by AE-Max, AE-Min, MAXP, and RAM compared against their
AVX-512 versions accelerated with VectorCDC. Note that each figure is a cumulative frequency (CDF) [78] plot. We use
a target average chunk size of 8KB and the TPCC dataset for this experiment. The results for other datasets and chunk
sizes were similar and have been omitted for clarity.

6.1.2 Hash-based vs Hashless. Hashless algorithms are generally competitive with hash-based ones in space savings.
The best among the hashless algorithms achieves slightly lower space savings than the best hash-based algorithm on
Manuscript submitted to ACM



833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 17

some datasets, such as DEB and NEWS (Figures 9a and 9f). On the other hand, the best hashless algorithm outperforms all
hash-based algorithms on other datasets, such as LNX and RDS (Figures 9e and 9g). Overall, the best hashless algorithms
achieve space savings values within 11% of the best hash-based ones across all datasets and chunk sizes.

6.1.3 Hashless algorithm comparison. The performance of the hashless algorithms depends on the dataset’s character-
istics and the average chunk size. For instance, RAM achieves the highest space savings on DEB (Figure 9a) while MAXP

does so on TPCC (Figure 9h). This shows that accelerating all hashless algorithms is important, as the performance of each

algorithm depends on the dataset’s characteristics.
Notably, AE-Min is adversely affected by the byte-shifting pattern in MAPS, causing it to achieve only 8.89% in space

savings while other CDC algorithms achieve 58%-78%.
Finally, while MAXP achieves higher space savings than RAM and both AE variants on many datasets, the space

savings difference between it and the next best hashless algorithm is small.

6.1.4 Differences among datasets. Hashless algorithms perform equivalent to or better than their counterparts on
virtual machine and database backups, such as DEV, RDS, and TPCC. Source-code datasets demonstrate mixed results,
with hash-based algorithms slightly edging out hashless ones on KUBE, equivalence on FLOW, and hashless algorithms
being better on LNX. File formats largely do not influence space savings.

6.2 Chunking Throughput

Figures 10a and 10b show the throughput achieved by all algorithms on DEB and DEV with a chunk size of 8KB. Note
that vector-accelerated algorithms are shown with patterned bars and that we have cropped the y-axis to 5 GB/s to
avoid the figures being skewed by VRAM. The results on other datasets and chunk sizes had similar trends and have
been omitted for clarity.

6.2.1 Throughput Comparison. Figures 10a and 10b show that hashless algorithms accelerated with VectorCDC achieve
4× to 15× higher throughput than all accelerated CDC algorithms. VRAM, the fastest accelerated hashless algorithm,
achieves 8.35× and 15.3× higher throughput than SS-GEAR and FastCDC, the fastest accelerated and unaccelerated
hash-based algorithms, respectively. Additionally, VRAM achieves 207.2× higher throughput than RC, a popular but
slow hash-based CDC algorithm.

Among unaccelerated hash-based algorithms, Gear [22], CRC [26], and FastCDC [21] are the fastest. We accelerated
each of these using SS-CDC [26]; SS-GEAR achieves 3 × higher throughput compared to its unaccelerated version, and
SS-CRC achieves 2 × higher throughput that unaccelerated CRC. We did not observe any speedup when accelerating
FastCDC [21] with SS-CDC [26]. One of the main throughput optimizations used by FastCDC is sub-minimum skipping
(§2.1). However, as noted in §3.2, decoupling the rolling-hash phase from the boundary identification phase eliminates
the throughput benefits of minimum chunk size skipping, nullifying any speedup provided by vector-acceleration.

6.2.2 Vector-acceleration benefits. Figures 10c and 10d compare the throughput benefits of accelerating hash-based
and hashless algorithms with AVX-512 accelerated algorithms on DEB and DEV.

Accelerating hash-based algorithms (Figure 10c) using SS-CDC achieves a speedup of 2.45 − 3.32×. On the other
hand, the hashless algorithms VAE-Max, VAE-Min, VMAXP, and VRAM achieve speedups of 5.1×, 4.43×, 5.36×, and
17.69× over their respective native counterparts, achieving throughputs in the range of 6.5 GB/s–29.9 GB/s. Thus,

Manuscript submitted to ACM



885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Udayashankar et al.

0
1
2
3
4
5

Th
ro

ug
hp

ut
 (G

B/
s)

CDC Algorithms 
Hash-based Hashless

9.
1 

GB
/s

9.
3 

GB
/s

8.
7 

GB
/s

29
.9

 G
B/

s

(a) DEB

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (G

B/
s)

CDC AlgorithmsHash-based Hashless

6.
7 

GB
/s

6.
5 

GB
/s

7.
6 

GB
/s

25
.2

 G
B/

s

(b) DEV

0

1

2

3

4

DEB DEV

Th
ro

ug
hp

ut
 (G

B/
s)

Dataset

(c) Hash-based algorithms with SS-CDC [26]

0

8

16

24

32

DEB DEV
Th

ro
ug

hp
ut

 (G
B/

s)
Dataset

(d) Hashless algorithms with VectorCDC

Fig. 10. Chunking Throughput with AVX-512 instructions and 8KB chunks. Note the different scales in Figures 10c and 10d, and that
the legend entries are in the same order as the plot bars from Figures 10a and 10b.

vector instructions can be leveraged far more efficiently for hashless algorithms, proving that hashless algorithms are

better candidates for vector-acceleration than their hash-based counterparts.
Figure 10d shows that VRAM achieves higher throughputs than VAE-Max, VAE-Min, and VMAXP. This is because

VAE requires multiple iterations of Range Scan per chunk, each followed by an Extreme Byte Search, while VRAM only
requires one iteration of each (§4). Similarly, VMAXP requires multiple Range Scans, each followed by two Extreme Byte

Searches. For a given target average chunk size, the size of the Extreme Byte Search regions in MAXP is 70 − 80% smaller
than the search region in AE. This allows VMAXP to achieve speeds similar to VAE-Max and VAE-Min despite needing
an extra Extreme Byte Search.

Thus, RAM is inherently more vector-friendly than AE and MAXP. However, note that VAE and VMAXP are still faster
than every other CDC algorithm.

6.2.3 Deduplication performance bottlenecks. Figure 11 shows the time taken by the chunking and hashing phases
in the deduplication pipeline on DEB with an 8KB average chunk size. We omit the results for other datasets as they
were similar. We used two fingerprinting algorithms; xxHash3, the fastest but generates a 128-bit digest, and SHA-256,
slower but offers higher collision resistance with a 256-bit digest (§3.1). We ran this experiment on the Intel Emerald
Rapids machine. We use AVX-512 versions of hashless CDC algorithms, accelerated with VectorCDC.

Figure 11 shows that with xxHash3 (Figure 11a), data chunking takes significantly longer than fingerprinting with
unaccelerated algorithms. On the other hand, VAE-Min, VAE-Max, VMAXP, and VRAM show data chunking times similar
Manuscript submitted to ACM



937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 19

0
5

10
15
20
25
30

FastCDC AE-Min AE-Max MAXP RAM VAE-Min VAE-Max VMAXP VRAM

Ti
m

e 
(S

ec
on

ds
)

CDC Algorithm

Data Chunking Fingerprinting

(a) xxHash3 - 128-bit digest

0
10
20
30
40
50
60

FastCDC AE-Min AE-Max MAXP RAM VAE-Min VAE-Max VMAXP VRAM

Ti
m

e 
(S

ec
on

ds
)

CDC Algorithm

Data Chunking Fingerprinting

(b) SHA256 - 256-bit digest

Fig. 11. Time taken for Data Chunking vs Fingerprinting on DEB with an 8 KB average chunk size, and AVX-512 instructions for
acceleration.

to or lower than fingerprinting. For instance, with VRAM, data chunking takes 1.29 seconds while fingerprinting takes
2.27 seconds.

With SHA-256 (Figure 11b), we observe that fingerprinting takes as long as data chunking with unaccelerated CDC
algorithms. On the other hand, VAE-Max, VAE-Min, VMAXP, and VRAM take significantly lower time to run.

These results show that VectorCDC effectively alleviates the data chunking bottleneck in the deduplication pipeline.

6.3 Throughput breakdown - Extreme Byte Search vs Range Scan

The throughput impact of each processing pattern depends on algorithmic and dataset characteristics. Figure 12 shows
the individual impact of accelerating Extreme Byte Search and Range Scan using VRAM on the DEB and LNX datasets
with an 8KB chunk size. VRAM-EBS and VMAXP-EBS represent RAM andMAXP running with only Extreme Byte Search

acceleration, while VRAM-512 and VMAXP-512 use both accelerated patterns.
Figure 12a shows that on DEB, VRAM-EBS achieves a throughput of 18.5 GB/s compared to RAM at 1.7 GB/s.

Accelerating Range Scan provides an additional speedup of 11.4 GB/s. On the other hand on LNX, VRAM-EBS only
achieves 2.7 GB/s compared to RAM at 2 GB/s. Accelerating Range Scan provides an additional speedup of 27.6 GB/s.

Manuscript submitted to ACM



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Udayashankar et al.

Thus, each pattern has a balanced impact on VRAM’s throughput on DEB, while Range Scan primarily contributes to
throughput on LNX, indicating that dataset characteristics affect the throughput breakdown.

The throughput breakdown also varies across algorithms; for instance, accelerating Extreme Byte Searches has
differing impacts on the throughputs of RAM andMAXP. While Figure 12a shows that VRAM-EBS achieves significantly
higher throughput than RAM on DEB, Figure 12b shows that VMAXP-EBS only achieves small speedups over MAXP, i.e.,
Range Scan acceleration contributes more to throughput on VMAXP than it does on VRAM.

These results are directly tied to the number of bytes processed by the algorithms on both datasets. Figure 13 shows
the percentage shares of bytes processed by Extreme Byte Searches and Range Scans, for all hashless algorithms on DEB

and LNX. As seen in Figure 13a, the percentage shares differ across algorithms. For instance, RAM processes 96.70%
and 3.30% of bytes on DEB with Extreme Byte Search and Range Scan, respectively. On the other hand, MAXP processes
10.26% and 89.74% of bytes with Extreme Byte Search and Range Scan, respectively. Additionally, this percentage varies
across datasets, as seen by the differences between Figures 13a and 13b.

Thus, accelerating both phases using vector instructions is crucial to performance, as the impact of each phase depends

on dataset and algorithmic characteristics.

6.4 VectorCDC across different vector instruction sets

VectorCDC is compatible with a large range of platforms that support vector instructions such as SSE-128, AVX-256,
NEON-128, and VSX-128 (§2.3). This is unlike SS-CDC [26] which requires CPUs with scatter/gather instruction
support. Such CPUs are present only in a small percentage of datacenter nodes today.

While §4 discusses VectorCDC’s design using AVX-512 instructions, the same methods can be applied to any vector
instruction set that supports VCMP, VMAX, and VMASK operations. In this section, we evaluate VectorCDC’s performance
with other such vector instruction sets. We ran this experiment using the DEB dataset and an average chunk size of 8 KB.

6.4.1 AMDEPYCRome. Figure 14a shows the throughputs achieved by hashless algorithms acceleratedwith VectorCDC
on an AMD EPYC Rome machine. As shown in Table 1, the AMD machine only supports SSE-128 and AVX-256
instructions. All four hashless algorithms in Figure 14a show speedups over their native versions with both instruction
sets. For instance, AE-Max achieves 2.12× and 3.43× speedups with SSE-128 and AVX-256 instructions, respectively.
Similar to the results in §6.2 with AVX-512 instructions, RAM achieves the highest throughput of all algorithms with
both SSE-128 and AVX-256 instructions.

0

10

20

30

40

DEB LNX

Th
ro

ug
hp

ut
 (G

B/
s)

RAM VRAM-EBS VRAM-512

(a) VRAM

0

2.5

5

7.5

10

DEB LNX

Th
ro

ug
hp

ut
 (G

B/
s)

MAXP VMAXP-EBS VMAXP-512

(b) VMAXP

Fig. 12. Throughput Breakdown with AVX-512 instructions. Note that VRAM-EBS and VMAXP-EBS represent VRAM and VMAXP
with only Extreme Byte Search accelerated.

Manuscript submitted to ACM



1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 21

0.00%

25.00%

50.00%

75.00%

100.00%

AE-Max AE-Min MAXP RAM

By
te

s P
ro

ce
ss

ed

(a) DEB

0.00%

25.00%

50.00%

75.00%

100.00%

AE-Max AE-Min MAXP RAM

By
te

s P
ro

ce
ss

ed

(b) LNX

Fig. 13. Percentage share of bytes processed using Extreme Byte Search and Range Scan by hashless CDC algorithms on DEB and LNX

6.4.2 Intel Emerald Rapids and Skylake. Figures 14b and 14c show the throughputs achieved by hashless algorithms
accelerated with VectorCDC on Intel Emerald Rapids and Skylake machines. As shown in Table 1, these machines
support SSE-128, AVX-256, and AVX-512 instructions. All four hashless algorithms in Figures 14b and 14c achieve
speedups over their unaccelerated versions with all instruction sets. For instance, in Figure 14c, AE-Max achieves 2.29×,
4.91×, and 6.71× speedups with SSE-128, AVX-256, and AVX-512 instructions, respectively. Similar to the results in §6.2
with AVX-512 instructions, RAM achieves the highest throughput of all algorithms with both SSE-128 and AVX-256
instructions.

On both platforms, all algorithms also benefit from increasing vector widths; that is, higher vector widths lead to
higher throughput. The only exception is MAXP, which does not gain as much as the other algorithms with AVX-512
instructions over AVX-256. This is related to the small window sizes used by MAXP for its Extreme Byte Search phases,
which do not benefit from high vector widths. However, MAXP still achieves 4.7× and 5.42× speedups with AVX-512
instructions over its unaccelerated version, on the Skylake and Emerald Rapids machines, respectively.

6.4.3 ARM v8 Atlas. Figure 14d shows the throughputs achieved by hashless algorithms accelerated with VectorCDC
on an ARM v8 Atlas machine. As shown in Table 1, the machine only supports NEON-128 instructions, an ARM
equivalent to SSE-128. While the instruction set supports VMAX and VCMP operations, it lacks native support for
VMASK operations (§5). RAM achieves the highest throughput among all accelerated hashless algorithms at 2.91 GB/s.

All hashless algorithms achieve lower speedups on ARM with NEON-128 instructions, when compared to SSE-128
instructions on Intel and AMD machines. AE-Max and AE-Min are especially affected, achieving only 1.08× and 1.05×
speedups, i.e. 8% and 5% gains with NEON-128 over their unaccelerated versions. This is largely due to the lack of
native VMASK support, which affects Range Scans. While our implementation uses an alternative method to achieve
the same functionality, it uses four NEON-128 instructions instead of a single SSE-128 VMASK instruction.

However, MAXP and RAM still achieve 1.93× and 5.32× speedups, respectively, showing that VectorCDC remains
beneficial on ARM platforms with NEON-128 support. Note that these numbers are expected to improve in ARM
platforms supporting SVE/SVE2 instructions [47], as they offer native VMASK support. However, as we could not obtain
such a platform for our evaluation, we leave a detailed SVE/SVE2 performance review as future work.

6.4.4 IBM Power 8. Figure 14e shows the throughputs achieved by hashless algorithms accelerated with VectorCDC
on an IBM Power 8 machine. As shown in Table 1, this machine only supports VSX-128 instructions, an IBM equivalent

Manuscript submitted to ACM



1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Udayashankar et al.

0.00

8.00

16.00

24.00

32.00

AE-Max AE-Min MAXP RAM

Th
ro

ug
hp

ut
 (G

B/
s)

2.1
2x

3.4
3x

(a) AMD EPYC Rome

0.00

8.00

16.00

24.00

32.00

AE-Max AE-Min MAXP RAM

Th
ro

ug
hp

ut
 (G

B/
s)

5.4
2x

5.4
2x 9.9

4x

(b) Intel Emerald Rapids

0.00

8.00

16.00

24.00

32.00

AE-Max AE-Min MAXP RAM

Th
ro

ug
hp

ut
 (G

B/
s)

2.2
9x

4.9
1x

6.7
1x

4.7
x

4.7
x 7.4

9x

(c) Intel Skylake

0.00

1.00

2.00

3.00

4.00

AE-Max AE-Min MAXP RAM

Th
ro

ug
hp

ut
 (G

B/
s)

1.0
8x

1.0
5x 1.9

3x

5.3
2x

(d) ARM v8 Atlas

0.00
2.00
4.00
6.00
8.00

10.00

AE-Max AE-Min MAXP RAM

Th
ro

ug
hp

ut
 (G

B/
s)

2.9
2x

2.8
5x

7.9
3x

20
.35

x

(e) IBM Power 8

Fig. 14. Accelerating hashless algorithms with VectorCDC across processor architectures, on DEB at an 8KB average chunk size. Data
labels show speedups over the respective native algorithm for the specific cases discussed in text. Note the different y-axis scale on
Figures 14d and 14e.

to SSE-128. This instruction set lacks support for native VMASK operations as well (§5). RAM achieves the highest
throughput among all accelerated hashless algorithms, at 8.54 GB/s.

Unlike ARM, all hashless algorithms exhibit considerable speedups on IBM Power 8 with VectorCDC. AE-Max and
AE-Min achieve speedups of 2.92× and 2.85× respectively. MAXP and RAM achieve speedups of 7.93× and 20.35×
respectively. Furthermore, all hashless algorithms accelerated with VSX-128 instructions achieve speedups equivalent
to or greater than their counterparts accelerated with SSE-128 on Intel and AMD machines. For instance, RAM achieves
a speedup of 20.35× with VSX-128 on IBM Power 8 while it achieves a speedup of 7.49× and 9.94× with SSE-128 on
Intel Emerald Rapids and AMD EPYC Rome, respectively.

This is because, despite the lack of native VMASK instruction support, the alternative implementation using
vec_bpermq is efficient and uses just two fast VSX-128 instructions.
Manuscript submitted to ACM



1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 23

6.5 Evaluation Summary

To summarize, the main takeaways from our evaluation are the following:

• VectorCDC-based hashless algorithms achieve 15.3×–207.2× and 8.35×–26.2× higher throughput than unaccel-
erated and vector-accelerated hash-based algorithms respectively, showing that hashless algorithms are better
candidates for vector acceleration (§6.2).

• VectorCDC effectively alleviates the data chunking performance bottleneck in the deduplication pipeline (§6.2.3).
• Accelerating both Extreme Byte Search and Range Scan is important because their individual impact depends on

dataset and algorithmic characteristics (§6.3).
• VectorCDC provides benefits across different processor architectures, and is compatible with a wide range of

vector instruction sets (§6.4).
• Accelerating hashless algorithms with VectorCDC does not impact their space savings and generates chunks

identical to their unaccelerated counterparts.
• Hashless algorithms achieve space savings values comparable to or better than those of their hash-based

counterparts on real-world datasets (§6.1). The best performing hashless algorithm varies by dataset, showing
that accelerating all of them is equally important.

7 Related Work

7.0.1 Chunking optimizations. Many efforts have been made to optimize data chunking. MUCH [79] and P-Dedupe [80]
use multiple threads to accelerate chunking. RapidCDC [81] sometimes skips data chunking by predicting the next
chunk boundary based on historical data, but requires maintaining additional metadata. Bimodal Chunking [82] initially
splits the data into large chunks, and then divides duplicate adjacent chunks into smaller ones, to enhance space savings.
VectorCDC is compatible with all of these approaches, as they build on top of existing CDC algorithms.

Previous work [83] that analyzes the characteristics of chunks generated by CDC algorithms, is orthogonal to
VectorCDC, as vector acceleration does not affect generated chunks.

Our previous paper at USENIX FAST 2025 [84] presented VectorCDC’s design, but does not discuss acceleratingMAXP

[27] or VectorCDC’s performance on varying CPU architectures. Additionally, it does not present a comprehensive
evaluation of VectorCDC’s capabilities.

7.0.2 Deduplication optimizations. Several other efforts exist to optimize the other phases of the deduplication pipeline.
StoreGPU [19] and GPU-Dedup [18] accelerate chunk hash computation using GPUs. SiLo [85], Sparse Indexing [86]
and Extreme Binning [87] optimize hash indexing. HYDRAStor [88] is a distributed deduplication system that focuses
on data placement. Several studies incorporate delta compression after deduplication to further compress similar but
non-duplicate chunks [89–91]. These efforts are orthogonal to ours as we accelerate the data chunking phase.

7.0.3 Accelerating other storage systems. Vector instructions have been widely used to accelerate other storage systems.
MinervaFS [92] accelerates the computation of transform and basis functions in generalized deduplication with AVX
instructions. ICID [93] records memory-copy operations in a B-Tree for fine-grained deduplication, accelerating tree
searches with AVX instructions. AVX-512 conflict detection instructions have been used to accelerate lightweight data
compression algorithms [94]. Numerous works attempt to accelerate collision-resistant hashing algorithms used across
storage systems with vector instructions [95, 96]. These efforts are orthogonal to ours as we focus on using vector
instructions to accelerate CDC algorithms for block-level deduplication.

Manuscript submitted to ACM



1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Udayashankar et al.

7.0.4 Secure deduplication systems. Several efforts build end-to-end deduplication systems for encrypted data [97].
They mainly target encryption schemes [98, 99] for the underlying data or focus on reducing attacks on the system
[100, 101]. Some target specific applications, such as distributing encrypted docker images [102] and encrypted videos
[103]. As all of these efforts layer encryption atop existing data chunking algorithms, VectorCDC is compatible with all
these approaches.

8 Conclusion

We present VectorCDC, a methodology for accelerating content-defined chunking using vector instructions. VectorCDC
avoids the pitfalls of previous work that accelerates CDC algorithms by choosing hashless CDC algorithms instead.
VectorCDC accelerates these algorithms using novel tree-based search and packed scanning methods. Our evaluation
shows that VectorCDC achieves 8.35×-26.2× higher throughput than existing vector-accelerated CDC algorithms
and 15.3×-207.2× higher throughput than unaccelerated algorithms. We have made our code publicly available by
integrating it with DedupBench [15], and published one of our datasets on Kaggle [28].

Acknowledgments

We thank the anonymous reviewers of USENIX FAST 2025 and ACM Transactions on Storage for their feedback. We
thank Lori Paniak for his technical assistance throughout the project, and Mu’men Al-Jarah for his feedback on an earlier
version of this work. The research team was supported by grants from the National Cybersecurity Consortium (NCC),
Natural Sciences and Engineering Research Council of Canada (NSERC), and the Ontario Research Fund’s Research
Excellence Program (ALLRP-561423-20, RGPIN-2025-03332, and ORF-RE012-051). The team was also supported by
research grants from Acronis, Oracle Research Labs, and Rogers Communications. Sreeharsha is supported by the
Cheriton Graduate Scholarship and the Ontario Graduate Scholarship.

References
[1] Statista. Worldwide data created from 2010 to 2025, 2024.
[2] Mark Carlson, Alan Yoder, Leah Schoeb, Don Deel, Carlos Pratt, Chris Lionetti, and Doug Voigt. Software Defined Storage. Storage Networking

Industry Association Working Draft, pages 20–24, 2014.
[3] Peter M Chen, Edward K Lee, Garth A Gibson, Randy H Katz, and David A Patterson. RAID: High-performance, reliable secondary storage. ACM

Computing Surveys (CSUR), 26(2):145–185, 1994.
[4] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop distributed file system. In 2010 IEEE 26th Symposium on

Mass Storage Systems and Technologies (MSST), pages 1–10. Ieee, 2010.
[5] Sage Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn. Ceph: A scalable, high-performance distributed file system. In

Proceedings of the 7th Conference on Operating Systems Design and Implementation (OSDI’06), pages 307–320, 2006.
[6] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal, 2004(124):5, 2004.
[7] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry

Li, et al. TAO: Facebook’s distributed data store for the social graph. In 2013 USENIX Annual Technical Conference (USENIX ATC 13), pages 49–60,
2013.

[8] Dutch T Meyer and William J Bolosky. A study of practical deduplication. ACM Transactions on Storage (ToS), 7(4):1–20, 2012.
[9] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua, Min Fu, Yucheng Zhang, and Yukun Zhou. A comprehensive study of the

past, present, and future of data deduplication. Proceedings of the IEEE, 104(9):1681–1710, 2016.
[10] Deyan Chen and Hong Zhao. Data security and privacy protection issues in cloud computing. In 2012 International Conference on Computer Science

and Electronics Engineering, volume 1, pages 647–651. IEEE, 2012.
[11] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Ottean, Jin Li, and Sudipta Sengupta. Primary Data Deduplication — Large scale study and system

design. In 2012 USENIX Annual Technical Conference (USENIX ATC 12), pages 285–296, 2012.
[12] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen Smaldone, Mark Chamness, and Windsor Hsu. Characteristics of backup

workloads in production systems. In USENIX Conference on File and Storage Technologies (FAST), volume 12, pages 4–4, 2012.

Manuscript submitted to ACM



1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 25

[13] Phlip Shilane, Mark Huang, Grant Wallace, and Windsor Hsu. Wan-optimized replication of backup datasets using stream-informed delta
compression. ACM Transactions on Storage (ToS), 8(4):1–26, 2012.

[14] Sarah Henderson. Document duplication: How users (struggle to) manage file copies and versions. Proceedings of the American Society for
Information Science and Technology, 48(1):1–10, 2011.

[15] Alan Liu, Abdelrahman Baba, Sreeharsha Udayashankar, and Samer Al-Kiswany. DedupBench: A Benchmarking Tool for Data Chunking
Techniques. In 2023 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pages 469–474. IEEE, 2023.

[16] Jingwei Li, Zuoru Yang, Yanjing Ren, Patrick PC Lee, and Xiaosong Zhang. Balancing storage efficiency and data confidentiality with tunable
encrypted deduplication. In Proceedings of the Fifteenth European Conference on Computer Systems, pages 1–15, 2020.

[17] Nigel Tan, Jakob Luettgau, Jack Marquez, Keita Teranishi, Nicolas Morales, Sanjukta Bhowmick, Franck Cappello, Michela Taufer, and Bogdan
Nicolae. Scalable incremental checkpointing using gpu-accelerated de-duplication. In Proceedings of the 52nd International Conference on Parallel
Processing, ICPP ’23, page 665–674, New York, NY, USA, 2023. Association for Computing Machinery.

[18] Kiatchumpol Suttisirikul and Putchong Uthayopas. Accelerating the cloud backup using GPU based data deduplication. In 2012 IEEE 18th
International Conference on Parallel and Distributed Systems, pages 766–769. IEEE, 2012.

[19] Samer Al-Kiswany, Abdullah Gharaibeh, Elizeu Santos-Neto, George Yuan, and Matei Ripeanu. StoreGPU: Exploiting Graphics Processing Units to
Accelerate Distributed Storage Systems. In Proceedings of the 17th International Symposium on High Performance Distributed Computing, HPDC ’08,
page 165–174, New York, NY, USA, 2008. Association for Computing Machinery.

[20] Yucheng Zhang, Hong Jiang, Dan Feng, Wen Xia, Min Fu, Fangting Huang, and Yukun Zhou. AE: An asymmetric extremum content defined
chunking algorithm for fast and bandwidth-efficient data deduplication. In 2015 IEEE Conference on Computer Communications (INFOCOM), pages
1337–1345. IEEE, 2015.

[21] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu, Qing Liu, and Yucheng Zhang. FastCDC: A fast and efficient content-defined
chunking approach for data deduplication. In 2016 USENIX Annual Technical Conference (USENIX ATC 16), pages 101–114, 2016.

[22] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Yukun Zhou. Ddelta: A deduplication-inspired fast delta compression approach. Performance
Evaluation, 79:258–272, 2014. Special Issue: Performance 2014.

[23] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-bandwidth network file system. In Proceedings of the Eighteenth ACM Symposium
on Operating Systems Principles (SOSP), pages 174–187, 2001.

[24] Ryan NS Widodo, Hyotaek Lim, and Mohammed Atiquzzaman. A new content-defined chunking algorithm for data deduplication in cloud storage.
Future Generation Computer Systems, 71:145–156, 2017.

[25] Kave Eshghi and Hsiu Khuern Tang. A framework for analyzing and improving content-based chunking algorithms. Hewlett-Packard Labs
Technical Report TR, 30(2005), 2005.

[26] Fan Ni, Xing Lin, and Song Jiang. SS-CDC: A two-stage parallel content-defined chunking for deduplicating backup storage. In Proceedings of the
12th ACM International Conference on Systems and Storage, pages 86–96, 2019.

[27] Nikolaj Bjørner, Andreas Blass, and Yuri Gurevich. Content-dependent chunking for differential compression, the local maximum approach.
Journal of Computer and System Sciences, 76(3-4):154–203, 2010.

[28] Sreeharsha Udayashankar, Abdelrahman Baba, and Samer Al-Kiswany. VM Images for Deduplication. https://www.kaggle.com/dsv/10561721,
2025.

[29] Dian Rachmawati, JT Tarigan, and ABC Ginting. A comparative study of Message Digest 5 (MD5) and SHA256 algorithm. In Journal of Physics:
Conference Series, volume 978, page 012116. IOP Publishing, 2018.

[30] Chunlin Song, Xianzhang Chen, Duo Liu, Jiali Li, Yujuan Tan, and Ao Ren. Optimizing the Performance of Consistency-Aware Deduplication
Using Persistent Memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023.

[31] Sean Quinlan and Sean Dorward. Venti: A new approach to archival data storage. In USENIX Conference on File and Storage Technologies, 2002.
[32] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weather-

spoon, Westley Weimer, et al. Oceanstore: An architecture for global-scale persistent storage. ACM SIGOPS Operating Systems Review, 34(5):190–201,
2000.

[33] Mike Dutch. Understanding data deduplication ratios. In SNIA Data Management Forum, volume 7, 2008.
[34] James E Smith, Greg Faanes, and Rabin Sugumar. Vector instruction set support for conditional operations. ACM SIGARCH Computer Architecture

News, 28(2):260–269, 2000.
[35] Intel. Intel® Intrinsics Guide. https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html, 2024.
[36] Somaia A Hassan, Mountasser MM Mahmoud, AM Hemeida, and Mahmoud A Saber. Effective implementation of matrix–vector multiplication on

Intel’s AVX multicore processor. Computer Languages, Systems & Structures, 51:158–175, 2018.
[37] Shay Gueron and Vlad Krasnov. Fast quicksort implementation using AVX instructions. The Computer Journal, 59(1):83–90, 2016.
[38] Robert L Bocchino Jr and Vikram S Adve. Vector LLVA: a virtual vector instruction set for media processing. In Proceedings of the 2nd International

Conference on Virtual Execution Environments, pages 46–56, 2006.
[39] Jorge Francés, Sergio Bleda, Andrés Márquez, Cristian Neipp, Sergi Gallego, Beatriz Otero, and Augusto Beléndez. Performance analysis of SSE and

AVX instructions in multi-core CPUs and GPU computing on FDTD scheme for solid and fluid vibration problems. The Journal of Supercomputing,
70:514–526, 2014.

Manuscript submitted to ACM

https://www.kaggle.com/dsv/10561721
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html


1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Udayashankar et al.

[40] Maximilian Böther, Lawrence Benson, Ana Klimovic, and Tilmann Rabl. Analyzing Vectorized Hash Tables across CPU Architectures. Proceedings
of the VLDB Endowment, 16(11):2755–2768, July 2023.

[41] Markus Dreseler, Jan Kossmann, Johannes Frohnhofen, Matthias Uflacker, and Hasso Plattner. Fused Table Scans: Combining AVX-512 and JIT to
Double the Performance of Multi-Predicate Scans. In 2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW), pages
102–109, 2018.

[42] Intel. Intel® Instruction Set Extensions Technology. https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html.
[43] Advanced Micro Devices. Revision Guide for AMD Athlon 64 and AMD Opteron𝑇𝑀 Processors. https://www.amd.com/content/dam/amd/en/

documents/archived-tech-docs/revision-guides/25759.pdf, 2003.
[44] WikiChip. Skylake Server - Microarchitectures - Intel. https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server), 2017.
[45] WikiChip. Zen 4 - Microarchitectures - AMD. https://en.wikichip.org/wiki/amd/microarchitectures/zen_4, 2022.
[46] ARM. ARMNEONArchitecture Overview. https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/

NEON-instructions, 2013.
[47] Ruimin Shi, Gabin Schieffer, Maya Gokhale, Pei-Hung Lin, Hiren Patel, and Ivy Peng. ARM SVE Unleashed: Performance and Insights Across HPC

Applications on Nvidia Grace. European Conference on Parallel Processing, 2025.
[48] B. Sinharoy, J. A. Van Norstrand, R. J. Eickemeyer, H. Q. Le, J. Leenstra, D. Q. Nguyen, B. Konigsburg, K. Ward, M. D. Brown, J. E. Moreira, D. Levitan,

S. Tung, D. Hrusecky, J. W. Bishop, M. Gschwind, M. Boersma, M. Kroener, M. Kaltenbach, T. Karkhanis, and K. M. Fernsler. IBM POWER8
processor core microarchitecture. IBM Journal of Research and Development, 59(1):2:1–2:21, 2015.

[49] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. AltiVec. Alpha Press, 2010.
[50] Ronald Rivest. RFC 1321: The MD5 message-digest algorithm. Technical report, Network Working Group, 1992.
[51] D Eastlake 3rd. RFC 3174: US secure hash algorithm 1 (SHA1). Technical report, Network Working Group, 2001.
[52] D. Eastlake 3rd and T. Hansen. RFC 4634: US Secure Hash Algorithms (SHA and HMAC-SHA). Technical report, Network Working Group, 2006.
[53] Austin Appleby. MurmurHash3. 2011.
[54] Lianhua Chi and Xingquan Zhu. Hashing techniques: A survey and taxonomy. ACM Computing Surveys (Csur), 50(1):1–36, 2017.
[55] xxHash. xxHash - Extremely fast non-cryptographic hash algorithm. https://xxhash.com/, 2020.
[56] Austin Appleby. SMHasher. 29:2016, 2016.
[57] Fan Ni, Xingbo Wu, Weijun Li, Lei Wang, and Song Jiang. Woj: Enabling write-once full-data journaling in ssds by using weak-hashing-based

deduplication. Performance Evaluation, 127-128:56–69, 2018.
[58] Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy, Aaron Vose, and Daniel Ernst. Evaluating Gather and Scatter Performance on CPUs and

GPUs. In Proceedings of the International Symposium on Memory Systems, MEMSYS ’20, page 209–222, New York, NY, USA, 2021. Association for
Computing Machinery.

[59] Danila Kutenin. Porting x86 vector bitmask optimizations to Arm NEON. https://community.arm.com/arm-community-blogs/b/servers-and-
cloud-computing-blog/posts/porting-x86-vector-bitmask-optimizations-to-arm-neon, 2022.

[60] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk
Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin Kar, and
Prabodh Mishra. The design and operation of CloudLab. In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 1–14, Renton, WA,
July 2019. USENIX Association.

[61] Debian. Debian – The Universal Operating System. https://www.debian.org/, 2025.
[62] VMWare. VMWare marketplace. https://marketplace.cloud.vmware.com/services, 2023.
[63] Rust. GitHub - rust-lang/rust: Empowering everyone to build reliable and efficient software. https://github.com/rust-lang/rust, 2023.
[64] Bo Pang, Erik Nijkamp, and Ying Nian Wu. Deep learning with tensorflow: A review. Journal of Educational and Behavioral Statistics, 45(2):227–248,

2020.
[65] Marko Luksa. Kubernetes in action. Simon and Schuster, 2017.
[66] Linux. The Linux Kernel Archives. https://www.kernel.org/, 2023.
[67] GNU. GNU tar 1.35: Basic Tar Format. https://www.gnu.org/software/tar/manual/html_section/Standard.html, 2023.
[68] Mordechai Haklay and Patrick Weber. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Computing, 2008.
[69] GeoFabrik. GEOFABRIK. https://www.geofabrik.de/, 2025.
[70] Redis. Redis. https://redis.io/, 2023.
[71] MySQL. MySQL. https://www.mysql.com/, 2023.
[72] Transaction Processing Council. TPC-C Overview. https://www.tpc.org/tpcc/detail5.asp, 2023.
[73] Wikipedia. List of films based on actual events. https://en.wikipedia.org/wiki/List_of_films_based_on_actual_events, 2022.
[74] Owen Randall and Paul Lu. Predicting deduplication performance: An analytical model and empirical evaluation. In 2022 IEEE International

Conference on Big Data (Big Data), pages 319–328, 2022.
[75] OpenStreetMap. OSM file formats - OpenStreetMap Wiki. https://wiki.openstreetmap.org/wiki/OSM_file_formats, 2025.
[76] Jan-Erik Rediger. RDB File Format. https://rdb.fnordig.de/file_format.html, 2015.
[77] DMTF. Open virtualization format white paper. https://www.dmtf.org/sites/default/files/standards/documents/DSP2017_1.0.0.pdf, 2009.
[78] Irving W Burr. Cumulative Frequency Functions. The Annals of Mathematical Statistics, 13(2):215–232, 1942.
Manuscript submitted to ACM

https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/revision-guides/25759.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/revision-guides/25759.pdf
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/amd/microarchitectures/zen_4
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-instructions
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-instructions
https://xxhash.com/
https://community.arm.com/arm-community-blogs/b/servers-and-cloud-computing-blog/posts/porting-x86-vector-bitmask-optimizations-to-arm-neon
https://community.arm.com/arm-community-blogs/b/servers-and-cloud-computing-blog/posts/porting-x86-vector-bitmask-optimizations-to-arm-neon
https://www.debian.org/
https://marketplace.cloud.vmware.com/services
https://github.com/rust-lang/rust
https://www.kernel.org/
https://www.gnu.org/software/tar/manual/html_section/Standard.html
https://www.geofabrik.de/
https://redis.io/
https://www.mysql.com/
https://www.tpc.org/tpcc/detail5.asp
https://en.wikipedia.org/wiki/List_of_films_based_on_actual_events
https://wiki.openstreetmap.org/wiki/OSM_file_formats
https://rdb.fnordig.de/file_format.html
https://www.dmtf.org/sites/default/files/standards/documents/DSP2017_1.0.0.pdf


1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 27

[79] Youjip Won, Kyeongyeol Lim, and Jaehong Min. MUCH: Multithreaded Content-Based File Chunking. IEEE Transactions on Computers, 64(5):1375–
1388, 2015.

[80] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Zhongtao Wang. P-Dedupe: Exploiting Parallelism in Data Deduplication System. In 2012
IEEE Seventh International Conference on Networking, Architecture, and Storage, pages 338–347, 2012.

[81] Fan Ni and Song Jiang. RapidCDC: Leveraging Duplicate Locality to Accelerate Chunking in CDC-Based Deduplication Systems. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’19, page 220–232, New York, NY, USA, 2019. Association for Computing Machinery.

[82] Erik Kruus, Cristian Ungureanu, and Cezary Dubnicki. Bimodal content defined chunking for backup streams. In Fast, pages 239–252, 2010.
[83] Mu’men Al Jarah, Sreeharsha Udayashankar, Abdelrahman Baba, and Samer Al-Kiswany. The Impact of Low-Entropy on Chunking Techniques

for Data Deduplication. In 2024 IEEE 17th International Conference on Cloud Computing (CLOUD), pages 134–140, 2024.
[84] Sreeharsha Udayashankar, Abdelrahman Baba, and Samer Al-Kiswany. {VectorCDC}: Accelerating data deduplication with vector instructions. In

23rd USENIX Conference on File and Storage Technologies (FAST 25), pages 513–522, 2025.
[85] Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. Similarity and Locality Based Indexing for High Performance Data Deduplication. IEEE Transactions

on Computers, 64(4):1162–1176, 2015.
[86] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg Trezis, and Peter Camble. Sparse indexing: Large scale, inline

deduplication using sampling and locality. In USENIX Conference on File and Storage Technologies (FAST), volume 9, pages 111–123, 2009.
[87] Deepavali Bhagwat, Kave Eshghi, Darrell DE Long, and Mark Lillibridge. Extreme binning: Scalable, parallel deduplication for chunk-based file

backup. In 2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems, pages 1–9. IEEE,
2009.

[88] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wojciech Kilian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian
Ungureanu, and Michal Welnicki. HYDRAstor: A scalable secondary storage. In USENIX Conference on File and Storage Technologies (FAST),
volume 9, pages 197–210, 2009.

[89] Phlip Shilane, Mark Huang, Grant Wallace, and Windsor Hsu. WAN-optimized replication of backup datasets using stream-informed delta
compression. ACM Transactions on Storage (ToS), 8(4):1–26, 2012.

[90] Xiangyu Zou, Wen Xia, Philip Shilane, Haijun Zhang, and Xuan Wang. Building a high-performance fine-grained deduplication framework for
backup storage with high deduplication ratio. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages 19–36, 2022.

[91] Yucheng Zhang, Hong Jiang, Dan Feng, Nan Jiang, Taorong Qiu, and Wei Huang. {LoopDelta}: Embedding locality-aware opportunistic delta
compression in inline deduplication for highly efficient data reduction. In 2023 USENIX Annual Technical Conference (USENIX ATC 23), pages
133–148, 2023.

[92] Lars Nielsen, Dorian Burihabwa, Valerio Schiavoni, Pascal Felber, and Daniel E. Lucani. MinervaFS: A User-Space File System for Generalised
Deduplication: (Practical experience report). In 2021 40th International Symposium on Reliable Distributed Systems (SRDS), pages 254–264, 2021.

[93] Haikun Liu, Xiaozhong Jin, Chencheng Ye, Xiaofei Liao, Hai Jin, and Yu Zhang. I/O Causality Based In-Line Data Deduplication for Non-Volatile
Memory Enabled Storage Systems. IEEE Transactions on Computers, 73(5):1327–1340, 2024.

[94] Annett Ungethum, Johannes Pietrzyk, Patrick Damme, Dirk Habich, and Wolfgang Lehner. Conflict Detection-Based Run-Length Encoding -
AVX-512 CD Instruction Set in Action. In 2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW), pages 96–101, 2018.

[95] Daniel Lemire and Owen Kaser. Faster 64-bit universal hashing using carry-less multiplications. Journal of Cryptographic Engineering, 6:171–185,
2016.

[96] Tony C Pan, Sanchit Misra, and Srinivas Aluru. Optimizing high performance distributed memory parallel hash tables for DNA k-mer counting. In
2018 International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pages 135–147. IEEE, 2018.

[97] Youngjoo Shin, Dongyoung Koo, and Junbeom Hur. A Survey of Secure Data Deduplication Schemes for Cloud Storage Systems. ACM Computing
Surveys, 49(4), Jan 2017.

[98] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-locked encryption and secure deduplication. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 296–312. Springer, 2013.

[99] Jian Liu, N. Asokan, and Benny Pinkas. Secure Deduplication of Encrypted Data without Additional Independent Servers. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, page 874–885, New York, NY, USA, 2015. Association for
Computing Machinery.

[100] Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Side Channels in Cloud Services: Deduplication in Cloud Storage. IEEE Security and
Privacy, 8(6):40–47, 2010.

[101] Yanjing Ren, Jingwei Li, Zuoru Yang, Patrick P. C. Lee, and Xiaosong Zhang. Accelerating Encrypted Deduplication via SGX. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages 957–971. USENIX Association, July 2021.

[102] Tong Sun, Bowen Jiang, Borui Li, Jiamei Lv, Yi Gao, and Wei Dong. {SimEnc}: A {High-Performance}{Similarity-Preserving} encryption
approach for deduplication of encrypted docker images. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pages 615–630, 2024.

[103] Yifeng Zheng, Xingliang Yuan, Xinyu Wang, Jinghua Jiang, Cong Wang, and Xiaolin Gui. Toward Encrypted Cloud Media Center With Secure
Deduplication. IEEE Transactions on Multimedia, 19(2):251–265, 2017.

Manuscript submitted to ACM


	Abstract
	1 Introduction
	2 Background
	2.1 Data Chunking
	2.2 Deduplication Metrics
	2.3 Vector Instructions

	3 Motivation
	3.1 Performance bottlenecks in data deduplication
	3.2 Accelerating hash-based algorithms with vector instructions

	4 VectorCDC Design
	4.1 Tree-based Extreme Byte Search
	4.2 Packed Scanning for Range Scans
	4.3 Putting it together: AE-Max, AE-Min, MAXP, and RAM

	5 Implementation
	6 Evaluation
	6.1 Space Savings and Chunk Size Distributions
	6.2 Chunking Throughput
	6.3 Throughput breakdown - Extreme Byte Search vs Range Scan
	6.4 VectorCDC across different vector instruction sets
	6.5 Evaluation Summary

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

