19
20
21
22
23
24
25
26
27
28
29

33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50
51

52

Accelerating Data Chunking in Deduplication Systems using Vector Instructions

SREEHARSHA UDAYASHANKAR, University of Waterloo, Canada
ABDELRAHMAN BABA, University of Waterloo, Canada
SAMER AL-KISWANY, University of Waterloo, Canada

Content-defined Chunking (CDC) algorithms dictate the overall space savings that deduplication systems achieve. However, due
to their need to scan each file in its entirety, they are slow and often the main performance bottleneck within data deduplication.
We present VectorCDC, a method to accelerate hashless CDC algorithms using vector CPU instructions, such as SSE / AVX. We
analyzed the state-of-the-art chunking algorithms and discovered that hashless algorithms primarily use two data processing patterns
to identify chunk boundaries: Extreme Byte Searches and Range Scans. VectorCDC presents a vector-friendly approach to accelerate
these two patterns. Using VectorCDC, we accelerated three state-of-the-art hashless chunking algorithms: RAM, AE, and MAXP. Our
evaluation shows that VectorCDC is effective on Intel, AMD, ARM, and IBM CPUs, achieving 8.35X-26.2x higher throughput than
existing vector-accelerated algorithms, and 15.3X-207.2X higher throughput than existing unaccelerated algorithms. VectorCDC

achieves this without affecting the deduplication space savings.

CCS Concepts: » Information systems — Cloud based storage; Deduplication; - Networks — Cloud computing; - Computer

systems organization — Single instruction, multiple data.
Additional Key Words and Phrases: Content-defined chunking, SSE/AVX instructions, AVX-512, ARM NEON, IBM VSX

ACM Reference Format:
Sreeharsha Udayashankar, Abdelrahman Baba, and Samer Al-Kiswany. 2025. Accelerating Data Chunking in Deduplication Systems
using Vector Instructions. 1, 1 (January 2025), 27 pages. https://doi.org/XXXXXXX XXXXXXX

1 Introduction

The amount of data generated and stored on the Internet is growing at an exponential rate [1], and is expected to
exceed 180 zettabytes per year in 2025. Storage capacity alone is not well positioned to handle this data influx, with
the total installed storage capacity in 2020 only being 6.7 zettabytes [1]. Cloud storage providers instead support this
data growth using alternatives such as novel storage paradigms [2, 3], distributed file systems [4, 5] and caches [6, 7],
mechanisms such as data deduplication [8, 9], alongside additional investments in data protection [10].

Previous studies by Microsoft [11] and EMC [12] show that a large amount of redundancy exists in the data stored
on the cloud, especially in file system backups [8, 11], virtual machine backups [12, 13] and shared documents [14]. The
redundancy ratios in these workloads are significant, ranging from 50% to 75%. Mechanisms such as data deduplication
[8] and compression [13] are used to conserve storage space by identifying redundant data, eliminating it, and minimizing

its storage impact, thereby improving efficiency and reducing costs.

Authors’ Contact Information: Sreeharsha Udayashankar, s2udayas@uwaterloo.ca, University of Waterloo, Waterloo, Canada; Abdelrahman Baba,
ababa@uwaterloo.ca, University of Waterloo, Waterloo, Canada; Samer Al-Kiswany, alkiswany@uwaterloo.ca, University of Waterloo, Waterloo, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

2 Udayashankar et al.

Data deduplication consists of four phases [9]; Data Chunking, Chunk Fingerprinting, Metadata Creation, and Data
Storage. Data chunking and chunk fingerprinting are the most computationally intensive [8, 15] of these. While chunk
fingerprinting has received significant optimization attention, with faster hashing algorithms [16, 17] and GPUs [18, 19],
data chunking optimizations have not kept up (§3.1).

In the data chunking phase, the incoming data is divided into small chunks, typically of size 1 — 64 KB. Numerous
data chunking algorithms exist in current literature [20-25] and can be broadly classified into hash-based and hashless
algorithms [15]. As chunking occurs whenever new data is uploaded, this phase is on the critical path, and directly
impacts system performance.

Previous efforts have explored accelerating chunking by using vector instructions. SS-CDC [26] uses vector instruc-
tions to accelerate hash-based data chunking algorithms, such as Rabin-Karp chunking [23] and Gear-based chunking
[22]. Unfortunately, this approach only leads to modest improvements in chunking throughput, up to 3.13x, as shown
in §3.2. Parallelizing hash-based chunking using vector instructions is complicated because these algorithms use the
rolling hash of a sliding window of bytes to detect boundaries, inherently creating a computational dependency between
adjacent bytes. Consequently, SS-CDC processes different regions of the data in parallel using slow scatter / gather
vector instructions, limiting its performance (§3.2).

We posit that hashless chunking algorithms are better candidates for vector acceleration. Although they achieve
slightly lower space savings compared to their hash-based counterparts (§6), they are up to 2x faster and use sim-
ple mathematical operations (e.g., finding a maximum value) that can be accelerated more efficiently using vector
instructions. We analyzed state-of-the-art hashless algorithms to understand their design and identify opportunities
to leverage vector instructions. We identified that all state-of-the-art hashless algorithms consist of two processing
patterns. The first pattern involves finding local minima or maxima in a data region, which we call Extreme Byte Search,
and the second pattern involves scanning a range of bytes to find values that are greater or lesser than a target value,
which we call Range Scan. We found that, unlike rolling hash functions, these patterns can be efficiently accelerated
using vector instructions.

Using these insights, we present VectorCDC, a technique for accelerating hashless chunking algorithms using vector
instructions. VectorCDC uses a novel design to accelerate the two aforementioned patterns. We accelerate the extreme
byte searches with a novel tree-based search that divides a region of bytes into multiple sub-regions, processes each
region using vector instructions, and uses a tree-based approach to combine their results. We accelerate range scans
with packed scanning, which packs multiple adjacent bytes into vector registers and compares them using a single
vector operation.

We implemented VectorCDC using five different vector instruction sets: SSE-128, AVX-256, and AVX-512 on Intel /
AMD CPUs; NEON-128 on ARM CPUs; and VSX-128 on IBM Power CPUs. We used VectorCDC to accelerate three
state-of-the-art hashless chunking algorithms; RAM [24], AE [20], and MAXP [27], creating VRAM, VAE, and VMAXP,
respectively. We compared the performance of our accelerated algorithms with that of state-of-the-art hash-based
algorithms, hashless algorithms, and SS-CDC [26] accelerated algorithms using 10 diverse datasets.

Our evaluation (§6) shows that VectorCDC-based algorithms achieve 8.35X-26.2x higher chunking throughput than
those accelerated with SS-CDC. VRAM, VAE, and VMAXP also achieve 5.51x—-17.6X higher throughput compared to
their unaccelerated hashless counterparts, without affecting deduplication space savings. Furthermore, they achieve
15.3%-207.2X higher throughput compared to unaccelerated hash-based algorithms. Finally, VectorCDC-accelerated

algorithms retain their performance advantage across all five vector instruction sets.

Manuscript submitted to ACM

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 3

We have made our code publicly available by integrating it with DedupBench! [15]. Due to the large sizes of our
datasets (§6), we were unable to release all of them. Instead, we have publicly released one of our datasets (DEB) on
Kaggle? [28] and provided detailed descriptions to facilitate the recreation of others for future experiments, similar to
previous literature [20, 21, 24].

The rest of this paper is organized as follows: we discuss relevant background about deduplication and vector
instructions in Section 2. Section 3 motivates our work by discussing deduplication performance bottlenecks and
the inefficiencies encountered by previous work when accelerating hash-based CDC algorithms. Section 4 outlines
VectorCDC’s design while Section 5 discusses implementation challenges across vector instruction sets. Section 6 details

our evaluation efforts on diverse datasets. We discuss related work in Section 7 and conclude our paper in Section 8.

2 Background
Data deduplication consists of four phases [9]:

e Data Chunking: Data is divided into small chunks typically of size 1 — 64KB using a chunking algorithm. All
chunking algorithms have configurable parameters that control the average size of generated chunks.

e Fingerprinting and Comparison: Chunks are hashed using a collision-resistant hashing algorithm such as
MurmurHash3 [16] or SHA-256 [29] to generate fingerprints. Fingerprints are compared against those previously
seen to identify duplicate chunks.

o Metadata Creation: Metadata, i.e., file recipes required to reconstruct the original data from stored chunks, are
created.

o Metadata and Chunk Storage: Non-duplicate chunks and recipes are saved on the storage medium. Fingerprints

are stored on the fingerprint database and cached in an in-memory index.

Data chunking and fingerprinting are typically the most computationally intensive phases in deduplication [8].
While fingerprinting has been accelerated up to 53X using GPUs [18, 19] and faster hashing algorithms [16, 30], data
chunking acceleration has only received limited attention and adds significant overhead on the deduplication critical
path (§3.1).

2.1 Data Chunking

Data chunking algorithms can generate fixed-size or variable-sized chunks. Dividing the data into fixed-size chunks is
fast, but results in poor space savings on most datasets (§6). This is due to the byte-shifting problem [23], where adding
a single byte causes all subsequent chunks to appear different, despite the data stream largely being unchanged. Thus,
while traditional backup systems such as Venti [31] and OceanStore [32] use fixed-size chunks, modern deduplication
systems employ content-defined chunking (CDC) algorithms [23] to generate variable-sized chunks.

Chunk boundaries in CDC algorithms are derived from the data itself, i.e., they are content-defined. These boundaries
are chosen such that most byte shifts cause them to shift by the corresponding amount, leaving subsequent chunks
unaffected and preserving the ability to detect duplication. Numerous CDC algorithms have been proposed in previous
literature [20-25, 27] and can be broadly classified into hash-based and hashless algorithms [15].

2.1.1 Hash-based algorithms. These algorithms [21-23, 25] slide a fixed-size window over the data. When the hash

value of the window’s contents matches a target mask, they insert a chunk boundary, creating a new data chunk lying

Ihttps://github.com/UWASL/dedup-bench
https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25

Manuscript submitted to ACM

https://github.com/UWASL/dedup-bench
https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208

4 Udayashankar et al.

Sub-minimum
region

Sub-minimum
region

Incoming Byte

1
1 Chunk Boundary
Sliding !
Window '

(a) Sliding window and rolling hash (b) Minimum chunk sizes and sub-minimum skipping

Fig. 1. Hash-based chunking algorithms

between the current and previous chunk boundaries. Note that these hash-based CDC algorithms are only used during
the Data Chunking phase and do not affect the Fingerprinting and Comparison phase.

Algorithms such as Rabin-Karp chunking [23] and CRC [26] slide a window over the source data and compute
the hash of the window’s contents using rolling hash algorithms. Figure 1a shows an example of data chunking with
such algorithms. In the Rabin-Karp chunking algorithm [23], a chunk boundary is declared when the lower k bits of
the sliding window’s hash value equals zero. If the current window’s hash value does not meet this condition, the
window is slid by a byte. To minimize the overhead of recomputing the hash value, the new value is calculated as a
function of the old hash value, the incoming byte, and the outgoing byte (Figure 1a), i.e., a rolling hash. This creates
a dependency between adjacent bytes, complicating acceleration efforts with SIMD instructions (§3.2). Additionally,
despite the development of more lightweight rolling hash algorithms such as CRC [26] and Gear-Hash [22], hash-based
chunking remains computationally expensive (§6.2).

Some hash-based algorithms like TTTD [25] and FastCDC [21] use minimum and maximum values to limit the
chunk sizes. To improve chunking throughput, these algorithms skip scanning data lying before the minimum chunk
size at the beginning of each chunk. Figure 1b shows an example of such algorithms with the sub-minimum regions
highlighted using a dashed pattern. To offset the impact of skipping the sub-minimum regions and tighten chunk size
distributions around the average, FastCDC [21] uses dynamically changing masks, i.e., relaxes the boundary detection

condition by reducing k when required. TTTD [25] uses two different boundary masks to do the same.

2.1.2 Hashless algorithms. Hashless CDC algorithms such as AE [20], RAM [24], and MAXP [27] treat bytes as
individual values and use local minima/maxima to identify chunk boundaries. They also slide one or more windows
over the source data but do not use rolling hashes and, as a result, are faster than most hash-based algorithms by 2-3x.

AE. Figure 2a shows an example chunk generated by the Asymmetric Extremum (AE) [20] algorithm. AE has two
modes of operation: AE-Min and AE-Max, depending on whether it uses local minima or maxima; Figure 2a shows
AE-Max. In each chunk, AE-Max tries to find a target byte that is greater than all the bytes before it. Once the target byte
is identified, AE-Max scans a fixed-size window of bytes after the target to identify the maximum-valued byte among
them. If the target byte is greater than this maximum-valued byte, it inserts a chunk boundary after the fixed-size
window, as shown in Figure 2a.

Similarly, AE-Min tries to find a target byte that is less than all the bytes before it. When such a byte is identified,
AE-Min scans a fixed-size window of bytes after the target to identify the minimum-valued byte within. If the target
byte is lesser than this minimum-valued byte, it inserts a chunk boundary after the fixed-size window.

Manuscript submitted to ACM

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 5

Compa?

Maximum

< < » 1 »
Target ~ . . . 1 Chunk ~ > ' ”
Byte Fixed-size window | goyndary Fixed-size window 1 Fixed-size window
1 I
(b) MAXP

1
« - - > 1 Chunk
Fixed-size window 1 Boundary

(c) RAM

Fig. 2. Hashless chunking algorithms

MAXP. Figure 2b shows an example chunk generated by MAXP [27]. MAXP identifies target bytes in the data stream
that are local maxima, i.e., they are greater than a fixed number of bytes before and after them. When such target bytes
are found, chunk boundaries are inserted at their locations, as shown in the figure. Note that MAXP’s window sizes are
typically 70-80% smaller than AE [20] and RAM [24] to generate the same target average chunk size. MAXP has also
been referred to as Local Maximum Chunking (LMC) in previous literature.

MAXP works by sliding two fixed-size windows over the data, tracking the maximum values from both windows.
These windows are located one byte apart, as shown in Figure 2b, and the byte between them is the target byte. When
the target byte’s value is greater than the maximum value from both windows, a chunk boundary is inserted as the
target byte is a local maximum.

RAM. Figure 2c shows an example chunk generated by the Rapid Asymmetric Maximum (RAM) [24] algorithm.
RAM begins by scanning a fixed-size window at the beginning of each chunk to find the maximum valued byte (F1 in
the figure). It then begins scanning at the first byte outside the window, serially comparing these bytes against this
maximum value. A chunk boundary is inserted when the first byte that exceeds or equals the maximum is found, e.g.,
F3 in Figure 2c.

As they do not possess explicit dependencies between adjacent bytes, we argue that hashless algorithms are better

candidates for SIMD acceleration efforts.

2.2 Deduplication Metrics

Previous literature [15, 21, 23, 33] outlines three important metrics for deduplication systems: Space Savings, Chunk

Size Distribution, and Chunking Throughput. We describe these in detail in this section.

2.2.1 Space savings. Space savings [15, 33] is one of the primary metrics used to evaluate deduplication systems in
production. It represents the overall disk space conserved by using the deduplication system, i.e. size of data stored on

Manuscript submitted to ACM

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

279

281
282
283
284

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

306
307
308
309
310
311
312

6 Udayashankar et al.

disk after deduplication. The space savings achieved are largely dictated by the choice of the data chunking algorithm

and its associated parameters. It is defined as:

. Original Data Size — Deduplicated Data Size
Space Savings (%) = Original Data Size X 100 (1)

2.2.2 Chunking throughput. Chunking throughput is defined as the speed at which the deduplication system divides
incoming data into chunks. As CDC algorithms are content-dependent, they need to scan every byte of an incoming
data stream before making content-defined boundary decisions. Their speed depends on their computational complexity.
Hash-based algorithms utilize expensive rolling-hash algorithms to determine chunk boundaries (§2.1), typically

resulting in lower throughputs than their hashless counterparts. Chunking throughput is defined as:

Original Data Size

Chunking Throughput =)

Time taken to generate all chunk boundaries
2.2.3 Chunk size distribution. Content-defined chunking (CDC) algorithms generate variable-sized chunks of a target
average chunk size. They try to ensure that the sizes of generated chunks are as close to the target average as possible.
However, due to underlying algorithmic characteristics, each algorithm has a unique chunk size distribution pattern.
For instance, FastCDC [21] exhibits two distinct smooth distributions, changing its pattern at the target average chunk
size. This is because it switches masks past the target average size and relaxes boundary conditions. On the other hand,
algorithms such as TTTD [25] exhibit a smooth distribution between their minimum and maximum specified chunk
sizes. Chunk size distributions are typically represented using cumulative distribution function (CDF) plots.

Space savings are inversely proportional to the target average chunk size, i.e., the greater the average chunk size, the
lower the space savings achieved in general [11]. This is because the probability of finding duplicate chunks is higher at
smaller chunk sizes. The degree of space savings degradation with increasing chunk size depends on algorithmic and
dataset characteristics.

All chunks generated by CDC algorithms are subsequently hashed using a collision-resistant algorithm [16] to
generate fingerprints, as described above. The set of unique fingerprints observed thus far is stored in a fingerprint
database. New incoming chunks are hashed, and their fingerprints are compared against this database to detect
duplicates. Thus, smaller and more numerous chunks result in a larger database; specifically, the fingerprint database
size is inversely proportional to the chosen average chunk size. A large number of small chunks can negatively impact
system throughput, both due to the increased fingerprint database size and the random data accesses caused by these

chunks. Thus, CDC algorithms in production typically target average chunk sizes between 2KB—64KB.

2.3 Vector Instructions

Vector instructions [34] are special Single-Instruction Multiple-Data (SIMD) instructions supported by most modern
processors. They rely on special vector registers for their operations. These registers come in multiple sizes; depending
on the width of the vector register they use, vector instructions can be classified into different families [34]. The most
common vector register sizes are 128 bits, 256 bits, and 512 bits, i.e., 16, 32, and 64 bytes wide.

Vector instructions support the execution of an operation on multiple pieces of data by packing them into vector
registers; for instance, eight 16-bit values a-h can be densely packed into a 128-bit vector register V5. To add a-h to
eight other values i-p, we can pack i-p into another register V,. We can now add them pairwise with a single vector
addition operation VADD (V1, ;) using Vi and V, as operands, instead of eight separate integer arithmetic operations.

Manuscript submitted to ACM

313
314
315
316
317
318
319
320
321
322
323

324

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

350

360
361
362
363

364

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 7

40 m Data Chunking OFingerprinting

30

%]QUUii

SHA1 SHA-256 SHA-512 MD5 MurmurHash3 xxHash3
Fingerprinting Algorithm

Time (Seconds)

Fig. 3. Time taken for Data Chunking vs Fingerprinting while deduplicating randomized data with FastCDC [21] and an 8 KB average
chunk size.

Vector instructions support various arithmetic operations [35], including pairwise addition, subtraction, multiplication,
and maximum/minimum on packed values. Additionally, they support logical operations such as bitwise AND (&)
and bitwise OR (|). They have been previously used to accelerate matrix multiplication [36], sorting [37], multimedia
applications [38], fluid simulations [39], hash tables [40], and relational databases [41]. The supported vector instruction

types and their relative performance vary across CPU manufacturers.

2.3.1 Intel and AMD. Vector instructions on x86 platforms can be classified into three families: SSE-128, AVX-256, and
AVX-512 [34]. SSE-128 instructions use 128-bit registers and have been supported by Intel and AMD processors since
1999 [42] and 2003 [43], respectively. AVX-256 instructions were introduced by Intel and AMD in 2011 [42], and use
256-bit registers. Finally, only a handful of the newest Intel and AMD processors, since 2017 [44] and 2022 [45], which

have 512-bit wide vector registers support AVX-512 instructions.

2.3.2 ARM. ARM processors have supported NEON-128 instructions, an equivalent to SSE-128, since 2011 [46]. Modern
ARM processors also support vector widths of 256 bits and higher with the SVE/SVE2 instruction sets, which have
been available since 2021 [47]. These two instruction sets differ in the kinds of instructions supported. For instance,
NEON-128 does not support native VMASK operations, which are used to create integer masks by extracting one out of
every k bits in a vector register, while SVE / SVE2 does. This can lead to performance differences in applications that
need the VMASK operation [40].

2.3.3 IBM Power. IBM’s Power [48] architecture supports AltiVec / VSX-128 vector instructions [49], an equivalent to
SSE-128, since the 1990s. This instruction set supports equivalents for most SSE instructions but lacks VMASK support.

3 Motivation
3.1 Performance bottlenecks in data deduplication

Although both data chunking and fingerprinting have traditionally been considered the main bottlenecks in deduplication
[8], this has changed with the advent of new hashing algorithms and acceleration methods for fingerprinting. Figure 3
is a stacked bar plot showing the time taken by the data chunking and fingerprinting phases during deduplication. For
fingerprinting, we use five different collision-resistant hashing algorithms [50-54]. For data chunking, we use FastCDC
[21], the fastest unaccelerated chunking algorithm (§6.2), with an 8 KB average chunk size. We use 30 GB of randomized

data and an Intel Emerald Rapids machine described in §6 for this experiment.
Manuscript submitted to ACM

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

416

8 Udayashankar et al.

File / Data Stream

1. Gather Instructions
Incoming Byte

zz@% Register

Vo

V3

Hash Value Register .
4. Scatter Instruction

Boundary candidate bitmap

Fig. 4. SS-CDC [26]: Accelerating the rolling hash phase

Figure 3 shows that fingerprinting and data chunking take nearly equal time with traditional collision-resistant
hashing algorithms, such as SHA1 [51] and SHA-256 [52]. Fingerprinting takes longer than data chunking with other
algorithms, such as MD5 [50] and SHA-512 [52]. This indicates that both phases used to be the performance bottlenecks
in deduplication, aligning with previous literature [8].

However, recent research has introduced faster hashing algorithms such as MurmurHash3 [53] and xxHash3 [55]
that generate 128-bit digests equivalent to MD5 [56]. These hashing algorithms are being used for fingerprinting [17] or
as weak fingerprints followed by a byte-by-byte comparison [57]. Figure 3 shows that fingerprinting takes significantly
lower time than chunking with these new hashing algorithms, as they are 10 X —15X faster than their counterparts on
CPUs. Using GPUs can further accelerate fingerprinting speeds by up to 53x [18, 19].

Thus, as a result of its computationally intensive nature and position on the critical path, data chunking is a prime

target for acceleration.

3.2 Accelerating hash-based algorithms with vector instructions

To address the data chunking bottleneck, SS-CDC [26] proposed using AVX-512 instructions to accelerate hash-based
CDC algorithms. They decouple the rolling hash and boundary detection phases, running the rolling hash on the entire
source data to identify boundary candidates in the first phase, and determining boundaries sequentially in the second.
This allows both stages to be independently accelerated with AVX instructions.

Figure 4 shows how SS-CDC [26] accelerates the first rolling hash phase of hash-based CDC algorithms. SS-CDC
uses AVX-512 registers to create multiple rolling-heads (Head 1 - Head k), i.e., calculating the rolling hash on bytes from
multiple regions of the file independently and in parallel. Each rolling head maintains its own hash value in the hash
value register and independently calculates the contributions of incoming and outgoing bytes.

To use vector instructions, they first collect the outgoing bytes for each head into a vector register V;. Similarly,
they collect all the incoming bytes into another vector register V. This is shown in Step 1 in Figure 4 and uses

Manuscript submitted to ACM

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

453
454

456
457

459
460
461
462
463
464
465
466
467

468

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 9

W CRC SS-CRC O Gear BESS-Gear

Throughput (GB/s)
N

4KB 8KB 16KB

Fig. 5. SS-CDC [26] throughputs on randomized data with AVX-512 instructions

gather instructions. The hash values for each head are stored in a separate register V3. In Step 2, SS-CDC removes the
contributions of all outgoing bytes from the hash values with a single vector operation and adds the contributions of all
incoming bytes with another.

Step 3 compares all the hash values against the pre-specified boundary condition (such as the lower x bits being
equal to zero in Rabin-Karp chunking [23]). Whenever any of the hash values match the boundary condition, they
mark the current position as a boundary candidate in a separate bitmap in Step 4 using scatter instructions. This
rolling hash phase is run on the entire incoming data stream/file. In the second phase, they scan the bitmap using vector
instructions to determine the actual boundaries among all candidates, taking into account the minimum and maximum
chunk sizes.

This approach introduces two problems. First, many hash-based algorithms, such as TTTD and FastCDC, skip
scanning data up to the minimum chunk size to improve throughput (§2.1). Decoupling the rolling hash and boundary
detection phases causes the rolling hash to be run on the entire incoming data stream, nullifying these optimizations.

Second, to load incoming and outgoing bytes from different regions in the file, SS-CDC [26] uses AVX gather
instructions. To populate the candidate bitmap when boundary candidates are discovered, they use scatter instructions.
These scatter and gather instructions are slow [58], limiting performance gains. Finally, scatter instructions are
only available on processors supporting certain instruction sets [35], limiting SS-CDC’s usage to a handful of the newest
Intel and AMD processors (§2.3).

Figure 5 shows the chunking throughput obtained by running SS-CDC accelerated versions of CRC (SS-CRC) and
Gear-based chunking (SS-Gear) [26] against their native unaccelerated counterparts. This experiment used randomized
data, an Intel Emerald Rapids machine described in §6 and AVX-512 instructions. We ran each algorithm with chunk
sizes of 4 — 16 KB. SS-CRC achieves 1.2 GB/s, a speedup of 2.58% over CRC. Similarly, SS-Gear achieves 3.3 GB/s, a
speedup of 3.13x over Gear. These small speedups result from the challenges associated with hash-based algorithms
that are described above.

Hashless algorithms do not possess explicit dependencies between adjacent bytes. They treat each byte as an
independent value and use maximum / minimum values from data regions to determine chunk boundaries. VectorCDC
chooses hashless algorithms over their hash-based counterparts as they are better candidates for SIMD acceleration.

Manuscript submitted to ACM

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

489
490
491
492
493
494
495
496
497
498
499

500

502
503

505

506

508
509

511

512

514

515

517

518

520

10 Udayashankar et al.

Vg K. Seq Scan
EEE :
2 2 VMAX Vp 3 VYMAX

[E1]D3 [59) 21[12[F2]) | pacreq V3 4P V4]
Y / Load / \ Va \

E1|D3 |59 |21 |12 |F2}---|AA|A5 | EE| 43 | 34 | 59

A\ 4

&
<

Fixed-Size Window for Maximum Value Search

Fig. 6. Accelerating Extreme Byte Searches. Note that the byte values shown are in hexadecimal format.

4 VectorCDC Design
Hashless CDC algorithms such as AE [20], RAM [24], and MAXP [27] slide windows over the source data to determine

chunk boundaries. We identify two common processing patterns across all hashless CDC algorithms: the Extreme
Byte Search and Range Scan. We accelerate each of these patterns using different vector-based techniques, which are
discussed in detail below.

While we use the AVX-512 instruction set as an example to describe our acceleration techniques in this section,
they can be implemented on any CPU with a vector instruction set supporting VMAX, VCMP and VMASK operations.
SSE-128 and AVX-256 instruction sets [35] fall under this umbrella, as do ARM and IBM processors with NEON-128 [46]
and AltiVec / VSX-128 [48] instructions, respectively. Thus, VectorCDC is compatible with a wide range of processors,
unlike SS-CDC [26], which relies on scatter instructions only available in AVX-512 instruction sets. Finally, while
other minima/maxima-based hashless algorithms can also be accelerated using VectorCDC, their native versions are
slower [20, 24, 27] than AE, RAM, and MAXP and have been omitted from the rest of our paper.

4.1 Tree-based Extreme Byte Search
Hashless CDC algorithms such as AE [20], RAM [24], and MAXP [27] all consist of a subsequence that identifies the

extreme byte (maximum/minimum) in a fixed-size window. The size of this window depends upon the expected average
chunk size and can be as large as 4 — 8KB. As this subsequence may need to be performed more than once per chunk,
we propose accelerating it using a novel tree-based search approach. Let us consider the search for a maximum value
using AVX-512 instructions (Figure 6). Note that the same method can be used with other vector instruction sets as well
as to find minimum values.

We first divide the fixed-size window into smaller sub-regions, loading all the bytes into AVX-compatible m512i
variables in Step 1. We load these bytes in a packed fashion i.e. each m512i variable contains 64 adjacent bytes. We
then use vector mm512_max instructions to find the pairwise maximum among packed byte pairs (Step 2). For instance,
among the bytes @xE1 and 0x21, byte value @xE1 is the maximum. The resulting pairwise maximums are packed into a
destination variable (V5 in the figure).

Step 3 compares these resulting variables V5 and Vg from Step 2 using mm512_max instructions to find the pairwise
maximums. We repeat this process, building a tree of m512i variables until we are left with a single variable V7

Manuscript submitted to ACM

524

525

526

527

528

564

566

567

568

569

570

571

572

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 11

Maximum
Value
Vo ‘KA‘ZZE —> 3. Mask = 0?
F2|D1]82]
/ 1. Packed Load
F2 | D1 | 82 | A3 | 43 | 66 |-~ 12 | 66 | EE| C4 | C4 | B2

A
\4

Data Region for Range Scan

Fig. 7. Accelerating Range Scans. Note that the byte values shown are in hexadecimal format.

containing the maximum-valued 64 bytes from across the entire region. We scan these bytes sequentially in Step K to

determine the maximum valued byte.

4.2 Packed Scanning for Range Scans

Hashless CDC algorithms also consist of a range scan subsequence, where bytes are serially compared against a target
value. We propose to accelerate this scanning process using vector instructions. Let us consider a case where we
compare bytes sequentially to see if they are greater than or equal to a target value (such as in RAM [24]). Figure 7
shows our proposal to accelerate this using packed scanning with AVX-512 instructions. Note that the same methods
are applicable for other vector instruction sets as well.

We first load the target value (0xF4 in Figure 7) into an AVX-compatible m512i variable V;. We then pack 64 adjacent
bytes from the scan region into another m512i variable V,. We compare these 2 registers using mm512_cmpge vector
compare instructions, which generate a 64-bit integer mask containing the comparison results. If this mask has a value
greater than 0, a chunk boundary exists within the scanned 64 bytes. Its exact position is determined using the mask
value. If the mask equals 0, no boundary exists within the scanned region and we proceed with loading the next 64
bytes into V, to repeat the process.

Range Scans can be run with one of five comparators: Greater-Than (GT), Lesser-Than (LT), Greater-Than or
Equals (GEQ), Less-Than or Equals (LEQ), and exactly Equals (EQ). Each of these comparators uses a different vector
compare instruction; for instance, the GEQ comparator uses mm512_cmpge instructions while the LEQ comparator uses
mm512_cmple instructions. The same comparators also use different comparison instructions in different instruction
sets; for instance, the GEQ comparator uses mm512_cmpge instructions with the AVX-512 instruction set while it uses
mm256_cmpge with AVX-256.

It is worth noting that our packed scanning approach is compatible with sub-minimum skipping. Unlike SS-CDC’s
approach, chunk boundary detection and insertion can both occur in Range Scans, i.e., whenever a chunk boundary is

detected, the next minimum_chunk_size bytes can be skipped.

4.3 Putting it together: AE-Max, AE-Min, MAXP, and RAM

RAM [24] first scans a fixed-size window at the beginning of the chunk to find a maximum value (Figure 2c). After
this, it inserts a chunk boundary at the first byte outside the window, which is at least as large as the maximum valued

byte (§2.1). With VectorCDC, we accelerate RAM as a combination of an Extreme Byte Search to find a maximum value,
Manuscript submitted to ACM

580

592

594
595

597
598

600
601
602
603
604
605
606
607
608
609
610
611
612
613

614

616
617
618
619
620
621
622
623

624

12 Udayashankar et al.

followed by a Range Scan with the GEQ comparator that compares this maximum value against bytes until a chunk
boundary is found.

AE-Max [20] scans for a byte larger than all the bytes before it i.e., a target byte (Figure 2a). Once found, a fixed-size
window after this byte is scanned to determine the maximum valued byte within. If the target byte is larger than the
maximum valued byte, a chunk boundary is inserted; otherwise, scanning continues for a new target byte (§2.1). With
VectorCDC, we accelerate AE-Max as a combination of multiple Range Scans with the GT comparator to find target
bytes, each followed by a single Extreme Byte Search for a maximum value.

AE-Min [20] scans for a byte with lesser value than all those before it (§2.1). Once found, a fixed-size window after
this byte is scanned to determine the minimum value within. If the target byte has a lesser value than the minimum
valued byte, a chunk boundary is inserted; otherwise, scanning continues for a new target byte. Similar to AE-Max, we
accelerate AE-Min as a combination of multiple Range Scans with the LT comparator to find target bytes, each followed
by a single Extreme Byte Search for a minimum value.

Finally, MAXP [27] scans for a target local maxima that is exactly centered between two fixed-size windows (Figure
2b). A chunk boundary is inserted right after such a byte is found (§2.1). Thus, each chunk in MAXP can be represented
as a combination of multiple Range Scans with the GT comparator, each followed by two Extreme Byte Searches for

maximum values.

5 Implementation

We accelerate AE [20], MAXP [27], and RAM [24] using VectorCDC with 3000 lines of C++ code. We implemented
SSE-128, AVX-256, AVX-512, NEON-128, and VSX-128 versions of all algorithms. We also implemented Extreme Byte
Searches for minima and maxima, as well as Range Scan functionalities with the GT, GEQ, LT, LEQ, and EQ comparators
on all five vector instruction sets. We have made our code publicly available with DedupBench? [15].

Note that while ARM processors support VCMP and VMAX operations, they lack native support for VMASK
instructions, which are used during range scans to generate a single mask containing the comparison results. This
is a common issue encountered by ARM developers trying to port x86 code [59]. We chose an efficient alternative
implementation [59] to work around the lack of native VMASK support. However, this alternative implementation uses
multiple slow NEON-128 instructions, such as vshrn and vreinterpretq, as opposed to a single x86 mm_movemask
instruction. As shown in §6.4, this causes accelerated algorithms to achieve lower speedups on ARM CPUs compared to
Intel and AMD.

IBM processors also support VCMP and VMAX operations, but lack native VMASK support. However, the same
functionality can be achieved using one vec_bperm and two vec_extract instructions. As these instructions are
relatively inexpensive, they are an efficient alternative to VMASK. As shown in §6.4, this allows IBM processors to

achieve speedups equivalent to or greater than Intel and AMD processors when using VectorCDC.

6 Evaluation

In this section, we evaluate VectorCDC against the state-of-the-art CDC algorithms.
Testbed. We run all our experiments using machines from the Cloudlab [60] platform. We pick five machines with
diverse vector instruction set support; Table 1 shows the vector instruction sets supported by each machine. The details

of each machine are as follows:

3https://github.com/UWASL/dedup-bench

Manuscript submitted to ACM

https://github.com/UWASL/dedup-bench

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

676

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 13

CPU/CPUFamily SSE-128 AVX-256 AVX-512 NEON-128 VSX-128

Intel Emerald Rapids v v v - -
Intel Skylake v v v - -
AMD EPYC Rome v v - - —
ARM v8 Atlas - - - Vs _
IBM Power 8 - - - - v

Table 1. Vector instruction sets supported by the different machines in our testbed.

Intel Emerald Rapids: We use a c¢6620 machine from CloudLab Utah, which has a 28-core Intel Xeon Gold 5512U
with hyperthreading at 2.1 GHz, 128 GB of RAM, and one Intel NIC each of 25 GBps and 100 GBps. It supports
the SSE-128, AVX-256, and AVX-512 vector instruction sets.

Intel Skylake: We use a c240g5 machine from CloudLab Wisconsin, which has two 10-core Intel Xeon Silver
4114 CPUs with hyperthreading at 2.2 GHz, 192 GB of RAM, one Mellanox 25 GBps NIC, and one onboard Intel
1 GBps NIC. It supports the SSE-128, AVX-256, and AVX-512 vector instruction sets.

AMBD EPYC Rome: We use a ¢6525-25g machine from CloudLab Utah, which has a 16-core AMD 7302P CPU
with hyperthreading at 3.0 GHz, 128 GB of RAM, and two Mellanox 25 GBps NICs. It supports the SSE-128 and
AVX-256 vector instruction sets.

ARM v8 Atlas: We use a m400 machine from CloudLab Utah, which has an 8-core ARM Cortex A-57 CPU at 2.4
GHz, 64 GB of RAM, and a 10 GBps Mellanox NIC. It supports the NEON-128 vector instruction set.

IBM Power 8: We use an ibm8335 machine from CloudLab Clemson, which has dual 10-core IBM Power8NVL
CPUs at 2.86 GHz with 8 hardware threads per core, 256 GB of RAM, and a 10 GBps Broadcom Xtreme II NIC. It

supports the VSX-128 vector instruction set.

While some ARM CPUs released after 2022 support higher vector widths with SVE instructions (§2.3), we could

not obtain such a machine for our experiments. Note that all our runs are on the Intel Emerald Rapids machine unless

otherwise specified. Our throughput results are the averages of 5 runs, and the standard deviation was less than 5%.

Alternatives. We evaluate the following hash-based CDC algorithms:

CRC: Native (unaccelerated) version of the CRC-32 chunking algorithm from SS-CDC [26].
FCDC: Native version of FastCDC [21].

Gear: Native version of the Gear-hash based chunking algorithm [22].

RC: Rabin’s chunking algorithm from LBFS [23].

SS-CRC: AVX-512 version of CRC accelerated using SS-CDC [26].

SS-Gear: AVX-512 version of Gear accelerated using SS-CDC [26].

TTTD: Two-Threshold Two-Divisor algorithm [25].

We also evaluate the following hashless CDC algorithms:

AE: Native version of the Asymmetric Extremum algorithm [20]. We evaluate both AE-Max and AE-Min.
MAXP: Native version of the MAXP algorithm [27].

RAM: The native Rapid Asymmetric Maximum [24] algorithm.
Manuscript submitted to ACM

677
678
679
680
681
682
683
684
685
686
687
688
689

690

692
693
694
695
696
697
698
699
700
701
702
703
704

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

14 Udayashankar et al.

e VAE: Accelerated versions of AE-Max and AE-Min with VectorCDC.
o VMAXP: Accelerated versions of MAXP with VectorCDC.
e VRAM: Accelerated versions of RAM with VectorCDC.

Note that for each hashless algorithm accelerated with VectorCDC, we evaluate their SSE-128, AVX-256, AVX-512,
NEON-128, and VSX-128 versions on supporting CPU platforms from our testbed (Table 1).

Datasets. We use 10 diverse datasets to evaluate VectorCDC; Table 2 shows their details. The datasets represent
diverse workloads such as VM backups, database and map backups, web snapshots, and source code. Some datasets,
such as FLOW and WIKI, are similar to those used by previous studies [74]. We have publicly released the DEB dataset 4
[28].

We note that the selected datasets have diverse characteristics. They have varying sizes, ranging from 1 GB for WIKI
to 981 GB for MAPS. They have different file counts; datasets such as MAPS and NEWS consist of a few large files, while
others, such as FLOW and KUBE, consist of a large number of small files. We include files with varying formats, such as
OSM [75], RDB [76], TAR [67], VMDK / OVA [77], text files, and binary files across these datasets for comprehensive
coverage.

Finally, Table 2 shows the space savings achieved by using fixed-size chunking (XC) and the median of those achieved
by CDC algorithms (Median CDC) on these datasets with 8KB chunks. By comparing XC against Median CDC, we note
that the datasets possess varying degrees of byte-shifting. The difference in space savings between XC and Median CDC
in FLOW and KUBE is small (less than 6%), indicating a smaller number of byte-shifts. DEV has a moderate amount of

byte-shifting, as shown by the ~15% difference between XC and Median CDC. Finally, CDC algorithms achieve a median

4https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25

Dataset ‘ Size ‘ Files Dataset Information ‘ XC Median CDC ‘
Debian [61] VM Images obtained from
DEB 40 GB 65 18.98% 34.64%
the VMware Marketplace [62]

DEV 230 GB 100 Nightly backups of a Rust [63] build server 83.17% 98.05%
FLOW 8 GB | 630341 C++ source code for 25 versions of TensorFlow [64] 90.69% 91.98%
KUBE | 1.5GB | 117344 Go source code for 5 versions of Kubernetes [65] 64.52% 69.42%

LNX 65 GB 160 Linux kernel distributions [66] in TAR format [67] 19.87% 45.62%

OpenStreetMap [68] backups of Canada
MAPS | 981 GB 15 0.10% 68.57%

extracted using GeoFabrik [69]

Complete snapshots of a news website across

NEWS | 478 GB 47 38.95% 73.80%
47 consecutive days in TAR [67] format
RDS 122 GB 100 Redis [70] snapshots between redis-benchmark runs | 33.54% 92.94%
TPCC | 106 GB 25 25 snapshots of a MySQL [71] VM running TPC-C [72] | 37.39% 86.64%
Snapshots of the largest Wikipedia article [73] across
WIKI 1GB 3134 1.31% 72.37%

multiple days, chosen for extreme versioning.

Table 2. Dataset Information. Note that XC represents the space savings achieved by fixed-size chunking with 8KB chunks while
Median CDC is the median space savings achieved by CDC algorithms with an 8KB average chunk size.

Manuscript submitted to ACM

https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

780

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 15

— AE-Max VAE-Max — AE-Min VAE-Min
1.0 P LR 1.0 P
I ’
0.8 [0.8]
@ ' o '
20.6 ' 2 0.6 '
S | g |
o 0.4] o 0.4 |
o " (a1 1
0.2 ' 0.2 |
|]
0.0 0.0 :
OKB 3KB 6KB 9KB 12KB 15KB 18KB 3KB 6KB 9KB 12KB 15KB 18KB 21KB
Chunk Size Chunk Size
(a) AE-Max / VAE-Max (b) AE-Min /| VAE-Min
— MAXP VMAXP =— RAM VRAM
1.0] 1.0 L= ===
. /
0.8 T 0.8 ‘
Q 4 Q]
206 / 2061 i
S / S '
041 4 £0.4/ |
a ’ o (]
021 0.2 |
/
0.0 0.0
OKB 5KB 10KB 15KB 20KB 25KB 30KB 2KB 4KB 6KB 8KB 10KB 12KB 14KB
Chunk Size Chunk Size
(c) MAXP | VMAXP (d) RAM / VRAM

Fig. 8. Chunk size CDFs of hashless algorithms and their AVX-512 accelerated versions on TPCC with an 8KB average chunk size

of more than 2x higher space savings than XC on DEB, LNX, MAPS, NEWS, RDS, TPCC, and WIKI, indicating that these data
sets have a large degree of byte-shifting.
Metrics. We evaluate the space savings, chunk size distribution, and chunking throughput achieved by each

alternative on all the described datasets.

6.1 Space Savings and Chunk Size Distributions

Figures 9a - 9j show the space savings achieved by all alternatives with 8KB chunks across datasets. We omit the results

for other chunk sizes as the trends were similar.

6.1.1 Vector-acceleration Impact. Vector-acceleration does not impact the space savings achieved by CDC algorithms.
Consequently, for clarity, we omit the space savings results for vector-accelerated algorithms from Figure 9. This aligns
with the results previously observed for SS-CRC and SS-GEAR [26].

AVX-512 acceleration does not impact the chunks generated by hashless algorithms. We compared the generated
chunks of vector-accelerated algorithms with their native counterparts and verified that they were identical. We present

only the chunk size distribution comparison in this paper due to space constraints.
Manuscript submitted to ACM

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

16 Udayashankar et al.

B CRC mFCDC OGEAR @RC OTTTD mAE-Max O AE-Min @ MAXP @ RAM

55.0% » 95.0% " 95.0%
v [@)] ()]
=3 £ <
S 45.0% = 85.0% % 85.0%
o wv (%]
A g g
= 35.0% S.75.0% S 75.0%
& w %)
25.0% 65.0% ; 65.0% :
Hash-based : Hashless Hash-based : Hashless
(a) DEB (b) DEV (c) FLOW
 95.0% 55.0% s o
(<)} H wn " U7
= 85.0% £ 45.0% 2
K> 32 = 85.0%
() wv
% 75.0% S 35.0% S 75.0%
wv
65.0% : 25.0% : 65.0% ;
Hash-based : Hashless Hash-based : Hashless Hash-based : Hashless
(d) KUBE (e) LNX (f) NEWS
., 95.0% ,, 95.0% 95.0%
o =3 : S
< 85.0% 'S 85.0% < 85.0%
© 04 o
%) i (%)
@] 5]
2 75.0% 8 75.0% S 75.0%
% - =%
) v %)
65.0% i 65.0% ; 65.0% T
Hash-based : Hashless Hash-based : Hashless Hash-based i Hashless
(g) RDS (h) TPCC (i) WIKI
85.0% :
4
'S 65.0%
A
o]
% 45.0%
wv
25.0%

i Hashless
(j) MAPS

Fig. 9. Space Savings with 8KB chunks. Note that the legend entries are in the same order as the plot bars.

Figure 8 shows the chunk size distributions exhibited by AE-Max, AE-Min, MAXP, and RAM compared against their
AVX-512 versions accelerated with VectorCDC. Note that each figure is a cumulative frequency (CDF) [78] plot. We use
a target average chunk size of 8KB and the TPCC dataset for this experiment. The results for other datasets and chunk

sizes were similar and have been omitted for clarity.

6.1.2 Hash-based vs Hashless. Hashless algorithms are generally competitive with hash-based ones in space savings.
The best among the hashless algorithms achieves slightly lower space savings than the best hash-based algorithm on

Manuscript submitted to ACM

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 17

some datasets, such as DEB and NEWS (Figures 9a and 9f). On the other hand, the best hashless algorithm outperforms all
hash-based algorithms on other datasets, such as LNX and RDS (Figures 9e and 9g). Overall, the best hashless algorithms

achieve space savings values within 11% of the best hash-based ones across all datasets and chunk sizes.

6.1.3 Hashless algorithm comparison. The performance of the hashless algorithms depends on the dataset’s character-
istics and the average chunk size. For instance, RAM achieves the highest space savings on DEB (Figure 9a) while MAXP
does so on TPCC (Figure 9h). This shows that accelerating all hashless algorithms is important, as the performance of each
algorithm depends on the dataset’s characteristics.

Notably, AE-Min is adversely affected by the byte-shifting pattern in MAPS, causing it to achieve only 8.89% in space
savings while other CDC algorithms achieve 58%-78%.

Finally, while MAXP achieves higher space savings than RAM and both AE variants on many datasets, the space

savings difference between it and the next best hashless algorithm is small.

6.1.4 Differences among datasets. Hashless algorithms perform equivalent to or better than their counterparts on
virtual machine and database backups, such as DEV, RDS, and TPCC. Source-code datasets demonstrate mixed results,
with hash-based algorithms slightly edging out hashless ones on KUBE, equivalence on FLOW, and hashless algorithms

being better on LNX. File formats largely do not influence space savings.

6.2 Chunking Throughput

Figures 10a and 10b show the throughput achieved by all algorithms on DEB and DEV with a chunk size of 8KB. Note
that vector-accelerated algorithms are shown with patterned bars and that we have cropped the y-axis to 5 GB/s to
avoid the figures being skewed by VRAM. The results on other datasets and chunk sizes had similar trends and have

been omitted for clarity.

6.2.1 Throughput Comparison. Figures 10a and 10b show that hashless algorithms accelerated with VectorCDC achieve
4X to 15X higher throughput than all accelerated CDC algorithms. VRAM, the fastest accelerated hashless algorithm,
achieves 8.35x and 15.3x higher throughput than SS-GEAR and FastCDC, the fastest accelerated and unaccelerated
hash-based algorithms, respectively. Additionally, VRAM achieves 207.2X higher throughput than RC, a popular but
slow hash-based CDC algorithm.

Among unaccelerated hash-based algorithms, Gear [22], CRC [26], and FastCDC [21] are the fastest. We accelerated
each of these using SS-CDC [26]; SS-GEAR achieves 3 X higher throughput compared to its unaccelerated version, and
SS-CRC achieves 2 X higher throughput that unaccelerated CRC. We did not observe any speedup when accelerating
FastCDC [21] with SS-CDC [26]. One of the main throughput optimizations used by FastCDC is sub-minimum skipping
(§2.1). However, as noted in §3.2, decoupling the rolling-hash phase from the boundary identification phase eliminates

the throughput benefits of minimum chunk size skipping, nullifying any speedup provided by vector-acceleration.

6.2.2 Vector-acceleration benefits. Figures 10c and 10d compare the throughput benefits of accelerating hash-based
and hashless algorithms with AVX-512 accelerated algorithms on DEB and DEV.

Accelerating hash-based algorithms (Figure 10c) using SS-CDC achieves a speedup of 2.45 — 3.32X. On the other
hand, the hashless algorithms VAE-Max, VAE-Min, VMAXP, and VRAM achieve speedups of 5.1X, 4.43%, 5.36X, and
17.69% over their respective native counterparts, achieving throughputs in the range of 6.5 GB/s-29.9 GB/s. Thus,

Manuscript submitted to ACM

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936

18 Udayashankar et al.

@RC gTTTD B CRC SS-CRC OGEAR EBESS-GEARmFCDC mAE-Max
VAE-Max @ AE-Min VAE-Min @ MAXP EHVMAXP @ RAM VRAM
H 5 é x d
°] o 3 Q N
& 4 SN e 84 N\
) 2 s o et <]
53 1% ol & a3
2 172 5
£2 7 22 ,
2 = 9% N
£1 = H \
0 Hash-b. d H) = 0 H ég e
sIhasEe epc Algorithms Hashless Hash-based (pC Algorithms Hashless
(a) DEB (b) DEV
4 32

w
N
S

—_
o]

Throughput (GB/s)
N
Throughput (GB/s)
>

o

DEB Dataset DEV DEB

Dataset

(c) Hash-based algorithms with SS-CDC [26] (d) Hashless algorithms with VectorCDC

Fig. 10. Chunking Throughput with AVX-512 instructions and 8KB chunks. Note the different scales in Figures 10c and 10d, and that
the legend entries are in the same order as the plot bars from Figures 10a and 10b.

vector instructions can be leveraged far more efficiently for hashless algorithms, proving that hashless algorithms are
better candidates for vector-acceleration than their hash-based counterparts.

Figure 10d shows that VRAM achieves higher throughputs than VAE-Max, VAE-Min, and VMAXP. This is because
VAE requires multiple iterations of Range Scan per chunk, each followed by an Extreme Byte Search, while VRAM only
requires one iteration of each (§4). Similarly, VMAXP requires multiple Range Scans, each followed by two Extreme Byte
Searches. For a given target average chunk size, the size of the Extreme Byte Search regions in MAXP is 70 — 80% smaller
than the search region in AE. This allows VMAXP to achieve speeds similar to VAE-Max and VAE-Min despite needing
an extra Extreme Byte Search.

Thus, RAM is inherently more vector-friendly than AE and MAXP. However, note that VAE and VMAXP are still faster
than every other CDC algorithm.

6.2.3 Deduplication performance bottlenecks. Figure 11 shows the time taken by the chunking and hashing phases
in the deduplication pipeline on DEB with an 8KB average chunk size. We omit the results for other datasets as they
were similar. We used two fingerprinting algorithms; xxHash3, the fastest but generates a 128-bit digest, and SHA-256,
slower but offers higher collision resistance with a 256-bit digest (§3.1). We ran this experiment on the Intel Emerald
Rapids machine. We use AVX-512 versions of hashless CDC algorithms, accelerated with VectorCDC.

Figure 11 shows that with xxHash3 (Figure 11a), data chunking takes significantly longer than fingerprinting with
unaccelerated algorithms. On the other hand, VAE-Min, VAE-Max, VMAXP, and VRAM show data chunking times similar

Manuscript submitted to ACM

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

953

955

956

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

988

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 19

30 m Data Chunking OFingerprinting

25

20

15

10

; =~

0 =

FastCDC AE-Min AE-Max MAXP ~ RAM VAE-Min VAE-Max VMAXP VRAM
CDC Algorithm

Time (Seconds)

(a) xxHash3 - 128-bit digest

60 m Data Chunking OFingerprinting

50
40

: 1000

FastCDC AE-Min AE-Max MAXP ~ RAM VAE-Min VAE-Max VMAXP VRAM
CDC Algorithm

(b) SHA256 - 256-bit digest

Time (Seconds)

Fig. 11. Time taken for Data Chunking vs Fingerprinting on DEB with an 8 KB average chunk size, and AVX-512 instructions for
acceleration.

to or lower than fingerprinting. For instance, with VRAM, data chunking takes 1.29 seconds while fingerprinting takes
2.27 seconds.

With SHA-256 (Figure 11b), we observe that fingerprinting takes as long as data chunking with unaccelerated CDC
algorithms. On the other hand, VAE-Max, VAE-Min, VMAXP, and VRAM take significantly lower time to run.

These results show that VectorCDC effectively alleviates the data chunking bottleneck in the deduplication pipeline.

6.3 Throughput breakdown - Extreme Byte Search vs Range Scan

The throughput impact of each processing pattern depends on algorithmic and dataset characteristics. Figure 12 shows
the individual impact of accelerating Extreme Byte Search and Range Scan using VRAM on the DEB and LNX datasets
with an 8KB chunk size. VRAM-EBS and VMAXP-EBS represent RAM and MAXP running with only Extreme Byte Search
acceleration, while VRAM-512 and VMAXP-512 use both accelerated patterns.

Figure 12a shows that on DEB, VRAM-EBS achieves a throughput of 18.5 GB/s compared to RAM at 1.7 GB/s.
Accelerating Range Scan provides an additional speedup of 11.4 GB/s. On the other hand on LNX, VRAM-EBS only
achieves 2.7 GB/s compared to RAM at 2 GB/s. Accelerating Range Scan provides an additional speedup of 27.6 GB/s.

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

20 Udayashankar et al.

Thus, each pattern has a balanced impact on VRAM’s throughput on DEB, while Range Scan primarily contributes to
throughput on LNX, indicating that dataset characteristics affect the throughput breakdown.

The throughput breakdown also varies across algorithms; for instance, accelerating Extreme Byte Searches has
differing impacts on the throughputs of RAM and MAXP. While Figure 12a shows that VRAM-EBS achieves significantly
higher throughput than RAM on DEB, Figure 12b shows that VMAXP-EBS only achieves small speedups over MAXP, i.e.,
Range Scan acceleration contributes more to throughput on VMAXP than it does on VRAM.

These results are directly tied to the number of bytes processed by the algorithms on both datasets. Figure 13 shows
the percentage shares of bytes processed by Extreme Byte Searches and Range Scans, for all hashless algorithms on DEB
and LNX. As seen in Figure 13a, the percentage shares differ across algorithms. For instance, RAM processes 96.70%
and 3.30% of bytes on DEB with Extreme Byte Search and Range Scan, respectively. On the other hand, MAXP processes
10.26% and 89.74% of bytes with Extreme Byte Search and Range Scan, respectively. Additionally, this percentage varies
across datasets, as seen by the differences between Figures 13a and 13b.

Thus, accelerating both phases using vector instructions is crucial to performance, as the impact of each phase depends

on dataset and algorithmic characteristics.

6.4 VectorCDC across different vector instruction sets

VectorCDC is compatible with a large range of platforms that support vector instructions such as SSE-128, AVX-256,
NEON-128, and VSX-128 (§2.3). This is unlike SS-CDC [26] which requires CPUs with scatter/gather instruction
support. Such CPUs are present only in a small percentage of datacenter nodes today.

While §4 discusses VectorCDC’s design using AVX-512 instructions, the same methods can be applied to any vector
instruction set that supports VCMP, VMAX, and VMASK operations. In this section, we evaluate VectorCDC’s performance

with other such vector instruction sets. We ran this experiment using the DEB dataset and an average chunk size of 8 KB.

6.4.1 AMD EPYC Rome. Figure 14a shows the throughputs achieved by hashless algorithms accelerated with VectorCDC
on an AMD EPYC Rome machine. As shown in Table 1, the AMD machine only supports SSE-128 and AVX-256
instructions. All four hashless algorithms in Figure 14a show speedups over their native versions with both instruction
sets. For instance, AE-Max achieves 2.12X and 3.43X speedups with SSE-128 and AVX-256 instructions, respectively.
Similar to the results in §6.2 with AVX-512 instructions, RAM achieves the highest throughput of all algorithms with
both SSE-128 and AVX-256 instructions.

®RAM =EVRAM-EBS &VRAM-512 10 m MAXP =VMAXP-EBS BVMAXP-512
2 2
S} S}
2 3
S S
g g
= =
DEB LNX DEB LNX
(a) VRAM (b) VMAXP

Fig. 12. Throughput Breakdown with AVX-512 instructions. Note that VRAM-EBS and VMAXP-EBS represent VRAM and VMAXP
with only Extreme Byte Search accelerated.

Manuscript submitted to ACM

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1092

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 21

W Extreme Byte Search E Range Scan

100.00% 100.00%
7 7
2 75.00% 2 75.00%
g g
£ 50.00% £ 50.00%
8 g
£ 25.00% 2 25.00%
2]

0.00% 0.00%

AE-Max AE-Min MAXP RAM AE-Max AE-Min MAXP RAM
(a) DEB (b) LNX

Fig. 13. Percentage share of bytes processed using Extreme Byte Search and Range Scan by hashless CDC algorithms on DEB and LNX

6.4.2 Intel Emerald Rapids and Skylake. Figures 14b and 14c show the throughputs achieved by hashless algorithms
accelerated with VectorCDC on Intel Emerald Rapids and Skylake machines. As shown in Table 1, these machines
support SSE-128, AVX-256, and AVX-512 instructions. All four hashless algorithms in Figures 14b and 14c achieve
speedups over their unaccelerated versions with all instruction sets. For instance, in Figure 14c, AE-Max achieves 2.29X,
4.91%, and 6.71x speedups with SSE-128, AVX-256, and AVX-512 instructions, respectively. Similar to the results in §6.2
with AVX-512 instructions, RAM achieves the highest throughput of all algorithms with both SSE-128 and AVX-256
instructions.

On both platforms, all algorithms also benefit from increasing vector widths; that is, higher vector widths lead to
higher throughput. The only exception is MAXP, which does not gain as much as the other algorithms with AVX-512
instructions over AVX-256. This is related to the small window sizes used by MAXP for its Extreme Byte Search phases,
which do not benefit from high vector widths. However, MAXP still achieves 4.7x and 5.42x speedups with AVX-512

instructions over its unaccelerated version, on the Skylake and Emerald Rapids machines, respectively.

6.4.3 ARM v8 Atlas. Figure 14d shows the throughputs achieved by hashless algorithms accelerated with VectorCDC
on an ARM v8 Atlas machine. As shown in Table 1, the machine only supports NEON-128 instructions, an ARM
equivalent to SSE-128. While the instruction set supports VMAX and VCMP operations, it lacks native support for
VMASK operations (§5). RAM achieves the highest throughput among all accelerated hashless algorithms at 2.91 GB/s.

All hashless algorithms achieve lower speedups on ARM with NEON-128 instructions, when compared to SSE-128
instructions on Intel and AMD machines. AE-Max and AE-Min are especially affected, achieving only 1.08x and 1.05x
speedups, i.e. 8% and 5% gains with NEON-128 over their unaccelerated versions. This is largely due to the lack of
native VMASK support, which affects Range Scans. While our implementation uses an alternative method to achieve
the same functionality, it uses four NEON-128 instructions instead of a single SSE-128 VMASK instruction.

However, MAXP and RAM still achieve 1.93% and 5.32x speedups, respectively, showing that VectorCDC remains
beneficial on ARM platforms with NEON-128 support. Note that these numbers are expected to improve in ARM
platforms supporting SVE/SVEZ2 instructions [47], as they offer native VMASK support. However, as we could not obtain

such a platform for our evaluation, we leave a detailed SVE/SVE2 performance review as future work.

6.4.4 IBM Power 8. Figure 14e shows the throughputs achieved by hashless algorithms accelerated with VectorCDC
on an IBM Power 8 machine. As shown in Table 1, this machine only supports VSX-128 instructions, an IBM equivalent

Manuscript submitted to ACM

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

22 Udayashankar et al.

@ Unaccelerated B SSE-128 EAVX-256 AAVX-512 EINEON-128 @1 VSX-128

_32.00 3200
{1 w
E 24.00 & 24.00
§_ 16.00 §_ 16.00
ey =
(@)} (@)
S 8.00 2 8.00
< =
= 0.00 = 0.00

AE-Max AE-Min MAXP RAM

(a) AMD EPYC Rome

32,00 — 400
w S~
= P
g24.00 QO 3.00
- 5
2.16.00 2 2.00
< S \
S g $
3 8.00 3 1.00 R .
= <
= 0.00 = 0.00 B BE

AE-Max AE-Min MAXP RAM

(c) Intel Skylake d) ARM v8 Atlas
Yy

o
1000 &

8.00
6.00
400
2.00 v v .
000 Lemll w1 el

AE-Max AE-Min MAXP RAM

(e) IBM Power 8

& &
& &

Throughput (GB/s

Fig. 14. Accelerating hashless algorithms with VectorCDC across processor architectures, on DEB at an 8KB average chunk size. Data
labels show speedups over the respective native algorithm for the specific cases discussed in text. Note the different y-axis scale on
Figures 14d and 14e.

to SSE-128. This instruction set lacks support for native VMASK operations as well (§5). RAM achieves the highest
throughput among all accelerated hashless algorithms, at 8.54 GB/s.

Unlike ARM, all hashless algorithms exhibit considerable speedups on IBM Power 8 with VectorCDC. AE-Max and
AE-Min achieve speedups of 2.92x and 2.85x% respectively. MAXP and RAM achieve speedups of 7.93x and 20.35%
respectively. Furthermore, all hashless algorithms accelerated with VSX-128 instructions achieve speedups equivalent
to or greater than their counterparts accelerated with SSE-128 on Intel and AMD machines. For instance, RAM achieves
a speedup of 20.35x with VSX-128 on IBM Power 8 while it achieves a speedup of 7.49% and 9.94x with SSE-128 on
Intel Emerald Rapids and AMD EPYC Rome, respectively.

This is because, despite the lack of native VMASK instruction support, the alternative implementation using
vec_bpermq is efficient and uses just two fast VSX-128 instructions.

Manuscript submitted to ACM

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

1196

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 23

6.5 Evaluation Summary
To summarize, the main takeaways from our evaluation are the following:

e VectorCDC-based hashless algorithms achieve 15.3X-207.2X and 8.35X-26.2x higher throughput than unaccel-
erated and vector-accelerated hash-based algorithms respectively, showing that hashless algorithms are better
candidates for vector acceleration (§6.2).

e VectorCDC effectively alleviates the data chunking performance bottleneck in the deduplication pipeline (§6.2.3).

o Accelerating both Extreme Byte Search and Range Scan is important because their individual impact depends on
dataset and algorithmic characteristics (§6.3).

e VectorCDC provides benefits across different processor architectures, and is compatible with a wide range of
vector instruction sets (§6.4).

o Accelerating hashless algorithms with VectorCDC does not impact their space savings and generates chunks
identical to their unaccelerated counterparts.

e Hashless algorithms achieve space savings values comparable to or better than those of their hash-based
counterparts on real-world datasets (§6.1). The best performing hashless algorithm varies by dataset, showing

that accelerating all of them is equally important.

7 Related Work

7.0.1 Chunking optimizations. Many efforts have been made to optimize data chunking. MUCH [79] and P-Dedupe [80]
use multiple threads to accelerate chunking. RapidCDC [81] sometimes skips data chunking by predicting the next
chunk boundary based on historical data, but requires maintaining additional metadata. Bimodal Chunking [82] initially
splits the data into large chunks, and then divides duplicate adjacent chunks into smaller ones, to enhance space savings.
VectorCDC is compatible with all of these approaches, as they build on top of existing CDC algorithms.

Previous work [83] that analyzes the characteristics of chunks generated by CDC algorithms, is orthogonal to
VectorCDC, as vector acceleration does not affect generated chunks.

Our previous paper at USENIX FAST 2025 [84] presented VectorCDC’s design, but does not discuss accelerating MAXP
[27] or VectorCDC'’s performance on varying CPU architectures. Additionally, it does not present a comprehensive

evaluation of VectorCDC’s capabilities.

7.0.2 Deduplication optimizations. Several other efforts exist to optimize the other phases of the deduplication pipeline.
StoreGPU [19] and GPU-Dedup [18] accelerate chunk hash computation using GPUs. SiLo [85], Sparse Indexing [86]
and Extreme Binning [87] optimize hash indexing. HYDRAStor [88] is a distributed deduplication system that focuses
on data placement. Several studies incorporate delta compression after deduplication to further compress similar but

non-duplicate chunks [89-91]. These efforts are orthogonal to ours as we accelerate the data chunking phase.

7.0.3 Accelerating other storage systems. Vector instructions have been widely used to accelerate other storage systems.
MinervaFS [92] accelerates the computation of transform and basis functions in generalized deduplication with AVX
instructions. ICID [93] records memory-copy operations in a B-Tree for fine-grained deduplication, accelerating tree
searches with AVX instructions. AVX-512 conflict detection instructions have been used to accelerate lightweight data
compression algorithms [94]. Numerous works attempt to accelerate collision-resistant hashing algorithms used across
storage systems with vector instructions [95, 96]. These efforts are orthogonal to ours as we focus on using vector
instructions to accelerate CDC algorithms for block-level deduplication.

Manuscript submitted to ACM

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

1248

24 Udayashankar et al.

7.0.4 Secure deduplication systems. Several efforts build end-to-end deduplication systems for encrypted data [97].
They mainly target encryption schemes [98, 99] for the underlying data or focus on reducing attacks on the system
[100, 101]. Some target specific applications, such as distributing encrypted docker images [102] and encrypted videos
[103]. As all of these efforts layer encryption atop existing data chunking algorithms, VectorCDC is compatible with all

these approaches.

8 Conclusion

We present VectorCDC, a methodology for accelerating content-defined chunking using vector instructions. VectorCDC
avoids the pitfalls of previous work that accelerates CDC algorithms by choosing hashless CDC algorithms instead.
VectorCDC accelerates these algorithms using novel tree-based search and packed scanning methods. Our evaluation
shows that VectorCDC achieves 8.35X-26.2X higher throughput than existing vector-accelerated CDC algorithms
and 15.3X-207.2X higher throughput than unaccelerated algorithms. We have made our code publicly available by
integrating it with DedupBench [15], and published one of our datasets on Kaggle [28].

Acknowledgments

We thank the anonymous reviewers of USENIX FAST 2025 and ACM Transactions on Storage for their feedback. We
thank Lori Paniak for his technical assistance throughout the project, and Mu’'men Al-Jarah for his feedback on an earlier
version of this work. The research team was supported by grants from the National Cybersecurity Consortium (NCC),
Natural Sciences and Engineering Research Council of Canada (NSERC), and the Ontario Research Fund’s Research
Excellence Program (ALLRP-561423-20, RGPIN-2025-03332, and ORF-RE012-051). The team was also supported by
research grants from Acronis, Oracle Research Labs, and Rogers Communications. Sreeharsha is supported by the

Cheriton Graduate Scholarship and the Ontario Graduate Scholarship.

References

[1] Statista. Worldwide data created from 2010 to 2025, 2024.

[2] Mark Carlson, Alan Yoder, Leah Schoeb, Don Deel, Carlos Pratt, Chris Lionetti, and Doug Voigt. Software Defined Storage. Storage Networking
Industry Association Working Draft, pages 20-24, 2014.

[3] Peter M Chen, Edward K Lee, Garth A Gibson, Randy H Katz, and David A Patterson. RAID: High-performance, reliable secondary storage. ACM
Computing Surveys (CSUR), 26(2):145-185, 1994.

[4] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop distributed file system. In 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), pages 1-10. Ieee, 2010.

[5] Sage Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn. Ceph: A scalable, high-performance distributed file system. In
Proceedings of the 7th Conference on Operating Systems Design and Implementation (OSDI’06), pages 307-320, 2006.

[6] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal, 2004(124):5, 2004.

[7] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry
Li, et al. TAO: Facebook’s distributed data store for the social graph. In 2013 USENIX Annual Technical Conference (USENIX ATC 13), pages 49-60,
2013.

[8] Dutch T Meyer and William J Bolosky. A study of practical deduplication. ACM Transactions on Storage (ToS), 7(4):1-20, 2012.

[9] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua, Min Fu, Yucheng Zhang, and Yukun Zhou. A comprehensive study of the
past, present, and future of data deduplication. Proceedings of the IEEE, 104(9):1681-1710, 2016.

[10] Deyan Chen and Hong Zhao. Data security and privacy protection issues in cloud computing. In 2012 International Conference on Computer Science
and Electronics Engineering, volume 1, pages 647-651. IEEE, 2012.

[11] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Ottean, Jin Li, and Sudipta Sengupta. Primary Data Deduplication — Large scale study and system
design. In 2012 USENIX Annual Technical Conference (USENIX ATC 12), pages 285-296, 2012.

[12] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen Smaldone, Mark Chamness, and Windsor Hsu. Characteristics of backup
workloads in production systems. In USENIX Conference on File and Storage Technologies (FAST), volume 12, pages 4-4, 2012.

Manuscript submitted to ACM

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

1300

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 25

(13]

(14]

(15]

[16

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

[27

(28]

[29]

Phlip Shilane, Mark Huang, Grant Wallace, and Windsor Hsu. Wan-optimized replication of backup datasets using stream-informed delta
compression. ACM Transactions on Storage (ToS), 8(4):1-26, 2012.

Sarah Henderson. Document duplication: How users (struggle to) manage file copies and versions. Proceedings of the American Society for
Information Science and Technology, 48(1):1-10, 2011.

Alan Liu, Abdelrahman Baba, Sreeharsha Udayashankar, and Samer Al-Kiswany. DedupBench: A Benchmarking Tool for Data Chunking
Techniques. In 2023 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pages 469-474. IEEE, 2023.

Jingwei Li, Zuoru Yang, Yanjing Ren, Patrick PC Lee, and Xiaosong Zhang. Balancing storage efficiency and data confidentiality with tunable
encrypted deduplication. In Proceedings of the Fifteenth European Conference on Computer Systems, pages 1-15, 2020.

Nigel Tan, Jakob Luettgau, Jack Marquez, Keita Teranishi, Nicolas Morales, Sanjukta Bhowmick, Franck Cappello, Michela Taufer, and Bogdan
Nicolae. Scalable incremental checkpointing using gpu-accelerated de-duplication. In Proceedings of the 52nd International Conference on Parallel
Processing, ICPP ’23, page 665-674, New York, NY, USA, 2023. Association for Computing Machinery.

Kiatchumpol Suttisirikul and Putchong Uthayopas. Accelerating the cloud backup using GPU based data deduplication. In 2012 IEEE 18th
International Conference on Parallel and Distributed Systems, pages 766-769. IEEE, 2012.

Samer Al-Kiswany, Abdullah Gharaibeh, Elizeu Santos-Neto, George Yuan, and Matei Ripeanu. StoreGPU: Exploiting Graphics Processing Units to
Accelerate Distributed Storage Systems. In Proceedings of the 17th International Symposium on High Performance Distributed Computing, HPDC 08,
page 165-174, New York, NY, USA, 2008. Association for Computing Machinery.

Yucheng Zhang, Hong Jiang, Dan Feng, Wen Xia, Min Fu, Fangting Huang, and Yukun Zhou. AE: An asymmetric extremum content defined
chunking algorithm for fast and bandwidth-efficient data deduplication. In 2015 IEEE Conference on Computer Communications (INFOCOM), pages
1337-1345. IEEE, 2015.

Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu, Qing Liu, and Yucheng Zhang. FastCDC: A fast and efficient content-defined
chunking approach for data deduplication. In 2016 USENIX Annual Technical Conference (USENIX ATC 16), pages 101-114, 2016.

Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Yukun Zhou. Ddelta: A deduplication-inspired fast delta compression approach. Performance
Evaluation, 79:258-272, 2014. Special Issue: Performance 2014.

Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-bandwidth network file system. In Proceedings of the Eighteenth ACM Symposium
on Operating Systems Principles (SOSP), pages 174-187, 2001.

Ryan NS Widodo, Hyotaek Lim, and Mohammed Atiquzzaman. A new content-defined chunking algorithm for data deduplication in cloud storage.
Future Generation Computer Systems, 71:145-156, 2017.

Kave Eshghi and Hsiu Khuern Tang. A framework for analyzing and improving content-based chunking algorithms. Hewlett-Packard Labs
Technical Report TR, 30(2005), 2005.

Fan Ni, Xing Lin, and Song Jiang. SS-CDC: A two-stage parallel content-defined chunking for deduplicating backup storage. In Proceedings of the
12th ACM International Conference on Systems and Storage, pages 86-96, 2019.

Nikolaj Bjerner, Andreas Blass, and Yuri Gurevich. Content-dependent chunking for differential compression, the local maximum approach.
Journal of Computer and System Sciences, 76(3-4):154-203, 2010.

Sreeharsha Udayashankar, Abdelrahman Baba, and Samer Al-Kiswany. VM Images for Deduplication. https://www.kaggle.com/dsv/10561721,
2025.

Dian Rachmawati, JT Tarigan, and ABC Ginting. A comparative study of Message Digest 5 (MD5) and SHA256 algorithm. In Journal of Physics:
Conference Series, volume 978, page 012116. IOP Publishing, 2018.

Chunlin Song, Xianzhang Chen, Duo Liu, Jiali Li, Yujuan Tan, and Ao Ren. Optimizing the Performance of Consistency-Aware Deduplication
Using Persistent Memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023.

Sean Quinlan and Sean Dorward. Venti: A new approach to archival data storage. In USENIX Conference on File and Storage Technologies, 2002.
John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weather-
spoon, Westley Weimer, et al. Oceanstore: An architecture for global-scale persistent storage. ACM SIGOPS Operating Systems Review, 34(5):190-201,
2000.

Mike Dutch. Understanding data deduplication ratios. In SNIA Data Management Forum, volume 7, 2008.

James E Smith, Greg Faanes, and Rabin Sugumar. Vector instruction set support for conditional operations. ACM SIGARCH Computer Architecture
News, 28(2):260-269, 2000.

Intel. Intel® Intrinsics Guide. https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index html, 2024.

Somaia A Hassan, Mountasser MM Mahmoud, AM Hemeida, and Mahmoud A Saber. Effective implementation of matrix-vector multiplication on
Intel’s AVX multicore processor. Computer Languages, Systems & Structures, 51:158-175, 2018.

Shay Gueron and Vlad Krasnov. Fast quicksort implementation using AVX instructions. The Computer Journal, 59(1):83-90, 2016.

Robert L Bocchino Jr and Vikram S Adve. Vector LLVA: a virtual vector instruction set for media processing. In Proceedings of the 2nd International
Conference on Virtual Execution Environments, pages 46-56, 2006.

Jorge Francés, Sergio Bleda, Andrés Marquez, Cristian Neipp, Sergi Gallego, Beatriz Otero, and Augusto Beléndez. Performance analysis of SSE and
AVX instructions in multi-core CPUs and GPU computing on FDTD scheme for solid and fluid vibration problems. The Journal of Supercomputing,
70:514-526, 2014.

Manuscript submitted to ACM

https://www.kaggle.com/dsv/10561721
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

1352

(58]

(59

Udayashankar et al.

Maximilian Béther, Lawrence Benson, Ana Klimovic, and Tilmann Rabl. Analyzing Vectorized Hash Tables across CPU Architectures. Proceedings
of the VLDB Endowment, 16(11):2755-2768, July 2023.

Markus Dreseler, Jan Kossmann, Johannes Frohnhofen, Matthias Uflacker, and Hasso Plattner. Fused Table Scans: Combining AVX-512 and JIT to
Double the Performance of Multi-Predicate Scans. In 2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW), pages
102-109, 2018.

Intel. Intel® Instruction Set Extensions Technology. https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html.
Advanced Micro Devices. Revision Guide for AMD Athlon 64 and AMD Opteron”™ Processors. https://www.amd.com/content/dam/amd/en/
documents/archived-tech-docs/revision-guides/25759.pdf, 2003.

WikiChip. Skylake Server - Microarchitectures - Intel. https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server), 2017.

WikiChip. Zen 4 - Microarchitectures - AMD. https://en.wikichip.org/wiki/amd/microarchitectures/zen_4, 2022.

ARM. ARM NEON Architecture Overview. https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture- overview/
NEON-instructions, 2013.

Ruimin Shi, Gabin Schieffer, Maya Gokhale, Pei-Hung Lin, Hiren Patel, and Ivy Peng. ARM SVE Unleashed: Performance and Insights Across HPC
Applications on Nvidia Grace. European Conference on Parallel Processing, 2025.

B. Sinharoy, J. A. Van Norstrand, R. J. Eickemeyer, H. Q. Le, J. Leenstra, D. Q. Nguyen, B. Konigsburg, K. Ward, M. D. Brown, J. E. Moreira, D. Levitan,
S. Tung, D. Hrusecky, J. W. Bishop, M. Gschwind, M. Boersma, M. Kroener, M. Kaltenbach, T. Karkhanis, and K. M. Fernsler. IBM POWER8
processor core microarchitecture. IBM Journal of Research and Development, 59(1):2:1-2:21, 2015.

Frederic P. Miller, Agnes F. Vandome, and John McBrewster. AltiVec. Alpha Press, 2010.

Ronald Rivest. RFC 1321: The MD5 message-digest algorithm. Technical report, Network Working Group, 1992.

D Eastlake 3rd. RFC 3174: US secure hash algorithm 1 (SHA1). Technical report, Network Working Group, 2001.

D. Eastlake 3rd and T. Hansen. RFC 4634: US Secure Hash Algorithms (SHA and HMAC-SHA). Technical report, Network Working Group, 2006.
Austin Appleby. MurmurHash3. 2011.

Lianhua Chi and Xingquan Zhu. Hashing techniques: A survey and taxonomy. ACM Computing Surveys (Csur), 50(1):1-36, 2017.

xxHash. xxHash - Extremely fast non-cryptographic hash algorithm. https://xxhash.com/, 2020.

Austin Appleby. SMHasher. 29:2016, 2016.

Fan Ni, Xingbo Wu, Weijun Li, Lei Wang, and Song Jiang. Woj: Enabling write-once full-data journaling in ssds by using weak-hashing-based
deduplication. Performance Evaluation, 127-128:56-69, 2018.

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy, Aaron Vose, and Daniel Ernst. Evaluating Gather and Scatter Performance on CPUs and
GPUs. In Proceedings of the International Symposium on Memory Systems, MEMSYS °20, page 209-222, New York, NY, USA, 2021. Association for
Computing Machinery.

Danila Kutenin. Porting x86 vector bitmask optimizations to Arm NEON. https://community.arm.com/arm-community-blogs/b/servers-and-
cloud-computing-blog/posts/porting-x86- vector-bitmask- optimizations-to-arm-neon, 2022.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk
Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin Kar, and
Prabodh Mishra. The design and operation of CloudLab. In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 1-14, Renton, WA,
July 2019. USENIX Association.

Debian. Debian - The Universal Operating System. https://www.debian.org/, 2025.

VMWare. VMWare marketplace. https://marketplace.cloud.vmware.com/services, 2023.

Rust. GitHub - rust-lang/rust: Empowering everyone to build reliable and efficient software. https://github.com/rust-lang/rust, 2023.

Bo Pang, Erik Nijkamp, and Ying Nian Wu. Deep learning with tensorflow: A review. Journal of Educational and Behavioral Statistics, 45(2):227-248,
2020.

Marko Luksa. Kubernetes in action. Simon and Schuster, 2017.

Linux. The Linux Kernel Archives. https://www.kernel.org/, 2023.

GNU. GNU tar 1.35: Basic Tar Format. https://www.gnu.org/software/tar/manual/html_section/Standard.html, 2023.

Mordechai Haklay and Patrick Weber. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Computing, 2008.

GeoFabrik. GEOFABRIK. https://www.geofabrik.de/, 2025.

Redis. Redis. https://redis.io/, 2023.

MySQL. MySQL. https://www.mysql.com/, 2023.

Transaction Processing Council. TPC-C Overview. https://www.tpc.org/tpce/detail5.asp, 2023.

Wikipedia. List of films based on actual events. https://en.wikipedia.org/wiki/List_of _films_based_on_actual_events, 2022.

Owen Randall and Paul Lu. Predicting deduplication performance: An analytical model and empirical evaluation. In 2022 IEEE International
Conference on Big Data (Big Data), pages 319-328, 2022.

OpenStreetMap. OSM file formats - OpenStreetMap Wiki. https://wiki.openstreetmap.org/wiki/OSM_file_formats, 2025.

Jan-Erik Rediger. RDB File Format. https://rdb.fnordig.de/file_format.html, 2015.

DMTEF. Open virtualization format white paper. https://www.dmtf.org/sites/default/files/standards/documents/DSP2017_1.0.0.pdf, 2009.

Irving W Burr. Cumulative Frequency Functions. The Annals of Mathematical Statistics, 13(2):215-232, 1942.

Manuscript submitted to ACM

https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/revision-guides/25759.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/revision-guides/25759.pdf
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/amd/microarchitectures/zen_4
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-instructions
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-instructions
https://xxhash.com/
https://community.arm.com/arm-community-blogs/b/servers-and-cloud-computing-blog/posts/porting-x86-vector-bitmask-optimizations-to-arm-neon
https://community.arm.com/arm-community-blogs/b/servers-and-cloud-computing-blog/posts/porting-x86-vector-bitmask-optimizations-to-arm-neon
https://www.debian.org/
https://marketplace.cloud.vmware.com/services
https://github.com/rust-lang/rust
https://www.kernel.org/
https://www.gnu.org/software/tar/manual/html_section/Standard.html
https://www.geofabrik.de/
https://redis.io/
https://www.mysql.com/
https://www.tpc.org/tpcc/detail5.asp
https://en.wikipedia.org/wiki/List_of_films_based_on_actual_events
https://wiki.openstreetmap.org/wiki/OSM_file_formats
https://rdb.fnordig.de/file_format.html
https://www.dmtf.org/sites/default/files/standards/documents/DSP2017_1.0.0.pdf

1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 27

(79]

(80]

(81]

(82
(83

(84]

(85]

(86]

(87]

(88

(89]

[90

[92]

(93

(94

[95]

(%]

[97

(98

[99

[100]

[101

[102]

[103

Youjip Won, Kyeongyeol Lim, and Jachong Min. MUCH: Multithreaded Content-Based File Chunking. IEEE Transactions on Computers, 64(5):1375—
1388, 2015.

Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Zhongtao Wang. P-Dedupe: Exploiting Parallelism in Data Deduplication System. In 2012
IEEE Seventh International Conference on Networking, Architecture, and Storage, pages 338347, 2012.

Fan Ni and Song Jiang. RapidCDC: Leveraging Duplicate Locality to Accelerate Chunking in CDC-Based Deduplication Systems. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC 19, page 220-232, New York, NY, USA, 2019. Association for Computing Machinery.

Erik Kruus, Cristian Ungureanu, and Cezary Dubnicki. Bimodal content defined chunking for backup streams. In Fast, pages 239-252, 2010.
Mu’men Al Jarah, Sreeharsha Udayashankar, Abdelrahman Baba, and Samer Al-Kiswany. The Impact of Low-Entropy on Chunking Techniques
for Data Deduplication. In 2024 IEEE 17th International Conference on Cloud Computing (CLOUD), pages 134-140, 2024.

Sreeharsha Udayashankar, Abdelrahman Baba, and Samer Al-Kiswany. {VectorCDC}: Accelerating data deduplication with vector instructions. In
23rd USENIX Conference on File and Storage Technologies (FAST 25), pages 513-522, 2025.

Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. Similarity and Locality Based Indexing for High Performance Data Deduplication. IEEE Transactions
on Computers, 64(4):1162-1176, 2015.

Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg Trezis, and Peter Camble. Sparse indexing: Large scale, inline
deduplication using sampling and locality. In USENIX Conference on File and Storage Technologies (FAST), volume 9, pages 111-123, 2009.
Deepavali Bhagwat, Kave Eshghi, Darrell DE Long, and Mark Lillibridge. Extreme binning: Scalable, parallel deduplication for chunk-based file
backup. In 2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems, pages 1-9. IEEE,
2009.

Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wojciech Kilian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian
Ungureanu, and Michal Welnicki. HYDRAstor: A scalable secondary storage. In USENIX Conference on File and Storage Technologies (FAST),
volume 9, pages 197-210, 2009.

Phlip Shilane, Mark Huang, Grant Wallace, and Windsor Hsu. WAN-optimized replication of backup datasets using stream-informed delta
compression. ACM Transactions on Storage (ToS), 8(4):1-26, 2012.

Xiangyu Zou, Wen Xia, Philip Shilane, Haijun Zhang, and Xuan Wang. Building a high-performance fine-grained deduplication framework for
backup storage with high deduplication ratio. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages 19-36, 2022.

Yucheng Zhang, Hong Jiang, Dan Feng, Nan Jiang, Taorong Qiu, and Wei Huang. {LoopDelta}: Embedding locality-aware opportunistic delta
compression in inline deduplication for highly efficient data reduction. In 2023 USENIX Annual Technical Conference (USENIX ATC 23), pages
133-148, 2023.

Lars Nielsen, Dorian Burihabwa, Valerio Schiavoni, Pascal Felber, and Daniel E. Lucani. MinervaFS: A User-Space File System for Generalised
Deduplication: (Practical experience report). In 2021 40th International Symposium on Reliable Distributed Systems (SRDS), pages 254-264, 2021.
Haikun Liu, Xiaozhong Jin, Chencheng Ye, Xiaofei Liao, Hai Jin, and Yu Zhang. I/O Causality Based In-Line Data Deduplication for Non-Volatile
Memory Enabled Storage Systems. IEEE Transactions on Computers, 73(5):1327-1340, 2024.

Annett Ungethum, Johannes Pietrzyk, Patrick Damme, Dirk Habich, and Wolfgang Lehner. Conflict Detection-Based Run-Length Encoding -
AVX-512 CD Instruction Set in Action. In 2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW), pages 96-101, 2018.
Daniel Lemire and Owen Kaser. Faster 64-bit universal hashing using carry-less multiplications. Journal of Cryptographic Engineering, 6:171-185,
2016.

Tony C Pan, Sanchit Misra, and Srinivas Aluru. Optimizing high performance distributed memory parallel hash tables for DNA k-mer counting. In
2018 International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pages 135-147. IEEE, 2018.

Youngjoo Shin, Dongyoung Koo, and Junbeom Hur. A Survey of Secure Data Deduplication Schemes for Cloud Storage Systems. ACM Computing
Surveys, 49(4), Jan 2017.

Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-locked encryption and secure deduplication. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 296-312. Springer, 2013.

Jian Liu, N. Asokan, and Benny Pinkas. Secure Deduplication of Encrypted Data without Additional Independent Servers. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, page 874-885, New York, NY, USA, 2015. Association for
Computing Machinery.

Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Side Channels in Cloud Services: Deduplication in Cloud Storage. IEEE Security and
Privacy, 8(6):40-47, 2010.

Yanjing Ren, Jingwei Li, Zuoru Yang, Patrick P. C. Lee, and Xiaosong Zhang. Accelerating Encrypted Deduplication via SGX. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages 957-971. USENIX Association, July 2021.

Tong Sun, Bowen Jiang, Borui Li, Jiamei Lv, Yi Gao, and Wei Dong. {SimEnc}: A {High-Performance}{Similarity-Preserving} encryption
approach for deduplication of encrypted docker images. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pages 615-630, 2024.
Yifeng Zheng, Xingliang Yuan, Xinyu Wang, Jinghua Jiang, Cong Wang, and Xiaolin Gui. Toward Encrypted Cloud Media Center With Secure
Deduplication. IEEE Transactions on Multimedia, 19(2):251-265, 2017.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Background
	2.1 Data Chunking
	2.2 Deduplication Metrics
	2.3 Vector Instructions

	3 Motivation
	3.1 Performance bottlenecks in data deduplication
	3.2 Accelerating hash-based algorithms with vector instructions

	4 VectorCDC Design
	4.1 Tree-based Extreme Byte Search
	4.2 Packed Scanning for Range Scans
	4.3 Putting it together: AE-Max, AE-Min, MAXP, and RAM

	5 Implementation
	6 Evaluation
	6.1 Space Savings and Chunk Size Distributions
	6.2 Chunking Throughput
	6.3 Throughput breakdown - Extreme Byte Search vs Range Scan
	6.4 VectorCDC across different vector instruction sets
	6.5 Evaluation Summary

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

