
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Accelerating Data Chunking in Deduplication Systems using Vector Instructions
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Content-defined Chunking (CDC) algorithms dictate the overall space savings that deduplication systems achieve. However, due
to their need to scan each file in its entirety, they are slow and often the main performance bottleneck within data deduplication.
We present VectorCDC, a method to accelerate hashless CDC algorithms using vector CPU instructions, such as SSE / AVX. We
analyzed the state-of-the-art chunking algorithms and discovered that hashless algorithms primarily use two data processing patterns
to identify chunk boundaries: Extreme Byte Searches and Range Scans. VectorCDC presents a vector-friendly approach to accelerate
these two patterns. Using VectorCDC, we accelerated three state-of-the-art hashless chunking algorithms: RAM, AE, and MAXP. Our
evaluation shows that VectorCDC is effective on Intel, AMD, ARM, and IBM CPUs, achieving 8.35×–26.2× higher throughput than
existing vector-accelerated algorithms, and 15.3×–207.2× higher throughput than existing unaccelerated algorithms. VectorCDC
achieves this without affecting the deduplication space savings.

CCS Concepts: • Information systems → Cloud based storage; Deduplication; • Networks → Cloud computing; • Computer
systems organization → Single instruction, multiple data.
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1 Introduction

The amount of data generated and stored on the Internet is growing at an exponential rate [1], and is expected to
exceed 180 zettabytes per year in 2025. Storage capacity alone is not well positioned to handle this data influx, with
the total installed storage capacity in 2020 only being 6.7 zettabytes [1]. Cloud storage providers instead support this
data growth using alternatives such as novel storage paradigms [2, 3], distributed file systems [4, 5] and caches [6, 7],
mechanisms such as data deduplication [8, 9], alongside additional investments in data protection [10].

Previous studies by Microsoft [11] and EMC [12] show that a large amount of redundancy exists in the data stored
on the cloud, especially in file system backups [8, 11], virtual machine backups [12, 13] and shared documents [14]. The
redundancy ratios in these workloads are significant, ranging from 50% to 75%. Mechanisms such as data deduplication
[8] and compression [13] are used to conserve storage space by identifying redundant data, eliminating it, andminimizing
its storage impact, thereby improving efficiency and reducing costs.
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2 Udayashankar et al.

Data deduplication consists of four phases [9]; Data Chunking, Chunk Fingerprinting, Metadata Creation, and Data

Storage. Data chunking and chunk fingerprinting are the most computationally intensive [8, 15] of these. While chunk
fingerprinting has received significant optimization attention, with faster hashing algorithms [16, 17] and GPUs [18, 19],
data chunking optimizations have not kept up (§3.1).

In the data chunking phase, the incoming data is divided into small chunks, typically of size 1 − 64 KB. Numerous
data chunking algorithms exist in current literature [20–25] and can be broadly classified into hash-based and hashless
algorithms [15]. As chunking occurs whenever new data is uploaded, this phase is on the critical path, and directly
impacts system performance.

Previous efforts have explored accelerating chunking by using vector instructions. SS-CDC [26] uses vector instruc-
tions to accelerate hash-based data chunking algorithms, such as Rabin-Karp chunking [23] and Gear-based chunking
[22]. Unfortunately, this approach only leads to modest improvements in chunking throughput, up to 3.13×, as shown
in §3.2. Parallelizing hash-based chunking using vector instructions is complicated because these algorithms use the
rolling hash of a sliding window of bytes to detect boundaries, inherently creating a computational dependency between
adjacent bytes. Consequently, SS-CDC processes different regions of the data in parallel using slow scatter / gather
vector instructions, limiting its performance (§3.2).

We posit that hashless chunking algorithms are better candidates for vector acceleration. Although they achieve
slightly lower space savings compared to their hash-based counterparts (§6), they are up to 2× faster and use sim-
ple mathematical operations (e.g., finding a maximum value) that can be accelerated more efficiently using vector
instructions. We analyzed state-of-the-art hashless algorithms to understand their design and identify opportunities
to leverage vector instructions. We identified that all state-of-the-art hashless algorithms consist of two processing
patterns. The first pattern involves finding local minima or maxima in a data region, which we call Extreme Byte Search,
and the second pattern involves scanning a range of bytes to find values that are greater or lesser than a target value,
which we call Range Scan. We found that, unlike rolling hash functions, these patterns can be efficiently accelerated
using vector instructions.

Using these insights, we present VectorCDC, a technique for accelerating hashless chunking algorithms using vector
instructions. VectorCDC uses a novel design to accelerate the two aforementioned patterns. We accelerate the extreme
byte searches with a novel tree-based search that divides a region of bytes into multiple sub-regions, processes each
region using vector instructions, and uses a tree-based approach to combine their results. We accelerate range scans
with packed scanning, which packs multiple adjacent bytes into vector registers and compares them using a single
vector operation.

We implemented VectorCDC using five different vector instruction sets: SSE-128, AVX-256, and AVX-512 on Intel /
AMD CPUs; NEON-128 on ARM CPUs; and VSX-128 on IBM Power CPUs. We used VectorCDC to accelerate three
state-of-the-art hashless chunking algorithms; RAM [24], AE [20], and MAXP [27], creating VRAM, VAE, and VMAXP,
respectively. We compared the performance of our accelerated algorithms with that of state-of-the-art hash-based
algorithms, hashless algorithms, and SS-CDC [26] accelerated algorithms using 10 diverse datasets.

Our evaluation (§6) shows that VectorCDC-based algorithms achieve 8.35×–26.2× higher chunking throughput than
those accelerated with SS-CDC. VRAM, VAE, and VMAXP also achieve 5.51×–17.6× higher throughput compared to
their unaccelerated hashless counterparts, without affecting deduplication space savings. Furthermore, they achieve
15.3×–207.2× higher throughput compared to unaccelerated hash-based algorithms. Finally, VectorCDC-accelerated
algorithms retain their performance advantage across all five vector instruction sets.

Manuscript submitted to ACM
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Accelerating Data Chunking in Deduplication Systems using Vector Instructions 3

We have made our code publicly available by integrating it with DedupBench1 [15]. Due to the large sizes of our
datasets (§6), we were unable to release all of them. Instead, we have publicly released one of our datasets (DEB) on
Kaggle2 [28] and provided detailed descriptions to facilitate the recreation of others for future experiments, similar to
previous literature [20, 21, 24].

The rest of this paper is organized as follows: we discuss relevant background about deduplication and vector
instructions in Section 2. Section 3 motivates our work by discussing deduplication performance bottlenecks and
the inefficiencies encountered by previous work when accelerating hash-based CDC algorithms. Section 4 outlines
VectorCDC’s design while Section 5 discusses implementation challenges across vector instruction sets. Section 6 details
our evaluation efforts on diverse datasets. We discuss related work in Section 7 and conclude our paper in Section 8.

2 Background

Data deduplication consists of four phases [9]:

• Data Chunking: Data is divided into small chunks typically of size 1 − 64KB using a chunking algorithm. All
chunking algorithms have configurable parameters that control the average size of generated chunks.

• Fingerprinting and Comparison: Chunks are hashed using a collision-resistant hashing algorithm such as
MurmurHash3 [16] or SHA-256 [29] to generate fingerprints. Fingerprints are compared against those previously
seen to identify duplicate chunks.

• Metadata Creation: Metadata, i.e., file recipes required to reconstruct the original data from stored chunks, are
created.

• Metadata and Chunk Storage: Non-duplicate chunks and recipes are saved on the storage medium. Fingerprints
are stored on the fingerprint database and cached in an in-memory index.

Data chunking and fingerprinting are typically the most computationally intensive phases in deduplication [8].
While fingerprinting has been accelerated up to 53× using GPUs [18, 19] and faster hashing algorithms [16, 30], data
chunking acceleration has only received limited attention and adds significant overhead on the deduplication critical
path (§3.1).

2.1 Data Chunking

Data chunking algorithms can generate fixed-size or variable-sized chunks. Dividing the data into fixed-size chunks is
fast, but results in poor space savings on most datasets (§6). This is due to the byte-shifting problem [23], where adding
a single byte causes all subsequent chunks to appear different, despite the data stream largely being unchanged. Thus,
while traditional backup systems such as Venti [31] and OceanStore [32] use fixed-size chunks, modern deduplication
systems employ content-defined chunking (CDC) algorithms [23] to generate variable-sized chunks.

Chunk boundaries in CDC algorithms are derived from the data itself, i.e., they are content-defined. These boundaries
are chosen such that most byte shifts cause them to shift by the corresponding amount, leaving subsequent chunks
unaffected and preserving the ability to detect duplication. Numerous CDC algorithms have been proposed in previous
literature [20–25, 27] and can be broadly classified into hash-based and hashless algorithms [15].

2.1.1 Hash-based algorithms. These algorithms [21–23, 25] slide a fixed-size window over the data. When the hash
value of the window’s contents matches a target mask, they insert a chunk boundary, creating a new data chunk lying
1https://github.com/UWASL/dedup-bench
2https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25
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(a) Sliding window and rolling hash (b) Minimum chunk sizes and sub-minimum skipping

Fig. 1. Hash-based chunking algorithms

between the current and previous chunk boundaries. Note that these hash-based CDC algorithms are only used during
the Data Chunking phase and do not affect the Fingerprinting and Comparison phase.

Algorithms such as Rabin-Karp chunking [23] and CRC [26] slide a window over the source data and compute
the hash of the window’s contents using rolling hash algorithms. Figure 1a shows an example of data chunking with
such algorithms. In the Rabin-Karp chunking algorithm [23], a chunk boundary is declared when the lower k bits of
the sliding window’s hash value equals zero. If the current window’s hash value does not meet this condition, the
window is slid by a byte. To minimize the overhead of recomputing the hash value, the new value is calculated as a
function of the old hash value, the incoming byte, and the outgoing byte (Figure 1a), i.e., a rolling hash. This creates
a dependency between adjacent bytes, complicating acceleration efforts with SIMD instructions (§3.2). Additionally,
despite the development of more lightweight rolling hash algorithms such as CRC [26] and Gear-Hash [22], hash-based
chunking remains computationally expensive (§6.2).

Some hash-based algorithms like TTTD [25] and FastCDC [21] use minimum and maximum values to limit the
chunk sizes. To improve chunking throughput, these algorithms skip scanning data lying before the minimum chunk
size at the beginning of each chunk. Figure 1b shows an example of such algorithms with the sub-minimum regions
highlighted using a dashed pattern. To offset the impact of skipping the sub-minimum regions and tighten chunk size
distributions around the average, FastCDC [21] uses dynamically changing masks, i.e., relaxes the boundary detection
condition by reducing k when required. TTTD [25] uses two different boundary masks to do the same.

2.1.2 Hashless algorithms. Hashless CDC algorithms such as AE [20], RAM [24], and MAXP [27] treat bytes as
individual values and use local minima/maxima to identify chunk boundaries. They also slide one or more windows
over the source data but do not use rolling hashes and, as a result, are faster than most hash-based algorithms by 2–3×.

AE. Figure 2a shows an example chunk generated by the Asymmetric Extremum (AE) [20] algorithm. AE has two
modes of operation: AE-Min and AE-Max, depending on whether it uses local minima or maxima; Figure 2a shows
AE-Max. In each chunk, AE-Max tries to find a target byte that is greater than all the bytes before it. Once the target byte
is identified, AE-Max scans a fixed-size window of bytes after the target to identify the maximum-valued byte among
them. If the target byte is greater than this maximum-valued byte, it inserts a chunk boundary after the fixed-size
window, as shown in Figure 2a.

Similarly, AE-Min tries to find a target byte that is less than all the bytes before it. When such a byte is identified,
AE-Min scans a fixed-size window of bytes after the target to identify the minimum-valued byte within. If the target
byte is lesser than this minimum-valued byte, it inserts a chunk boundary after the fixed-size window.
Manuscript submitted to ACM
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(a) AE-Max (b) MAXP

(c) RAM

Fig. 2. Hashless chunking algorithms

MAXP. Figure 2b shows an example chunk generated by MAXP [27]. MAXP identifies target bytes in the data stream
that are local maxima, i.e., they are greater than a fixed number of bytes before and after them. When such target bytes
are found, chunk boundaries are inserted at their locations, as shown in the figure. Note that MAXP’s window sizes are
typically 70-80% smaller than AE [20] and RAM [24] to generate the same target average chunk size. MAXP has also
been referred to as Local Maximum Chunking (LMC) in previous literature.

MAXP works by sliding two fixed-size windows over the data, tracking the maximum values from both windows.
These windows are located one byte apart, as shown in Figure 2b, and the byte between them is the target byte. When
the target byte’s value is greater than the maximum value from both windows, a chunk boundary is inserted as the
target byte is a local maximum.

RAM. Figure 2c shows an example chunk generated by the Rapid Asymmetric Maximum (RAM) [24] algorithm.
RAM begins by scanning a fixed-size window at the beginning of each chunk to find the maximum valued byte (F1 in
the figure). It then begins scanning at the first byte outside the window, serially comparing these bytes against this
maximum value. A chunk boundary is inserted when the first byte that exceeds or equals the maximum is found, e.g.,
F3 in Figure 2c.

As they do not possess explicit dependencies between adjacent bytes, we argue that hashless algorithms are better
candidates for SIMD acceleration efforts.

2.2 Deduplication Metrics

Previous literature [15, 21, 23, 33] outlines three important metrics for deduplication systems: Space Savings, Chunk
Size Distribution, and Chunking Throughput. We describe these in detail in this section.

2.2.1 Space savings. Space savings [15, 33] is one of the primary metrics used to evaluate deduplication systems in
production. It represents the overall disk space conserved by using the deduplication system, i.e. size of data stored on

Manuscript submitted to ACM
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disk after deduplication. The space savings achieved are largely dictated by the choice of the data chunking algorithm
and its associated parameters. It is defined as:

𝑆𝑝𝑎𝑐𝑒 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 (%) = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒 − 𝐷𝑒𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒
× 100 (1)

2.2.2 Chunking throughput. Chunking throughput is defined as the speed at which the deduplication system divides
incoming data into chunks. As CDC algorithms are content-dependent, they need to scan every byte of an incoming
data stream before making content-defined boundary decisions. Their speed depends on their computational complexity.
Hash-based algorithms utilize expensive rolling-hash algorithms to determine chunk boundaries (§2.1), typically
resulting in lower throughputs than their hashless counterparts. Chunking throughput is defined as:

𝐶ℎ𝑢𝑛𝑘𝑖𝑛𝑔 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎𝑙𝑙 𝑐ℎ𝑢𝑛𝑘 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠
(2)

2.2.3 Chunk size distribution. Content-defined chunking (CDC) algorithms generate variable-sized chunks of a target
average chunk size. They try to ensure that the sizes of generated chunks are as close to the target average as possible.
However, due to underlying algorithmic characteristics, each algorithm has a unique chunk size distribution pattern.
For instance, FastCDC [21] exhibits two distinct smooth distributions, changing its pattern at the target average chunk
size. This is because it switches masks past the target average size and relaxes boundary conditions. On the other hand,
algorithms such as TTTD [25] exhibit a smooth distribution between their minimum and maximum specified chunk
sizes. Chunk size distributions are typically represented using cumulative distribution function (CDF) plots.

Space savings are inversely proportional to the target average chunk size, i.e., the greater the average chunk size, the
lower the space savings achieved in general [11]. This is because the probability of finding duplicate chunks is higher at
smaller chunk sizes. The degree of space savings degradation with increasing chunk size depends on algorithmic and
dataset characteristics.

All chunks generated by CDC algorithms are subsequently hashed using a collision-resistant algorithm [16] to
generate fingerprints, as described above. The set of unique fingerprints observed thus far is stored in a fingerprint
database. New incoming chunks are hashed, and their fingerprints are compared against this database to detect
duplicates. Thus, smaller and more numerous chunks result in a larger database; specifically, the fingerprint database
size is inversely proportional to the chosen average chunk size. A large number of small chunks can negatively impact
system throughput, both due to the increased fingerprint database size and the random data accesses caused by these
chunks. Thus, CDC algorithms in production typically target average chunk sizes between 2KB–64KB.

2.3 Vector Instructions

Vector instructions [34] are special Single-Instruction Multiple-Data (SIMD) instructions supported by most modern
processors. They rely on special vector registers for their operations. These registers come in multiple sizes; depending
on the width of the vector register they use, vector instructions can be classified into different families [34]. The most
common vector register sizes are 128 bits, 256 bits, and 512 bits, i.e., 16, 32, and 64 bytes wide.

Vector instructions support the execution of an operation on multiple pieces of data by packing them into vector
registers; for instance, eight 16-bit values 𝑎-ℎ can be densely packed into a 128-bit vector register 𝑉1. To add 𝑎-ℎ to
eight other values 𝑖-𝑝 , we can pack 𝑖-𝑝 into another register 𝑉2. We can now add them pairwise with a single vector
addition operation VADD (𝑉1,𝑉2) using 𝑉1 and 𝑉2 as operands, instead of eight separate integer arithmetic operations.
Manuscript submitted to ACM
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Fig. 3. Time taken for Data Chunking vs Fingerprinting while deduplicating randomized data with FastCDC [21] and an 8 KB average
chunk size.

Vector instructions support various arithmetic operations [35], including pairwise addition, subtraction,multiplication,
and maximum/minimum on packed values. Additionally, they support logical operations such as bitwise AND (&)
and bitwise OR (|). They have been previously used to accelerate matrix multiplication [36], sorting [37], multimedia
applications [38], fluid simulations [39], hash tables [40], and relational databases [41]. The supported vector instruction
types and their relative performance vary across CPU manufacturers.

2.3.1 Intel and AMD. Vector instructions on x86 platforms can be classified into three families: SSE-128, AVX-256, and
AVX-512 [34]. SSE-128 instructions use 128-bit registers and have been supported by Intel and AMD processors since
1999 [42] and 2003 [43], respectively. AVX-256 instructions were introduced by Intel and AMD in 2011 [42], and use
256-bit registers. Finally, only a handful of the newest Intel and AMD processors, since 2017 [44] and 2022 [45], which
have 512-bit wide vector registers support AVX-512 instructions.

2.3.2 ARM. ARM processors have supported NEON-128 instructions, an equivalent to SSE-128, since 2011 [46]. Modern
ARM processors also support vector widths of 256 bits and higher with the SVE/SVE2 instruction sets, which have
been available since 2021 [47]. These two instruction sets differ in the kinds of instructions supported. For instance,
NEON-128 does not support native VMASK operations, which are used to create integer masks by extracting one out of
every k bits in a vector register, while SVE / SVE2 does. This can lead to performance differences in applications that
need the VMASK operation [40].

2.3.3 IBM Power. IBM’s Power [48] architecture supports AltiVec / VSX-128 vector instructions [49], an equivalent to
SSE-128, since the 1990s. This instruction set supports equivalents for most SSE instructions but lacks VMASK support.

3 Motivation

3.1 Performance bottlenecks in data deduplication

Although both data chunking and fingerprinting have traditionally been considered themain bottlenecks in deduplication
[8], this has changed with the advent of new hashing algorithms and acceleration methods for fingerprinting. Figure 3
is a stacked bar plot showing the time taken by the data chunking and fingerprinting phases during deduplication. For
fingerprinting, we use five different collision-resistant hashing algorithms [50–54]. For data chunking, we use FastCDC
[21], the fastest unaccelerated chunking algorithm (§6.2), with an 8 KB average chunk size. We use 30 GB of randomized
data and an Intel Emerald Rapids machine described in §6 for this experiment.
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Fig. 4. SS-CDC [26]: Accelerating the rolling hash phase

Figure 3 shows that fingerprinting and data chunking take nearly equal time with traditional collision-resistant
hashing algorithms, such as SHA1 [51] and SHA-256 [52]. Fingerprinting takes longer than data chunking with other
algorithms, such as MD5 [50] and SHA-512 [52]. This indicates that both phases used to be the performance bottlenecks
in deduplication, aligning with previous literature [8].

However, recent research has introduced faster hashing algorithms such as MurmurHash3 [53] and xxHash3 [55]
that generate 128-bit digests equivalent to MD5 [56]. These hashing algorithms are being used for fingerprinting [17] or
as weak fingerprints followed by a byte-by-byte comparison [57]. Figure 3 shows that fingerprinting takes significantly
lower time than chunking with these new hashing algorithms, as they are 10 × −15× faster than their counterparts on
CPUs. Using GPUs can further accelerate fingerprinting speeds by up to 53× [18, 19].

Thus, as a result of its computationally intensive nature and position on the critical path, data chunking is a prime

target for acceleration.

3.2 Accelerating hash-based algorithms with vector instructions

To address the data chunking bottleneck, SS-CDC [26] proposed using AVX-512 instructions to accelerate hash-based
CDC algorithms. They decouple the rolling hash and boundary detection phases, running the rolling hash on the entire
source data to identify boundary candidates in the first phase, and determining boundaries sequentially in the second.
This allows both stages to be independently accelerated with AVX instructions.

Figure 4 shows how SS-CDC [26] accelerates the first rolling hash phase of hash-based CDC algorithms. SS-CDC
uses AVX-512 registers to create multiple rolling-heads (Head 1 - Head k), i.e., calculating the rolling hash on bytes from
multiple regions of the file independently and in parallel. Each rolling head maintains its own hash value in the hash
value register and independently calculates the contributions of incoming and outgoing bytes.

To use vector instructions, they first collect the outgoing bytes for each head into a vector register 𝑉1. Similarly,
they collect all the incoming bytes into another vector register 𝑉2. This is shown in Step 1 in Figure 4 and uses
Manuscript submitted to ACM
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Fig. 5. SS-CDC [26] throughputs on randomized data with AVX-512 instructions

gather instructions. The hash values for each head are stored in a separate register 𝑉3. In Step 2, SS-CDC removes the
contributions of all outgoing bytes from the hash values with a single vector operation and adds the contributions of all
incoming bytes with another.

Step 3 compares all the hash values against the pre-specified boundary condition (such as the lower x bits being
equal to zero in Rabin-Karp chunking [23]). Whenever any of the hash values match the boundary condition, they
mark the current position as a boundary candidate in a separate bitmap in Step 4 using scatter instructions. This
rolling hash phase is run on the entire incoming data stream/file. In the second phase, they scan the bitmap using vector
instructions to determine the actual boundaries among all candidates, taking into account the minimum and maximum
chunk sizes.

This approach introduces two problems. First, many hash-based algorithms, such as TTTD and FastCDC, skip
scanning data up to the minimum chunk size to improve throughput (§2.1). Decoupling the rolling hash and boundary
detection phases causes the rolling hash to be run on the entire incoming data stream, nullifying these optimizations.

Second, to load incoming and outgoing bytes from different regions in the file, SS-CDC [26] uses AVX gather

instructions. To populate the candidate bitmap when boundary candidates are discovered, they use scatter instructions.
These scatter and gather instructions are slow [58], limiting performance gains. Finally, scatter instructions are
only available on processors supporting certain instruction sets [35], limiting SS-CDC’s usage to a handful of the newest
Intel and AMD processors (§2.3).

Figure 5 shows the chunking throughput obtained by running SS-CDC accelerated versions of CRC (SS-CRC) and
Gear-based chunking (SS-Gear) [26] against their native unaccelerated counterparts. This experiment used randomized
data, an Intel Emerald Rapids machine described in §6 and AVX-512 instructions. We ran each algorithm with chunk
sizes of 4 − 16 KB. SS-CRC achieves 1.2 GB/s, a speedup of 2.58× over CRC. Similarly, SS-Gear achieves 3.3 GB/s, a
speedup of 3.13× over Gear. These small speedups result from the challenges associated with hash-based algorithms
that are described above.

Hashless algorithms do not possess explicit dependencies between adjacent bytes. They treat each byte as an
independent value and use maximum / minimum values from data regions to determine chunk boundaries. VectorCDC
chooses hashless algorithms over their hash-based counterparts as they are better candidates for SIMD acceleration.

Manuscript submitted to ACM
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Fig. 6. Accelerating Extreme Byte Searches. Note that the byte values shown are in hexadecimal format.

4 VectorCDC Design

Hashless CDC algorithms such as AE [20], RAM [24], and MAXP [27] slide windows over the source data to determine
chunk boundaries. We identify two common processing patterns across all hashless CDC algorithms: the Extreme

Byte Search and Range Scan. We accelerate each of these patterns using different vector-based techniques, which are
discussed in detail below.

While we use the AVX-512 instruction set as an example to describe our acceleration techniques in this section,
they can be implemented on any CPU with a vector instruction set supporting VMAX, VCMP and VMASK operations.
SSE-128 and AVX-256 instruction sets [35] fall under this umbrella, as do ARM and IBM processors with NEON-128 [46]
and AltiVec / VSX-128 [48] instructions, respectively. Thus, VectorCDC is compatible with a wide range of processors,
unlike SS-CDC [26], which relies on scatter instructions only available in AVX-512 instruction sets. Finally, while
other minima/maxima-based hashless algorithms can also be accelerated using VectorCDC, their native versions are
slower [20, 24, 27] than AE, RAM, and MAXP and have been omitted from the rest of our paper.

4.1 Tree-based Extreme Byte Search

Hashless CDC algorithms such as AE [20], RAM [24], and MAXP [27] all consist of a subsequence that identifies the
extreme byte (maximum/minimum) in a fixed-size window. The size of this window depends upon the expected average
chunk size and can be as large as 4 − 8KB. As this subsequence may need to be performed more than once per chunk,
we propose accelerating it using a novel tree-based search approach. Let us consider the search for a maximum value
using AVX-512 instructions (Figure 6). Note that the same method can be used with other vector instruction sets as well
as to find minimum values.

We first divide the fixed-size window into smaller sub-regions, loading all the bytes into AVX-compatible m512i
variables in Step 1. We load these bytes in a packed fashion i.e. each m512i variable contains 64 adjacent bytes. We
then use vector mm512_max instructions to find the pairwise maximum among packed byte pairs (Step 2). For instance,
among the bytes 0xE1 and 0x21, byte value 0xE1 is the maximum. The resulting pairwise maximums are packed into a
destination variable (𝑉5 in the figure).

Step 3 compares these resulting variables 𝑉5 and 𝑉6 from Step 2 using mm512_max instructions to find the pairwise
maximums. We repeat this process, building a tree of m512i variables until we are left with a single variable 𝑉7
Manuscript submitted to ACM
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Fig. 7. Accelerating Range Scans. Note that the byte values shown are in hexadecimal format.

containing the maximum-valued 64 bytes from across the entire region. We scan these bytes sequentially in Step K to
determine the maximum valued byte.

4.2 Packed Scanning for Range Scans

Hashless CDC algorithms also consist of a range scan subsequence, where bytes are serially compared against a target
value. We propose to accelerate this scanning process using vector instructions. Let us consider a case where we
compare bytes sequentially to see if they are greater than or equal to a target value (such as in RAM [24]). Figure 7
shows our proposal to accelerate this using packed scanning with AVX-512 instructions. Note that the same methods
are applicable for other vector instruction sets as well.

We first load the target value (0xF4 in Figure 7) into an AVX-compatible m512i variable𝑉1. We then pack 64 adjacent
bytes from the scan region into another m512i variable 𝑉2. We compare these 2 registers using mm512_cmpge vector
compare instructions, which generate a 64-bit integer mask containing the comparison results. If this mask has a value
greater than 0, a chunk boundary exists within the scanned 64 bytes. Its exact position is determined using the mask
value. If the mask equals 0, no boundary exists within the scanned region and we proceed with loading the next 64
bytes into 𝑉2 to repeat the process.

Range Scans can be run with one of five comparators: Greater-Than (GT ), Lesser-Than (LT ), Greater-Than or
Equals (GEQ), Less-Than or Equals (LEQ), and exactly Equals (EQ). Each of these comparators uses a different vector
compare instruction; for instance, the GEQ comparator uses mm512_cmpge instructions while the LEQ comparator uses
mm512_cmple instructions. The same comparators also use different comparison instructions in different instruction
sets; for instance, the GEQ comparator uses mm512_cmpge instructions with the AVX-512 instruction set while it uses
mm256_cmpge with AVX-256.

It is worth noting that our packed scanning approach is compatible with sub-minimum skipping. Unlike SS-CDC’s
approach, chunk boundary detection and insertion can both occur in Range Scans, i.e., whenever a chunk boundary is
detected, the next minimum_chunk_size bytes can be skipped.

4.3 Putting it together: AE-Max, AE-Min, MAXP, and RAM

RAM [24] first scans a fixed-size window at the beginning of the chunk to find a maximum value (Figure 2c). After
this, it inserts a chunk boundary at the first byte outside the window, which is at least as large as the maximum valued
byte (§2.1). With VectorCDC, we accelerate RAM as a combination of an Extreme Byte Search to find a maximum value,
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followed by a Range Scan with the GEQ comparator that compares this maximum value against bytes until a chunk
boundary is found.

AE-Max [20] scans for a byte larger than all the bytes before it i.e., a target byte (Figure 2a). Once found, a fixed-size
window after this byte is scanned to determine the maximum valued byte within. If the target byte is larger than the
maximum valued byte, a chunk boundary is inserted; otherwise, scanning continues for a new target byte (§2.1). With
VectorCDC, we accelerate AE-Max as a combination of multiple Range Scans with the GT comparator to find target
bytes, each followed by a single Extreme Byte Search for a maximum value.

AE-Min [20] scans for a byte with lesser value than all those before it (§2.1). Once found, a fixed-size window after
this byte is scanned to determine the minimum value within. If the target byte has a lesser value than the minimum
valued byte, a chunk boundary is inserted; otherwise, scanning continues for a new target byte. Similar to AE-Max, we
accelerate AE-Min as a combination of multiple Range Scans with the LT comparator to find target bytes, each followed
by a single Extreme Byte Search for a minimum value.

Finally, MAXP [27] scans for a target local maxima that is exactly centered between two fixed-size windows (Figure
2b). A chunk boundary is inserted right after such a byte is found (§2.1). Thus, each chunk in MAXP can be represented
as a combination of multiple Range Scans with the GT comparator, each followed by two Extreme Byte Searches for
maximum values.

5 Implementation

We accelerate AE [20], MAXP [27], and RAM [24] using VectorCDC with 3000 lines of C++ code. We implemented
SSE-128, AVX-256, AVX-512, NEON-128, and VSX-128 versions of all algorithms. We also implemented Extreme Byte

Searches for minima and maxima, as well as Range Scan functionalities with the GT, GEQ, LT, LEQ, and EQ comparators
on all five vector instruction sets. We have made our code publicly available with DedupBench3 [15].

Note that while ARM processors support VCMP and VMAX operations, they lack native support for VMASK

instructions, which are used during range scans to generate a single mask containing the comparison results. This
is a common issue encountered by ARM developers trying to port x86 code [59]. We chose an efficient alternative
implementation [59] to work around the lack of native VMASK support. However, this alternative implementation uses
multiple slow NEON-128 instructions, such as vshrn and vreinterpretq, as opposed to a single x86 mm_movemask
instruction. As shown in §6.4, this causes accelerated algorithms to achieve lower speedups on ARM CPUs compared to
Intel and AMD.

IBM processors also support VCMP and VMAX operations, but lack native VMASK support. However, the same
functionality can be achieved using one vec_bperm and two vec_extract instructions. As these instructions are
relatively inexpensive, they are an efficient alternative to VMASK. As shown in §6.4, this allows IBM processors to
achieve speedups equivalent to or greater than Intel and AMD processors when using VectorCDC.

6 Evaluation

In this section, we evaluate VectorCDC against the state-of-the-art CDC algorithms.
Testbed. We run all our experiments using machines from the Cloudlab [60] platform. We pick five machines with

diverse vector instruction set support; Table 1 shows the vector instruction sets supported by each machine. The details
of each machine are as follows:

3https://github.com/UWASL/dedup-bench
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CPU / CPU Family SSE-128 AVX-256 AVX-512 NEON-128 VSX-128

Intel Emerald Rapids ✓ ✓ ✓ – –

Intel Skylake ✓ ✓ ✓ – –

AMD EPYC Rome ✓ ✓ – – –

ARM v8 Atlas – – – ✓ –

IBM Power 8 – – – – ✓

Table 1. Vector instruction sets supported by the different machines in our testbed.

• Intel Emerald Rapids: We use a c6620 machine from CloudLab Utah, which has a 28-core Intel Xeon Gold 5512U
with hyperthreading at 2.1 GHz, 128 GB of RAM, and one Intel NIC each of 25 GBps and 100 GBps. It supports
the SSE-128, AVX-256, and AVX-512 vector instruction sets.

• Intel Skylake: We use a c240g5 machine from CloudLab Wisconsin, which has two 10-core Intel Xeon Silver
4114 CPUs with hyperthreading at 2.2 GHz, 192 GB of RAM, one Mellanox 25 GBps NIC, and one onboard Intel
1 GBps NIC. It supports the SSE-128, AVX-256, and AVX-512 vector instruction sets.

• AMD EPYC Rome: We use a c6525-25g machine from CloudLab Utah, which has a 16-core AMD 7302P CPU
with hyperthreading at 3.0 GHz, 128 GB of RAM, and two Mellanox 25 GBps NICs. It supports the SSE-128 and
AVX-256 vector instruction sets.

• ARM v8 Atlas: We use a m400 machine from CloudLab Utah, which has an 8-core ARM Cortex A-57 CPU at 2.4
GHz, 64 GB of RAM, and a 10 GBps Mellanox NIC. It supports the NEON-128 vector instruction set.

• IBM Power 8: We use an ibm8335 machine from CloudLab Clemson, which has dual 10-core IBM Power8NVL
CPUs at 2.86 GHz with 8 hardware threads per core, 256 GB of RAM, and a 10 GBps Broadcom Xtreme II NIC. It
supports the VSX-128 vector instruction set.

While some ARM CPUs released after 2022 support higher vector widths with SVE instructions (§2.3), we could
not obtain such a machine for our experiments. Note that all our runs are on the Intel Emerald Rapids machine unless
otherwise specified. Our throughput results are the averages of 5 runs, and the standard deviation was less than 5%.

Alternatives. We evaluate the following hash-based CDC algorithms:

• CRC: Native (unaccelerated) version of the CRC-32 chunking algorithm from SS-CDC [26].

• FCDC: Native version of FastCDC [21].

• Gear: Native version of the Gear-hash based chunking algorithm [22].

• RC: Rabin’s chunking algorithm from LBFS [23].

• SS-CRC: AVX-512 version of CRC accelerated using SS-CDC [26].

• SS-Gear: AVX-512 version of Gear accelerated using SS-CDC [26].

• TTTD: Two-Threshold Two-Divisor algorithm [25].

We also evaluate the following hashless CDC algorithms:

• AE: Native version of the Asymmetric Extremum algorithm [20]. We evaluate both AE-Max and AE-Min.

• MAXP: Native version of the MAXP algorithm [27].

• RAM: The native Rapid Asymmetric Maximum [24] algorithm.
Manuscript submitted to ACM
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• VAE: Accelerated versions of AE-Max and AE-Min with VectorCDC.

• VMAXP : Accelerated versions of MAXP with VectorCDC.

• VRAM: Accelerated versions of RAM with VectorCDC.

Note that for each hashless algorithm accelerated with VectorCDC, we evaluate their SSE-128, AVX-256, AVX-512,
NEON-128, and VSX-128 versions on supporting CPU platforms from our testbed (Table 1).

Datasets. We use 10 diverse datasets to evaluate VectorCDC; Table 2 shows their details. The datasets represent
diverse workloads such as VM backups, database and map backups, web snapshots, and source code. Some datasets,
such as FLOW and WIKI, are similar to those used by previous studies [74]. We have publicly released the DEB dataset 4

[28].
We note that the selected datasets have diverse characteristics. They have varying sizes, ranging from 1 GB for WIKI

to 981 GB for MAPS. They have different file counts; datasets such as MAPS and NEWS consist of a few large files, while
others, such as FLOW and KUBE, consist of a large number of small files. We include files with varying formats, such as
OSM [75], RDB [76], TAR [67], VMDK / OVA [77], text files, and binary files across these datasets for comprehensive
coverage.

Finally, Table 2 shows the space savings achieved by using fixed-size chunking (XC) and the median of those achieved
by CDC algorithms (Median CDC) on these datasets with 8KB chunks. By comparing XC against Median CDC, we note
that the datasets possess varying degrees of byte-shifting. The difference in space savings between XC and Median CDC

in FLOW and KUBE is small (less than 6% ), indicating a smaller number of byte-shifts. DEV has a moderate amount of
byte-shifting, as shown by the ~15% difference between XC and Median CDC. Finally, CDC algorithms achieve a median

4https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25

Dataset Size Files Dataset Information XC Median CDC

DEB 40 GB 65
Debian [61] VM Images obtained from

the VMware Marketplace [62]
18.98% 34.64%

DEV 230 GB 100 Nightly backups of a Rust [63] build server 83.17% 98.05%
FLOW 8 GB 630341 C++ source code for 25 versions of TensorFlow [64] 90.69% 91.98%
KUBE 1.5 GB 117344 Go source code for 5 versions of Kubernetes [65] 64.52% 69.42%
LNX 65 GB 160 Linux kernel distributions [66] in TAR format [67] 19.87% 45.62%

MAPS 981 GB 15
OpenStreetMap [68] backups of Canada

extracted using GeoFabrik [69]
0.10% 68.57%

NEWS 478 GB 47
Complete snapshots of a news website across

47 consecutive days in TAR [67] format
38.95% 73.80%

RDS 122 GB 100 Redis [70] snapshots between redis-benchmark runs 33.54% 92.94%
TPCC 106 GB 25 25 snapshots of a MySQL [71] VM running TPC-C [72] 37.39% 86.64%

WIKI 1 GB 3134
Snapshots of the largest Wikipedia article [73] across

multiple days, chosen for extreme versioning.
1.31% 72.37%

Table 2. Dataset Information. Note that XC represents the space savings achieved by fixed-size chunking with 8KB chunks while
Median CDC is the median space savings achieved by CDC algorithms with an 8KB average chunk size.
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(a) AE-Max / VAE-Max (b) AE-Min / VAE-Min

(c) MAXP / VMAXP (d) RAM / VRAM

Fig. 8. Chunk size CDFs of hashless algorithms and their AVX-512 accelerated versions on TPCC with an 8KB average chunk size

of more than 2× higher space savings than XC on DEB, LNX, MAPS, NEWS, RDS, TPCC, and WIKI, indicating that these data
sets have a large degree of byte-shifting.

Metrics. We evaluate the space savings, chunk size distribution, and chunking throughput achieved by each
alternative on all the described datasets.

6.1 Space Savings and Chunk Size Distributions

Figures 9a - 9j show the space savings achieved by all alternatives with 8KB chunks across datasets. We omit the results
for other chunk sizes as the trends were similar.

6.1.1 Vector-acceleration Impact. Vector-acceleration does not impact the space savings achieved by CDC algorithms.
Consequently, for clarity, we omit the space savings results for vector-accelerated algorithms from Figure 9. This aligns
with the results previously observed for SS-CRC and SS-GEAR [26].

AVX-512 acceleration does not impact the chunks generated by hashless algorithms. We compared the generated
chunks of vector-accelerated algorithms with their native counterparts and verified that they were identical. We present
only the chunk size distribution comparison in this paper due to space constraints.
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Fig. 9. Space Savings with 8KB chunks. Note that the legend entries are in the same order as the plot bars.

Figure 8 shows the chunk size distributions exhibited by AE-Max, AE-Min, MAXP, and RAM compared against their
AVX-512 versions accelerated with VectorCDC. Note that each figure is a cumulative frequency (CDF) [78] plot. We use
a target average chunk size of 8KB and the TPCC dataset for this experiment. The results for other datasets and chunk
sizes were similar and have been omitted for clarity.

6.1.2 Hash-based vs Hashless. Hashless algorithms are generally competitive with hash-based ones in space savings.
The best among the hashless algorithms achieves slightly lower space savings than the best hash-based algorithm on
Manuscript submitted to ACM
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some datasets, such as DEB and NEWS (Figures 9a and 9f). On the other hand, the best hashless algorithm outperforms all
hash-based algorithms on other datasets, such as LNX and RDS (Figures 9e and 9g). Overall, the best hashless algorithms
achieve space savings values within 11% of the best hash-based ones across all datasets and chunk sizes.

6.1.3 Hashless algorithm comparison. The performance of the hashless algorithms depends on the dataset’s character-
istics and the average chunk size. For instance, RAM achieves the highest space savings on DEB (Figure 9a) while MAXP

does so on TPCC (Figure 9h). This shows that accelerating all hashless algorithms is important, as the performance of each

algorithm depends on the dataset’s characteristics.
Notably, AE-Min is adversely affected by the byte-shifting pattern in MAPS, causing it to achieve only 8.89% in space

savings while other CDC algorithms achieve 58%-78%.
Finally, while MAXP achieves higher space savings than RAM and both AE variants on many datasets, the space

savings difference between it and the next best hashless algorithm is small.

6.1.4 Differences among datasets. Hashless algorithms perform equivalent to or better than their counterparts on
virtual machine and database backups, such as DEV, RDS, and TPCC. Source-code datasets demonstrate mixed results,
with hash-based algorithms slightly edging out hashless ones on KUBE, equivalence on FLOW, and hashless algorithms
being better on LNX. File formats largely do not influence space savings.

6.2 Chunking Throughput

Figures 10a and 10b show the throughput achieved by all algorithms on DEB and DEV with a chunk size of 8KB. Note
that vector-accelerated algorithms are shown with patterned bars and that we have cropped the y-axis to 5 GB/s to
avoid the figures being skewed by VRAM. The results on other datasets and chunk sizes had similar trends and have
been omitted for clarity.

6.2.1 Throughput Comparison. Figures 10a and 10b show that hashless algorithms accelerated with VectorCDC achieve
4× to 15× higher throughput than all accelerated CDC algorithms. VRAM, the fastest accelerated hashless algorithm,
achieves 8.35× and 15.3× higher throughput than SS-GEAR and FastCDC, the fastest accelerated and unaccelerated
hash-based algorithms, respectively. Additionally, VRAM achieves 207.2× higher throughput than RC, a popular but
slow hash-based CDC algorithm.

Among unaccelerated hash-based algorithms, Gear [22], CRC [26], and FastCDC [21] are the fastest. We accelerated
each of these using SS-CDC [26]; SS-GEAR achieves 3 × higher throughput compared to its unaccelerated version, and
SS-CRC achieves 2 × higher throughput that unaccelerated CRC. We did not observe any speedup when accelerating
FastCDC [21] with SS-CDC [26]. One of the main throughput optimizations used by FastCDC is sub-minimum skipping
(§2.1). However, as noted in §3.2, decoupling the rolling-hash phase from the boundary identification phase eliminates
the throughput benefits of minimum chunk size skipping, nullifying any speedup provided by vector-acceleration.

6.2.2 Vector-acceleration benefits. Figures 10c and 10d compare the throughput benefits of accelerating hash-based
and hashless algorithms with AVX-512 accelerated algorithms on DEB and DEV.

Accelerating hash-based algorithms (Figure 10c) using SS-CDC achieves a speedup of 2.45 − 3.32×. On the other
hand, the hashless algorithms VAE-Max, VAE-Min, VMAXP, and VRAM achieve speedups of 5.1×, 4.43×, 5.36×, and
17.69× over their respective native counterparts, achieving throughputs in the range of 6.5 GB/s–29.9 GB/s. Thus,
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Fig. 10. Chunking Throughput with AVX-512 instructions and 8KB chunks. Note the different scales in Figures 10c and 10d, and that
the legend entries are in the same order as the plot bars from Figures 10a and 10b.

vector instructions can be leveraged far more efficiently for hashless algorithms, proving that hashless algorithms are

better candidates for vector-acceleration than their hash-based counterparts.
Figure 10d shows that VRAM achieves higher throughputs than VAE-Max, VAE-Min, and VMAXP. This is because

VAE requires multiple iterations of Range Scan per chunk, each followed by an Extreme Byte Search, while VRAM only
requires one iteration of each (§4). Similarly, VMAXP requires multiple Range Scans, each followed by two Extreme Byte

Searches. For a given target average chunk size, the size of the Extreme Byte Search regions in MAXP is 70 − 80% smaller
than the search region in AE. This allows VMAXP to achieve speeds similar to VAE-Max and VAE-Min despite needing
an extra Extreme Byte Search.

Thus, RAM is inherently more vector-friendly than AE and MAXP. However, note that VAE and VMAXP are still faster
than every other CDC algorithm.

6.2.3 Deduplication performance bottlenecks. Figure 11 shows the time taken by the chunking and hashing phases
in the deduplication pipeline on DEB with an 8KB average chunk size. We omit the results for other datasets as they
were similar. We used two fingerprinting algorithms; xxHash3, the fastest but generates a 128-bit digest, and SHA-256,
slower but offers higher collision resistance with a 256-bit digest (§3.1). We ran this experiment on the Intel Emerald
Rapids machine. We use AVX-512 versions of hashless CDC algorithms, accelerated with VectorCDC.

Figure 11 shows that with xxHash3 (Figure 11a), data chunking takes significantly longer than fingerprinting with
unaccelerated algorithms. On the other hand, VAE-Min, VAE-Max, VMAXP, and VRAM show data chunking times similar
Manuscript submitted to ACM
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Fig. 11. Time taken for Data Chunking vs Fingerprinting on DEB with an 8 KB average chunk size, and AVX-512 instructions for
acceleration.

to or lower than fingerprinting. For instance, with VRAM, data chunking takes 1.29 seconds while fingerprinting takes
2.27 seconds.

With SHA-256 (Figure 11b), we observe that fingerprinting takes as long as data chunking with unaccelerated CDC
algorithms. On the other hand, VAE-Max, VAE-Min, VMAXP, and VRAM take significantly lower time to run.

These results show that VectorCDC effectively alleviates the data chunking bottleneck in the deduplication pipeline.

6.3 Throughput breakdown - Extreme Byte Search vs Range Scan

The throughput impact of each processing pattern depends on algorithmic and dataset characteristics. Figure 12 shows
the individual impact of accelerating Extreme Byte Search and Range Scan using VRAM on the DEB and LNX datasets
with an 8KB chunk size. VRAM-EBS and VMAXP-EBS represent RAM andMAXP running with only Extreme Byte Search

acceleration, while VRAM-512 and VMAXP-512 use both accelerated patterns.
Figure 12a shows that on DEB, VRAM-EBS achieves a throughput of 18.5 GB/s compared to RAM at 1.7 GB/s.

Accelerating Range Scan provides an additional speedup of 11.4 GB/s. On the other hand on LNX, VRAM-EBS only
achieves 2.7 GB/s compared to RAM at 2 GB/s. Accelerating Range Scan provides an additional speedup of 27.6 GB/s.
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Thus, each pattern has a balanced impact on VRAM’s throughput on DEB, while Range Scan primarily contributes to
throughput on LNX, indicating that dataset characteristics affect the throughput breakdown.

The throughput breakdown also varies across algorithms; for instance, accelerating Extreme Byte Searches has
differing impacts on the throughputs of RAM andMAXP. While Figure 12a shows that VRAM-EBS achieves significantly
higher throughput than RAM on DEB, Figure 12b shows that VMAXP-EBS only achieves small speedups over MAXP, i.e.,
Range Scan acceleration contributes more to throughput on VMAXP than it does on VRAM.

These results are directly tied to the number of bytes processed by the algorithms on both datasets. Figure 13 shows
the percentage shares of bytes processed by Extreme Byte Searches and Range Scans, for all hashless algorithms on DEB

and LNX. As seen in Figure 13a, the percentage shares differ across algorithms. For instance, RAM processes 96.70%
and 3.30% of bytes on DEB with Extreme Byte Search and Range Scan, respectively. On the other hand, MAXP processes
10.26% and 89.74% of bytes with Extreme Byte Search and Range Scan, respectively. Additionally, this percentage varies
across datasets, as seen by the differences between Figures 13a and 13b.

Thus, accelerating both phases using vector instructions is crucial to performance, as the impact of each phase depends

on dataset and algorithmic characteristics.

6.4 VectorCDC across different vector instruction sets

VectorCDC is compatible with a large range of platforms that support vector instructions such as SSE-128, AVX-256,
NEON-128, and VSX-128 (§2.3). This is unlike SS-CDC [26] which requires CPUs with scatter/gather instruction
support. Such CPUs are present only in a small percentage of datacenter nodes today.

While §4 discusses VectorCDC’s design using AVX-512 instructions, the same methods can be applied to any vector
instruction set that supports VCMP, VMAX, and VMASK operations. In this section, we evaluate VectorCDC’s performance
with other such vector instruction sets. We ran this experiment using the DEB dataset and an average chunk size of 8 KB.

6.4.1 AMDEPYCRome. Figure 14a shows the throughputs achieved by hashless algorithms acceleratedwith VectorCDC
on an AMD EPYC Rome machine. As shown in Table 1, the AMD machine only supports SSE-128 and AVX-256
instructions. All four hashless algorithms in Figure 14a show speedups over their native versions with both instruction
sets. For instance, AE-Max achieves 2.12× and 3.43× speedups with SSE-128 and AVX-256 instructions, respectively.
Similar to the results in §6.2 with AVX-512 instructions, RAM achieves the highest throughput of all algorithms with
both SSE-128 and AVX-256 instructions.
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Fig. 12. Throughput Breakdown with AVX-512 instructions. Note that VRAM-EBS and VMAXP-EBS represent VRAM and VMAXP
with only Extreme Byte Search accelerated.
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Fig. 13. Percentage share of bytes processed using Extreme Byte Search and Range Scan by hashless CDC algorithms on DEB and LNX

6.4.2 Intel Emerald Rapids and Skylake. Figures 14b and 14c show the throughputs achieved by hashless algorithms
accelerated with VectorCDC on Intel Emerald Rapids and Skylake machines. As shown in Table 1, these machines
support SSE-128, AVX-256, and AVX-512 instructions. All four hashless algorithms in Figures 14b and 14c achieve
speedups over their unaccelerated versions with all instruction sets. For instance, in Figure 14c, AE-Max achieves 2.29×,
4.91×, and 6.71× speedups with SSE-128, AVX-256, and AVX-512 instructions, respectively. Similar to the results in §6.2
with AVX-512 instructions, RAM achieves the highest throughput of all algorithms with both SSE-128 and AVX-256
instructions.

On both platforms, all algorithms also benefit from increasing vector widths; that is, higher vector widths lead to
higher throughput. The only exception is MAXP, which does not gain as much as the other algorithms with AVX-512
instructions over AVX-256. This is related to the small window sizes used by MAXP for its Extreme Byte Search phases,
which do not benefit from high vector widths. However, MAXP still achieves 4.7× and 5.42× speedups with AVX-512
instructions over its unaccelerated version, on the Skylake and Emerald Rapids machines, respectively.

6.4.3 ARM v8 Atlas. Figure 14d shows the throughputs achieved by hashless algorithms accelerated with VectorCDC
on an ARM v8 Atlas machine. As shown in Table 1, the machine only supports NEON-128 instructions, an ARM
equivalent to SSE-128. While the instruction set supports VMAX and VCMP operations, it lacks native support for
VMASK operations (§5). RAM achieves the highest throughput among all accelerated hashless algorithms at 2.91 GB/s.

All hashless algorithms achieve lower speedups on ARM with NEON-128 instructions, when compared to SSE-128
instructions on Intel and AMD machines. AE-Max and AE-Min are especially affected, achieving only 1.08× and 1.05×
speedups, i.e. 8% and 5% gains with NEON-128 over their unaccelerated versions. This is largely due to the lack of
native VMASK support, which affects Range Scans. While our implementation uses an alternative method to achieve
the same functionality, it uses four NEON-128 instructions instead of a single SSE-128 VMASK instruction.

However, MAXP and RAM still achieve 1.93× and 5.32× speedups, respectively, showing that VectorCDC remains
beneficial on ARM platforms with NEON-128 support. Note that these numbers are expected to improve in ARM
platforms supporting SVE/SVE2 instructions [47], as they offer native VMASK support. However, as we could not obtain
such a platform for our evaluation, we leave a detailed SVE/SVE2 performance review as future work.

6.4.4 IBM Power 8. Figure 14e shows the throughputs achieved by hashless algorithms accelerated with VectorCDC
on an IBM Power 8 machine. As shown in Table 1, this machine only supports VSX-128 instructions, an IBM equivalent
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Fig. 14. Accelerating hashless algorithms with VectorCDC across processor architectures, on DEB at an 8KB average chunk size. Data
labels show speedups over the respective native algorithm for the specific cases discussed in text. Note the different y-axis scale on
Figures 14d and 14e.

to SSE-128. This instruction set lacks support for native VMASK operations as well (§5). RAM achieves the highest
throughput among all accelerated hashless algorithms, at 8.54 GB/s.

Unlike ARM, all hashless algorithms exhibit considerable speedups on IBM Power 8 with VectorCDC. AE-Max and
AE-Min achieve speedups of 2.92× and 2.85× respectively. MAXP and RAM achieve speedups of 7.93× and 20.35×
respectively. Furthermore, all hashless algorithms accelerated with VSX-128 instructions achieve speedups equivalent
to or greater than their counterparts accelerated with SSE-128 on Intel and AMD machines. For instance, RAM achieves
a speedup of 20.35× with VSX-128 on IBM Power 8 while it achieves a speedup of 7.49× and 9.94× with SSE-128 on
Intel Emerald Rapids and AMD EPYC Rome, respectively.

This is because, despite the lack of native VMASK instruction support, the alternative implementation using
vec_bpermq is efficient and uses just two fast VSX-128 instructions.
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6.5 Evaluation Summary

To summarize, the main takeaways from our evaluation are the following:

• VectorCDC-based hashless algorithms achieve 15.3×–207.2× and 8.35×–26.2× higher throughput than unaccel-
erated and vector-accelerated hash-based algorithms respectively, showing that hashless algorithms are better
candidates for vector acceleration (§6.2).

• VectorCDC effectively alleviates the data chunking performance bottleneck in the deduplication pipeline (§6.2.3).
• Accelerating both Extreme Byte Search and Range Scan is important because their individual impact depends on

dataset and algorithmic characteristics (§6.3).
• VectorCDC provides benefits across different processor architectures, and is compatible with a wide range of

vector instruction sets (§6.4).
• Accelerating hashless algorithms with VectorCDC does not impact their space savings and generates chunks

identical to their unaccelerated counterparts.
• Hashless algorithms achieve space savings values comparable to or better than those of their hash-based

counterparts on real-world datasets (§6.1). The best performing hashless algorithm varies by dataset, showing
that accelerating all of them is equally important.

7 Related Work

7.0.1 Chunking optimizations. Many efforts have been made to optimize data chunking. MUCH [79] and P-Dedupe [80]
use multiple threads to accelerate chunking. RapidCDC [81] sometimes skips data chunking by predicting the next
chunk boundary based on historical data, but requires maintaining additional metadata. Bimodal Chunking [82] initially
splits the data into large chunks, and then divides duplicate adjacent chunks into smaller ones, to enhance space savings.
VectorCDC is compatible with all of these approaches, as they build on top of existing CDC algorithms.

Previous work [83] that analyzes the characteristics of chunks generated by CDC algorithms, is orthogonal to
VectorCDC, as vector acceleration does not affect generated chunks.

Our previous paper at USENIX FAST 2025 [84] presented VectorCDC’s design, but does not discuss acceleratingMAXP

[27] or VectorCDC’s performance on varying CPU architectures. Additionally, it does not present a comprehensive
evaluation of VectorCDC’s capabilities.

7.0.2 Deduplication optimizations. Several other efforts exist to optimize the other phases of the deduplication pipeline.
StoreGPU [19] and GPU-Dedup [18] accelerate chunk hash computation using GPUs. SiLo [85], Sparse Indexing [86]
and Extreme Binning [87] optimize hash indexing. HYDRAStor [88] is a distributed deduplication system that focuses
on data placement. Several studies incorporate delta compression after deduplication to further compress similar but
non-duplicate chunks [89–91]. These efforts are orthogonal to ours as we accelerate the data chunking phase.

7.0.3 Accelerating other storage systems. Vector instructions have been widely used to accelerate other storage systems.
MinervaFS [92] accelerates the computation of transform and basis functions in generalized deduplication with AVX
instructions. ICID [93] records memory-copy operations in a B-Tree for fine-grained deduplication, accelerating tree
searches with AVX instructions. AVX-512 conflict detection instructions have been used to accelerate lightweight data
compression algorithms [94]. Numerous works attempt to accelerate collision-resistant hashing algorithms used across
storage systems with vector instructions [95, 96]. These efforts are orthogonal to ours as we focus on using vector
instructions to accelerate CDC algorithms for block-level deduplication.
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7.0.4 Secure deduplication systems. Several efforts build end-to-end deduplication systems for encrypted data [97].
They mainly target encryption schemes [98, 99] for the underlying data or focus on reducing attacks on the system
[100, 101]. Some target specific applications, such as distributing encrypted docker images [102] and encrypted videos
[103]. As all of these efforts layer encryption atop existing data chunking algorithms, VectorCDC is compatible with all
these approaches.

8 Conclusion

We present VectorCDC, a methodology for accelerating content-defined chunking using vector instructions. VectorCDC
avoids the pitfalls of previous work that accelerates CDC algorithms by choosing hashless CDC algorithms instead.
VectorCDC accelerates these algorithms using novel tree-based search and packed scanning methods. Our evaluation
shows that VectorCDC achieves 8.35×-26.2× higher throughput than existing vector-accelerated CDC algorithms
and 15.3×-207.2× higher throughput than unaccelerated algorithms. We have made our code publicly available by
integrating it with DedupBench [15], and published one of our datasets on Kaggle [28].
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