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ABSTRACT 
This paper presents VMFlockMS, a migration service optimized 
for cross-datacenter transfer and instantiation of groups of virtual 
machine (VM) images that comprise an application-level solution 
(e.g., a three-tier web application). We dub these groups of related 
VM images VMFlocks. VMFlockMS employs two main 
techniques: first, data deduplication within the VMFlock to be 
migrated and between the VMFlock and the data already present 
at the destination datacenter, and, second, accelerated instantiation 
of the application at the target datacenter after transferring only a 
partial set of data blocks and prioritization of the remaining data 
based on previously observed access patterns originating from the 
running VMs. VMFlockMS is designed to be deployed as a set of 
virtual appliances which make efficient use of the available cloud 
resources to locally access and deduplicate the images and data in 
a distributed fashion with minimal requirements imposed on the 
cloud API to access the VM image repository.  

VMFlockMS provides an incrementally scalable and high-
performance migration service. Our evaluation shows that 
VMFlockMS can reduce the data volumes to be transferred over 
the network to as low as 3% of the original VMFlock size, enables 
the complete transfer of the VM images belonging to a VMFlock 
over transcontinental link up to 3.5x faster than alternative 
approaches, and enables booting these VM images with as little as 
5% of the compressed VMFlock data available at the destination. 

Categories and Subject Descriptors 
C.2.4 (Computer-Communication Networks): Distributed 
Systems – distributed applications, cloud computing. E.4 (Coding 
and Information Theory): data compaction and compression.   

General Terms 
Design, Algorithms, Performance, Evaluation. 

Keywords 
Distributed deduplication, VM migration, Cloud computing.  

1. INTRODUCTION 
The ability to boot a virtual machine (VM) image on any available 
physical node in a datacenter, or even across datacenters, is a key 
enabler for the many benefits promised by cloud computing such 
as resource consolidation, elastic scaling, and computation 
migration.  

This project starts from the observation that today, while VM 
images are not tied to any specific physical node, they are still 
locked within the boundaries of a datacenter.  

Flexible deployment of VMs across datacenters enables essential 
load-management services that support a number of important 
scenarios.  For instance, if a datacenter is overloaded, requests to 
launch new VM instances can be served by a different datacenter 
of the same provider. This functionality enables reducing 

datacenter provisioning costs as peak load can be shared across 
datacenters. Similarly, to accommodate scheduled maintenance 
operations, load can be redirected to new VMs instantiated at 
another datacenter. Finally, flexible VM deployment across 
datacenters enables arbitration for energy costs, that is, providers 
can deploy VMs at the datacenter that benefits from the lowest 
energy price for a certain time interval, as suggested by Qureshi et 
al. [1] who evaluate the benefits of this technique.  

Additionally, flexible deployment of VMs across datacenters is a 
key enabler for federating clouds. Tools that support users to 
transfer and instantiate their VMs on any cloud that is part of a 
federation will eliminate one of the important adoption barriers of 
the cloud technology: the users’ concern that they will be ‘locked 
in’ by a specific cloud provider.  Section  2.3 further motivates the 
need to support cross-datacenter VM deployment. 

Migration of VMs across clouds and datacenters is challenging for 
four main reasons: First, migrating VMs across datacenters 
involves transferring large volumes of data. On the one side, VM 
images are large (typically 1-30GB in size); on the other side, 
applications deployed on the cloud often involve multiple VMs 
with different images [2] (e.g., a three-tier web application [3], a 
business analytics solution [4], or a virtual cluster [5]). 
Consequently, application migration often involves transferring 
multiple large VM images. Second, these large data transfers are 
often done over wide area networks with limited bandwidth. A 
naive application migration approach may easily clog the network 
links between the datacenters, leading to unacceptable 
performance degradation. Third, a VM image transfer service has 
to operate within the limits imposed by the existing APIs of 
clouds’ VM image repositories (e.g., IBM’s Mirage [6]). Not only 
these APIs are still not standardized but, more importantly, they 
expose limited information on the data stored in the VM 
repository and are not designed to support efficient cross-
datacenter VM image transfer. At the same time, a migration 
mechanism that requires changes to a cloud’s VM image 
repository is not acceptable by the cloud providers for strategic as 
well as for technical reasons. Finally, the problem is more 
complex when the transferred VM images are to be instantiated 
(i.e., booted) at the destination site, in which case the image 
transfer needs to be completed in a reasonable time.  

Despite the aforementioned challenges, three characteristics of the 
VM images can be exploited to build an efficient migration 
mechanism. First, the volumes of data transferred over the 
network can be reduced as the VM images often have high 
similarity. This is especially true for the VM images belonging to 
the same application (which we dub virtual machine ‘flocks’, or 
simply VMFlocks). The reason is that the VM images belonging 
to the same VMFlock are often based on the same OS distribution, 
yet with different installed applications, leading to similarity 
ratios across images as high as 96% [7]. Second, the transferred 



data volumes can be further reduced as the VM images to be 
transferred often have high similarity with some of the VM 
images already existing at the destination datacenter. Finally, the 
VM instantiation and application startup time can be reduced by 
intelligent prioritization of the data blocks that are transferred. 
The reason is that while the VM images may include millions of 
data blocks, only a fraction of these blocks are needed to boot the 
VM and start the application. 

This project proposes VMFlockMS, a migration system optimized 
for virtual machine flocks. VMFlockMS exploits the 
aforementioned characteristics to reduce the migration time and to 
reduce the data volume transferred across the network. First, 
VMFlockMS, exploits the similarity among the VM images 
within the same VMFlock and the similarity among VM images 
across datacenters to reduce the amount of data transferred. 
Second, VMFlockMS accelerates application startup by 
prioritizing the data transfers and by booting the VMs at the 
destination datacenter immediately after the blocks needed for 
VM boot and application startup have been transferred.  

Notably, the main component of the migration service (i.e., the 
VM image transfer service) harnesses these opportunities without 
requiring access to the internal information of the cloud’s VM 
image repository. The VM image transfer service can be deployed 
as a user-level ‘appliance’ at any datacenter that provides access 
to VM images through a basic interface able to read/write VM 
images and does not require any infrastructural changes at the 
datacenter. This characteristic reduces the adoption barrier for the 
migration service, and makes it a good building block to support 
aggregating resources across cloud providers and cloud 
federation. Additionally, this design facilitates separation of 
concerns between the VM repository and the VM transfer service. 
We note that, to accelerate application startup (by booting VMs  
before the entire image transfer completes) however, 
VMFlockMS requires additional support from the cloud 
infrastructure, as detailed in § 3. 

The contribution of this work is threefold:  

• First, this paper presents a distributed high-throughput data 
deduplication algorithm (§ 3.3). The algorithm uses multiple 
nodes at the source and destination datacenter to identify 
similarities among local and remote VM images. The 
algorithm is completely distributed and incrementally scalable. 
Additionally, the algorithm evenly balances the deduplication 
effort among the participating nodes, naturally supports the use 
of multiple streams to accelerate the data transfers, and is 
optimized to minimize the memory footprint at each node.   

• Second, this paper presents the design (§ 3.2) and 
implementation of a migration system for flocks of virtual 
machines (VMFlockMS), which, to the best of our knowledge, 
is the first to address the challenges of migrating applications 
that are deployed over multiple VMs. Not only VMFlockMS 
uses the specialized data deduplication algorithm mentioned 
above to reduce the volume of data transferred over the 
network (§ 3.3), but it exploits the fixed order in which data is 
used at boot and application startup to accelerate application 
migration. To this end, VMFlockMS includes additional 
components: VMProfiler (§ 3.4) which records the order in 
which VM image data is used at startup, a prioritization 
algorithm for data transfers, as well as VMLaunchPad (§ 3.5) a 

solution to start booting at the destination site when key data is 
available, yet before the VM image transfer is complete.  

• Third, this paper presents a detailed evaluation of the 
VMFlockMS prototype (§ 4). The evaluation compares the 
performance of the VMFlockMS to current alternatives under 
migration scenarios for real applications. We evaluate the 
reduction in data volumes transferred over the network, the 
compression overheads, the feasibility of and the potential 
gains brought by early VM image boot, and we perform 
end-to-end VMFlock migration experiments between two IBM 
Research cloud datacenters. The performance of the proposed 
algorithm varies with the offered workload. However, for a 
setup that is arguably close to the scenarios that will be seen in 
practice, the proposed mechanism achieves up to 10x better 
compression rate, compresses the data up to 2x faster, and 
enables migrating a complete application up to 3.5x faster than 
alternative techniques. 

We argue that VM image transfer and instantiation are sufficient 
to enable flexible deployment of VMs across datacenters as 
migrating still VM images (as opposed to live migration of 
running VMs [8]) is sufficient for supporting most of the 
aforementioned use cases. Further, the techniques developed in 
this work can be applied to support live migration of running VM 
images; either directly, through taking a snapshot of the running 
VM and including the snapshot state within the VM image as 
Qemu/KVM does (in such a case, our system can be tuned to 
prioritize the snapshot data for a quick VM resume),or by 
integrating the proposed distributed migration mechanism in a 
live migration service [9, 10]. For the rest of this paper we will 
use VM migration to mean migration of VM still images across 
datacenters. 

Finally, while we present and evaluate VMFlockMS in the context 
of VM migration, the ideas we put forward and even our 
implementation can be used to optimize other computational 
pipelines that combine data transfers and computation by 
exploiting the same characteristics our system exploits. On the 
one side, data transfers volumes can be reduced not only through 
compression of individual items or batches of items, but more 
importantly, by detecting and harnessing the partial similarities 
between the data to be transferred and the data already at the 
destination. On the other side, intelligent transfer protocols that 
harness data usage profiles to prioritize data transfers will enable 
overlapping data transfer and data consumption thus accelerating 
long computational pipelines. Section  5 discusses existing and 
potential applications in others areas than VM migration (e.g., a 
scientific computing scenario supported by a GridFTP service). 

2. BACKGROUND AND RELATED WORK 
Our work draws from two research fields: virtual machine 
migration (§ 2.1) and data deduplication (§ 2.2). This section 
briefly presents the ways VMFlockMS builds on this past work 
and presents a number of cloud scenarios that are enabled by 
efficient cross-datacenter VM image transfer and fast VM 
instantiation. 

2.1 Virtual Machine Migration  
A number of projects have proposed mechanisms for migrating 
individual VM images over local- and wide-area networks. To the 
best of our knowledge, no previous work addressed the issue of 
optimizing migration for VMFlocks, multiple VMs that are 



coupled together in an application.  

Clark et al. [8] build a live VM migration tool capable of 
migrating live VMs between LAN-connected nodes. The 
mechanism assumes that the source and destination nodes share a 
network-accessed storage system that maintains the VM’s 
persistent image, and only proposes a solution for migrating the 
in-memory state of the live VM. Similarly, Lagar-Cavilla et al. 
[11] propose a mechanism for cloning live VMs in LAN-
connected platforms. The proposed mechanism assumes as well a 
shared copy-on-write storage system storing the VM images. 

Sapuntzakis et al. [12] present a system for virtual machine live 
migration that includes disk images. The approach proposes using 
copy-on-write images to derive users’ custom images from a root 
image. The approach reduces the amount of data transferred using 
two optimizations: exploiting similarities between the transferred 
image and the root image and the possible similarities with images 
already present at the destinations site. Hirofuchi et al. [9] present 
a mechanism that complements the live migration of VM memory 
with transferring the VM disk image over long-haul networks. 
After completing the migration of a live VM state stored in 
memory and starting the VM at the destination site, the approach 
proposed by Hirofuchi et al. transfers the VM disk image to the 
destination, giving priority to the blocks accessed by the VM after 
migration. In the same vein, Bradford et al. [10] propose 
transferring the VM disk image at the same time as transferring 
the live VM’s in-memory state. The VM keeps running at the 
source machine while the transfer of the VM memory and disk 
image takes place. Similar to past approaches (e.g., Clark et al. 
[8]) changes to migrated disk blocks are forwarded to the 
destination as deltas. When most of the memory and disk are 
migrated, the VM machine is stopped at the source and the rest of 
its memory and disk are migrated to the destination. Finally, the 
VM is started on the destination machine. 

The aforementioned projects either do not address the migration 
of VMs’ disk images, or focus on migrating a single VM image 
across wide area networks. As our evaluation will demonstrate, 
migrating multiple VM images using these approaches results in 
data transfer redundancies and high overheads.  

VMFlockMS complements these approaches: it exploits the 
similarity among the VM images within a VMFlock and between 
the VMFlock and the destination VM image repository to 
significantly reduce the amount of data transferred. To detect and 
take advantage of these similarities, VMFlockMS proposes a 
distributed deduplication algorithm so that multiple end-nodes can 
be allocated to match the size of the VMFlock to transfer. Finally, 
VMFlockMS is designed with ease of deployment as a main 
focus. Unlike the aforementioned projects which require 
infrastructure changes, the main image transfer component of 
VMFlockMS can be deployed as a virtual appliance on multiple 
VM instances and it does not require changes to the VM image 
repository provided by the cloud infrastructure. 

2.2 Data Deduplication 
A number of storage systems [13, 14, 15]  use data deduplication 
to reduce their storage footprint or to reduce the volume of data 
transferred across the network. These storage systems often adopt 
a ‘content addressable storage’ (CAS) approach which names the 
data-blocks based on their content. In this context, hashing is used 
as a naming technique: data-block names are simply the hash 
value of the block’s data. To store a new file, the system divides 

the file into blocks, hashes them, and compares the blocks’ hashes 
with the hashes of the already stored blocks. This way the system 
identifies new data blocks (which are stored) and uses references 
to already stored blocks thus reducing the storage costs. 

Defining the data block boundaries: Blocks of fixed size vs. 
detecting block boundaries based on content. Once a content 
addressable storage approach is selected, a second issue to decide 
on is the technique to define block boundaries. The fixed block 
size approach divides each file into equal size blocks and names 
blocks by their hash value. Venti [16] and Foundation [14] are 
two storage systems focused on archival workloads that adopt this 
approach for deduplication. Alternatively, block boundaries can 
be defined based on the data itself, by using Rabin fingerprints 
over a sliding window [17]. While this approach results in higher 
compression rates (as it is stable against file insertions/deletions), 
it also incurs higher computational overheads. LBFS [13], a 
storage system optimized for backup operations over low 
bandwidth links, and JumboStore [18],, a storage system 
optimized for multimedia content, adopt this approach. Stdchk 
[15] project explores quantitatively the tradeoffs between these 
two approaches.  

VMFlockMS directly draws from these data-deduplication 
techniques to reduce the volume of data transferred across the 
network. We have implemented and experimented with both 
deduplication approaches – fixed blocks and detecting block 
boundaries based on content. While the later approach offered a 
slightly better compression rate, it adds additional computation 
overheads and implies higher code complexity. Thus for this work 
we use fixed size blocks.  

Improving data deduplication throughput. Two recent projects 
propose parallel solutions to improve deduplication throughput. 
The DataDomain system [19] and Debar [20] are custom-built 
hardware/software stacks optimized for high throughput 
deduplication. Both systems use specialized or dedicated 
hardware resources, and are optimized for long-term retention of 
large amounts of data. Consequently, most of their optimizations 
relate to avoiding accessing the metadata information which is 
often stored on the disk. 

VMFlockMS differs from the aforementioned approaches in two 
ways. First, unlike DataDomain and Debar, this project, targets a 
cloud deployment rather than a deployment over custom 
resources. Consequently, the VMFlockMS system is designed to 
be incrementally scalable such that it will benefit form any 
number of nodes allocated and to efficiently operate in spite of the 
scarcer resources available per allocated node. Second, 
VMFlockMS targets a different workload, namely migrating VM 
images instead of processing data for long-term archival. The 
main implication is that while archival services are generally 
designed for offline operation, VM migration is often in the 
critical path thus requiring higher performance.  

2.3 Motivating Scenarios 
This section presents a set of services that are enabled by 
providing efficient, cross-datacenter VM image transfer and fast 
VM instantiation. The goal is twofold: to further motivate and to 
inform the system requirements for the VMFlockMS migration 
service (discussed in § 3.1). 

We assume that users can personalize VM images and store them 
in the VM image repository at one datacenter. Users can launch a 



VM at the same datacenter where the VM image repository is 
hosted, yet they need an external service to transfer images across 
repositories. We also assume that VM repositories, regardless of 
whether they belong to the same cloud provider or not, do not 
share data. 

Cross Datacenter Load Management. An efficient VM image 
transfer and instantiation service enables flexible load 
management across datacenters.  Migrating VMs between 
datacenters to accommodate scheduled maintenance operations, or 
redirecting new VM instantiation requests from a highly loaded 
datacenter to another are only two of the possible use cases. The 
main requirement is the ability to reduce image transfer overheads 
and to bootstrap the VM images as quickly as possible at the 
destination site (ideally, within a few minutes). 

Our migration scheme complements live migration by expanding 
the scope of migration and by addressing the state of persistent 
storage. While live VM migration is a useful primitive for fine 
grain load balancing within a data center, it is not suitable for 
migrating VFlocks across the cloud. In particular, the typically 
employed technique of iteratively transferring dirty memory 
blocks may not converge in bounded time across a high latency 
wide area link. We expect that VMFlockMS can be used in 
conjunction with live migration, where live migration is used for a 
more dynamic control over load placement and VMFlockMS is 
used by a scheduler at a higher layer. 

Replication. Similarly, an efficient VM migration service can be 
used as the main building block for multi-site VM image and 
virtual disk replication. For instance, virtual machine record-
replay techniques [21, 22] often require an initially synchronized 
persistent storage state, from which they make identical 
incremental updates to keep the replicas synchronized. While, for 
this case, bootstrapping the VMFlock at the destination datacenter 
is not a requirement, efficient usage of the limited network 
bandwidth is still necessary. 

Cloud Federation. Efficient VM migration is a basic service 
required for federation clouds regardless of whether this is 
achieved as a third-party integration service or through pair-wise 
inter-cloud agreements. Cloud federation is envisioned as a 
public, open, inter-cloud infrastructure that enables the users to 
use the resource of multiple clouds. This is envisioned as ‘the next 
step in cloud computing technology’ [23, 24] and is the driver for 
active standardization efforts ongoing nowadays [25, 26, 27]. 

3. SYSTEM DESIGN 
This section discusses the VMFlockMS design requirements 
(§ 3.1), briefly presents the overall system architecture (§ 3.2), and 
presents in detail, the design of each of the system’s main 
components: the VM image transfer service (VMFlockMA in 
§ 3.3), the service to profile VM image usage to infer the data 
access patterns at VM boot and application startup (VMProfiler in 
§ 3.4), and the service to launch VM images in spite of partially 
completed data transfers (VMLaunchPad in § 3.5). 

3.1 Design Requirements 
This section presents the requirements of a VM migration system: 

 Data compression. The migration system should reduce the 
volume of data to be transferred across the network to reduce 
the migration time and the load on network connections. 

 Low overheads. To be attractive, the migration system should 
lead to low overheads. Three types of overheads are crucial: 
first, computational overheads resulting from the data 
deduplication technique to compress/decompress data; second, 
storage system overheads resulting from additional accesses to 
the storage system to fingerprint VM images that will not be 
transferred, to store and access VM boot profiles, and to store 
and access VM images’ metadata; and, finally, the memory 
footprint.  

 Boot time. The migration system should be able to boot the 
migrated VM images as soon as possible. This is especially 
important for cross-datacenter load management. 

 Scalability over multiple axes. On the one side, the migration 
tool should scale with the offered load. That is, the migration 
tool should scale to support migration of tens to hundreds of 
virtual machines, each potentially hundreds of GBs in size. On 
the other side, the migration tool should make efficient use of 
additional compute resources, that is, make efficient use of 
possibly multiple nodes at the source and destination sites 
allocated to the VMFlockMS system. 

 Easy to deploy. The migration tool should be easy to deploy by 
cloud providers as well as by cloud end-users. To this end, a 
popular approach for encapsulating complex services [28] is 
designing them as ‘virtual appliances’. In this approach, a 
virtual machine is setup with necessary software stack, and 
configured to provide the specific service (e.g., a database 
appliance, or an Apache webserver appliance). Consequently, 
the migration service should not assume any custom hardware 
and should be able to run using the sometimes modest 
resources allocated by the cloud to individual VM machine 
instances (for example, the system should be able to operate 
with a memory footprint on each node limited by the 
capabilities of the target cloud infrastructure). 

 Easy to adopt. The migration tool should be easy to adopt by 
current cloud infrastructures. Consequently, the migration tool 
can not assume access to cloud infrastructure internal state 
(e.g., it can not assume access to block-level information of the 
VM image repository). An advantage of delivering the 
migration service as an appliance is that it allows it to be 
transparent to the details of the cloud infrastructure.  Given that 
cloud providers limit access to their underlying system and 
resources, an appliance provides an available means to package 
our "logic" and directly deploy it where the data is located. 

3.2 System Architecture 
Figure 1 shows the VMFlockMS system architecture. The system 
is composed of three main components: the VM Profiler 
(VMProfiler), the VM Migration Appliance (VMFlockMA) 
present at the source and destination nodes, and the VM Launch 
Pad (VMLaunchPad).  

 
Figure 1. VMFlock migration system architecture. 



The VMProfiler (§ 3.4) profiles a VM image to identify which 
data blocks are accessed at boot time (and possibly at application 
startup time). This profiling information is collected at VM boot 
and application startup time and stored as part of the VM 
metadata in the repository.  We assume that this information is 
available before the migration of the virtual machine.  

The VMFlockMA migration appliance (§ 3.3) implements the 
distributed data deduplication and transfer algorithm. The nodes 
collaborate to divide the VMFlock’s VM images into data blocks, 
deduplicate the blocks (i.e., identify the similarities among 
images), migrate unique blocks from the source datacenter to the 
destination while prioritizing the blocks the image’s profile 
indicates as needed at startup time, and, finally, reconstruct full 
images at the destination. 

Finally, the VMLaunchPad (§ 3.5) enables launching a VM image 
at the destination even if the transfer of a VM image is not 
complete (i.e., not all the image’s data blocks are present at the 
destination). The VMLaunchPad intercepts the I/O requests of the 
running VM image and, if the requested data is not yet migrated 
from the source, the VMLaunchPad will ask the migration nodes 
to migrate the needed data block at a higher priority. Once the 
needed data block is migrated, the VMLaunchPad services the I/O 
request and the running VM resumes its execution. 

Note that the three systems above are independent. The migration 
appliance can transfer VMFlocks and they can be booted at the 
destination site when transfer finishes even without having a 
VMLaunchPad available. However, having the profile 
information enables prioritizing data transfers such that 
VMFlocks can be booted earlier if a VMLaunchPad is available at 
the destination site.  We note that while the main component of 
our system, VMFlockMA, the image compression and transfer 
service, can be deployed as a virtual appliance, the two support 
services, the VM Profiler and the VM Launch Pad, need support 
from the cloud infrastructure. 

The following three subsections present the detailed design of 
each of these three components. 

3.3 VMFlockMA - A Migration Appliance for 
Flocks of Virtual Machines 
VMFlockMA reduces the amount of data transferred between 
datacenters by exploiting the data similarity that exists at multiple 
levels: first, within a single VM image; second, between the VM 
images that belong to the same VMFlock; and, finally, between 
the VM images of the migrated VMFlock and the images that 
already exist at the destination site. While traditional data 
compression techniques [29] might be able to harness the first two 
levels of similarity mentioned above (i.e., by compressing single 
images or bundles of images) these techniques can not exploit 
similarities across datacenters.  Additionally, these compression 
techniques are unable to exploit the available parallelism in the 
workload and the wealth of cloud resources potentially available 
to increase the compression and data transfer performance. 

Designing an efficient deduplication system that can be deployed 
as a virtual appliance for VM migration is a challenging task for 
two main reasons: First, data size, the amount of data that need to 
be deduplicated is large (tens to hundreds of GBs). Second, 
depending on the data compression technique used and on its 
configuration, metadata size, the size of the deduplication 
metadata (block hash value, position in a file) can be large (GBs 

of metadata). To tackle these challenges, we harness the elasticity 
of the cloud and aim for a migration appliance that is able to 
control the load allocated to the individual node by integrating 
multiple resources, proportional to the size of the VMFlock to be 
transferred.  

In summary, VMFlockMA adopts a distributed approach to 
deduplication and employs the compute power, memory space, 
and I/O bandwidth of multiple virtual nodes allocated to the 
appliance to provide an efficient migration service.  Additionally, 
VMFlockMA operates parallel data transfer streams, and, if the 
necessary information is available, it prioritizes the data transfers 
to make the blocks necessary for VM boot and application startup 
available early at the destination site.  

VMFlockMA operates as follows: 

Pre-processing at the source datacenter: The VMFlockMA 
nodes at the source datacenter (source nodes for short) read the 
VMFlock images from the VM repository, chunk the images into 
fixed size blocks, and hash the blocks.  

To identify the similarities across the blocks processed at different 
source nodes, these nodes need to exchange blocks’ metadata. 
This step is complicated by the fact that, to fulfill scalability 
requirements, none of the source nodes can be assumed to have 
enough memory space to hold all the metadata for all the migrated 
blocks. Thus, to exchange the blocks’ metadata while limiting the 
memory footprint of each individual node, the source nodes build 
a distributed metadata index similar to a one-level distributed hash 
table (or consistent hashing) [30]: depending on its ID, each node 
is responsible for holding metadata for the blocks with hashes in a 
specified range. The source nodes send out the metadata for the 
blocks not part of their hash range. This data structure is then used 
to identify the data blocks that are identical across the VM images 
that belong to the same VMFlock. 

Pre-processing at the destination datacenter: VMFlockMA at the 
destination site selects a set of VM images from images found in 
the destination VM repository. The selection is made using the 
metadata of the images to be transferred (e.g., operating system 
version, list of applications installed) to find images with 
potentially higher similarity to the migrating VMFlock. 
VMFlockMA then chunks the selected images and hashes each 
data block and prepare a similar distributed metadata index at the 
source datacenter.  

Data transfer: The block metadata obtained is used to identify the 
blocks at the source that are already present at the destination. 
Each source node collaborates with the destination node 
responsible for the same hash-range to transfer these data blocks, 
and each node pair attempts to further reduce the transfer volume 
transferring only the blocks not already present at the destination.  

The block transfer is prioritized based on the information found in 
the profile, such that the blocks needed at startup time are sent 
first. 

Post-processing at the destination datacenter: The destination 
nodes reassemble images: once a block is retrieved from the 
destination, or from a locally stored image, the block is written to 
all new VM images it is part of.  

The rest of this section presents in more detail the algorithm at 
source (§ 3.3.1) and destination nodes (§ 3.3.2), and highlights the 
main advantages of the proposed approach (§ 3.3.3). 



3.3.1 Source Node Algorithm 
The source nodes collaborate on deduplicating the images 
belonging to the VMFlock to be transferred. All the source nodes 
follow the following steps to migrate a set of virtual machines: 

• Each source node reads, and chunks, one or a few VM 
images. Each block is hashed using SHA1 hashing. 

• The source nodes participate in building a distributed data 
structure to hold blocks’ metadata (i.e., block’s hash value, 
and a list of locations --image name, offset-- where the block 
appears). Depending on their node IDs, each node is 
responsible for holding the metadata for blocks that hash in a 
specific range.  

• After all source nodes finish their chunking and hashing step, 
the source nodes exchange the blocks metadata according to 
a solution similar to that used for consistent hashing [30]..At 
the end of this step each node will only hold the metadata for 
blocks in its hash space. 

• Each source node is paired with a destination node to transfer 
the blocks for which it stores metadata.  

• Each source node sends the blocks metadata it has to the pair 
node at the destination, identifies the blocks that are not 
already present at the destination, and transfers them. 

3.3.2 Destination Node Algorithm 
VMFlockMA uses an equal number of source and destination 
nodes. The destination nodes perform two tasks:  

Building the local block metadata repository. The destination 
nodes locate a set of local images which, based on available image 
metadata (e.g., operating system version) are likely to be similar 
with those belonging to the migrating VMFlock. The destination 
nodes will then chunk and hash these local images and build a 
distributed data structure to store block metadata using the same 
algorithm as the source nodes and described in the previous 
section. This step runs concurrently with the deduplication step 
performed by the source nodes. This metadata will be used to 
identify which of the blocks to be migrated already exist at the 
destination.  

Block Migration. Each destination node works with the source 
node responsible for the same range of hash values to transfer of 
the blocks it is responsible for. The destination node runs the 
following steps: 

• The destination node receives the blocks’ metadata from the 
corresponding source node. 

• For each block, the destination node checks if the block is 
present in the local images. If it is not, then the block will be 
requested from the source node (Transfer from the source is 
batched for higher throughput; additionally each block is 
further compressed using the zlib [31] compression library).  

• After receiving a block (or the information that a block 
already exists at destination), the data is written to all images 
the block is part of. This information is found in the block’s 
metadata. 

3.3.3 Algorithm Analysis 
The VMFlock migration algorithm has the following set of 
important characteristics: 

• Decentralized. The algorithm does not have any central 
component that can from a performance bottleneck. 

• Parallel. The algorithm is highly parallel: the source and 
destination nodes chunk and hash VM images in parallel, 
further the data is transferred in parallel streams between the 
source and destination nodes. 

• Load Balanced. The algorithm uses a hash function to assign 
blocks to migration nodes.  Past work [30] has explored the 
load balancing properties of this solution.  

• Incrementally Scalable. The algorithm can integrate any 
number of nodes and handle workloads of migrating tens to 
hundreds VM images using tens of source and destination 
nodes. This is mainly due to its load balanced and distributed 
nature. 

• Low Memory Footprint. Each migration node is responsible 
of handling the metadata for, at most, one or a few VM 
images. The metadata generated for a single VM image is 
well below the memory space available to a virtual appliance 
node. Further, the block metadata is evenly distributed 
among the migration nodes. 

• Easy to Adopt. The algorithm is able to exploit the similarity 
across VM images within the same VMFlock and across 
datacenters without requiring access to the VM repository’s 
internal data block information. VMFlockMA only requires 
some from of access to read/write VM images.  

We note that one possible drawback of this algorithm is that, at 
least conceptually, it performs two passes when reading the data 
at the source site: in the first pass all data is sequentially read from 
the disk to hash the blocks, and in the second pass blocks are read 
from the disk and sent them across the network.  However, if there 
is high similarity between source and destination (and our 
experiments demonstrate that, for the scenarios we target, 
similarity can be as high as 96%) then only for a small portion of 
the data, the part that is dissimilar between source and destination, 
duplicated reads are performed. A second possible drawback is 
the lack of failure tolerance: if one source fails the entire system 
needs to be restarted. However, since the system is meant to be 
run as an appliance for relatively short time intervals we do not 
consider this a major issue.  

3.4 The VM Profiler 
The main objective of the VMProfiler and VMLaunchPad 
(detailed in § 3.5) is to enable faster booting of the migrated VM 
images. It is important to note that due to the non-sequential 
access pattern at VM boot time, traditional read-ahead/pre-
fetching techniques fail to reduce boot time. Hence a profile that 
captures the boot-time access pattern in detail is required. 

The VMProfiler extracts this profile: it identifies the VM image 
regions necessary to boot the VM image and to launch 
applications in order to prioritize the data transfers. The profiles 
are stored as part of the VM metadata. 

Note that the blocks within the VM image may be rearranged 
either by the VM image repository due to an offline maintenance 
operation or by the guest file system itself as a part of a 
defragmentation. As a result, some of the block offsets captured in 
the profile may point to incorrect data. To guarantee correctness, 
when data is transferred, it is checked against a checksum for the 



region. The checksum is matched against the checksum of the 
region computed at the time of capturing the profile, and, if 
discrepancies are detected, the profile is marked as invalid and 
deleted. Each time a profile is used, it is updated -- invalid entries 
are pruned and new entries are added based on new accesses. 

We have implemented the VMProfiler as a user-level file system 
based on FUSE [32] that profiles the VM disk access pattern at 
startup time. The VMProfiler intercepts and records the running 
VM access pattern and builds the image profile. To profile a VM 
image, the profiling script mounts the VMProfiler, starts the VM 
image, and stops the VM image after a configurable timeout.  

3.5 The VM Launch Pad 
VM images can be booted at the destination datacenter before the 
full VM image transfer is complete, only the data blocks indicated 
by the profile as needed at boot time and application startup are 
required. The VMLaunchPad fulfils exactly this function. This 
enables parallelizing data transfer and application startup, thus 
leading to lower apparent VMFlock migration time. 

To evaluate the feasibility and the potential benefits of such a 
mechanism, we have implemented VMLaunchPad as a user-level 
file system based on FUSE [32].  

We note that the boot and application startup processes might be 
slightly different at different datacenters. Thus, even when all 
blocks indicated by the profile have been fetched, the VM might 
access blocks that have not been migrated yet.  This would cause 
the boot process to fail if no further measures are taken. To handle 
this case VMLaunchPad maintains a file block-map indicating 
which data blocks are available locally for the given image. The 
VMLaunchPad intercepts the VM disk access operations and 
checks if the VM is trying to access blocks that have not been 
fetched yet. If this is the case, the VMLaunchPad will inform the 
VMFlockMA to prioritize the transfer of these blocks. At the 
same the VMLaunchPad will block the I/O operation until the 
needed data is available locally.  

We note that, while blocking the I/O request of a running machine 
for a long time may cause the VM device driver to timeout and 
cause I/O errors, we have not experienced such error in our 
deployments even when migrating VMFlocks over a network with 
more than 40ms latency. 

File block-map construction. VMLaunchPad requires access to 
block-level metadata for a VM image. More specifically, since 
data accesses are offset based, VMLaunchPad needs to be able to 
identify the block that is accessed at a certain offset. However, 
VMFlockMA transfers data in a different format: The metadata 
managed by VMFlockMA is block oriented, that is, for each block 
the metadata contains a list of images and locations where the 
block appears. The VMFlockMA avoids storing a blockmap per 
image to reduce the memory footprint of the appliance. 

In the current implementation, to construct an image’s block-map, 
the VMLaunchPad contacts all the VMFlockMA nodes at the 
destination asking for all block metadata related to a particular 
VM image. Armed with this information, the VMLaunchPad can 
reconstruct the image’s blockmap. 

3.6 Implementation Details 
VMFlockMS is implemented in 19,000 lines of C++ code (12,000 
lines for VMFlockMA, and about 6,000 for the VMProfile, and 
VMLaunchPad). We have used the tool internally to migrate VM 

images among the datacenters hosting IBM’s internal research 
cloud and the University of British Columbia in Vancouver BC, 
Canada for the last two months. 

The implementation uses FUSE [32] kernel module for 
developing the VMProfiler and VMLaunchPad. Zlib compression 
library [31] for compressing/uncompressing the data, PolarSSL 
[33] for the SHA1 implementation. 

4. EVALUATION 
We evaluate the VMFlockMS performance and compare it with 
the performance of currently proposed mechanisms for VM 
migration. The rest of this section presents the experimental setup 
used (§ 4.1), an evaluation of VMFlockMA ability to reduce the 
data volumes transferred over the network and VMFlockMA 
overheads (§ 4.2), an evaluation of the gains resulted from early 
booting of VM images (i.e., before the whole image transfer 
completes § 4.3), and an evaluation of the VMFlockMS end-to-end 
data transfer performance (§ 4.4) 

4.1 Experimental Setup 
This section presents the workload (i.e., groups of VM images) 
used for experimentation (§ 4.1.1), the experimental platform 
(§ 4.1.2), and the set of alternative approaches we compare 
VMFlockMS performance against (§ 4.1.3). All results present the 
average and standard deviation of 5 runs of each experiment.  

4.1.1 VM Images 
The evaluation uses three workloads representative of popular 
cloud applications. The main difference between these workloads 
is in the similarity, at the operating system level, among the VM 
images belonging to the same VMFlock. Similarity can vary from 
using the same operating system installation yet with different 
applications on top, to using different versions of the same 
operating system, to using completely different operating systems.  

Note that all images we use are based on the QCOW2 (QEMU 
copy-on-write) VM image format [34] a compact representation 
of VM images. QCOW2 is optimized for sparse images; that is, it 
stores only the blocks of the image disk that are used, not the 
unused blocks. Consequently, QCOW2 images are often 
significantly smaller in size than the actually disk size they 
represent. All VM images in the workloads we use are about 
30GB in RAW format and QCOW2 reduces them roughly ten 
fold. 

The workloads are: 

• Application (labeled as app in all plots). This is a group of 
three VM images part of Spree eCommerce application [35] 
The application contains: an image running the Spree 0.9.4 
application itself, one running a MySql server, and an NFS 
backend storage node. The three images use the same OS 
distribution: Fedora 13. The total size of all images is 7.9 GB. 
This is the closest to the target workload we estimate for 
VMFlockMS and is used for all experiments where we choose 
to use a single workload to reduce the exploration space. 

• Same OS (same-os). This is a group of four VM images using 
the same base operating system distribution but that are not 
part of the same application. The images are based on Fedora 
13 distribution with the different installation options offered by 
Fedora: ‘desktop’, ‘development’, ‘plain’, and ‘server’. The 
total size of all images is 10.6GB. It is worth noting that, while 



these images are based on the same OS distribution, there can 
be significant differences among them, since each installation 
option is optimized for a different use. 

• Different OS (diff-os). This is a group of four VM images 
using different OS distribution. The images contain: Fedora 13 
desktop, OpenSUSE desktop, Ubuntu Desktop, Ubuntu server. 
The total size of all images is 10.6GB. This group of VM 
images represents the worst case workload for deduplication 
based migration mechanisms. 

4.1.2 Evaluation Testbed 
We evaluate the VMFlockMS performance by transferring a set of 
VM images between IBM research cloud datacenters located at 
IBM Almaden Research Center, CA and IBM T. J. Watson 
Research Center, NY. The network latency between the two sites 
is 41ms and the throughput reported by iperf  [36] is 16Mbps 
(single TCP stream). 

At each datacenter we have three nodes available. At IBM 
Almaden each node has four dual-core Intel Xeon @ 2GHz 
processors with 8GB memory and a SAS disk. At IBM T. J. 
Watson each node has eight quad-core Intel Xeon @ 3.1GHz, 
with 8GB memory and a SAS disk. 

One node at the source and destination is used as the VM 
repository which is accessed through an NFS server. 

4.1.3 Alternative Migration Tools 
We compare the VMFlockMS performance with the performance 
of the migration alternatives available nowadays. These are: 

• GZip-All. This approach puts all the images in a single ‘tar-
ball’, then compresses it using GZip. The compressed archive 
is migrated to the destination and uncompressed.  

This approach does not require any serious implementation 
effort, but it has two major drawbacks. First, it is difficult to 
exploit the compute power of multiple cores on the same node 
or to use multiple nodes. Second, this approach does not 
exploit the similarity that may exist between the migrated 
VMFlock’s images and the images that already exist at the 
destination. 

• Gzip-Separate. This approach improves on the previous Gzip-
All approach by distributing the workload over a number of 
nodes. Each node will compress a single image and migrate it 
to a peer node at the destination. The peer node at the 
destination will uncompress the image.  

While this approach parallelizes the compression and the 
transfer steps, it does not exploit the similarity that may exist 
between a VM image to be migrated and other VM images in 
the same VMFlock or images already existent at the 
destination.  

• Dedup-Separate. This approach re-implements the approach 
proposed by Hirofuchi et al. [9, 37] for VM migration, that is, 
each VM image is deduplicated and transferred separately. 
This approach detects similarities within the VM image and 
between images across datacenters (yet it can not detect the 
similarities within the same VMFlock). For fairness of 
comparison, we extend the implementation of this approach 
with compressing all blocks sent over the network.  

4.2 Compression Rate Evaluation 
This section has two goals: first, to estimate compression gains 
achievable through each of the three types of data similarity 
VMFlockMS exploits (intra-image, across images in the same 
VMFlock, and across datacenters), and to compare VMFlockMS 
performance and overheads with those of the alternative 
compression techniques described in § 4.1.3. 

Figure 2 presents the achieved compression rate when the 
destination does not have any files, while Figure 3 presents the 
compression rate when the destination has a single VM image: a 
‘Fedora-desktop’ image.  
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Figure 2. Compression rate evaluation when the destination 
site does not store any VM images. The compression rate is 
calculated as the ratio of the volume of data transferred over the 
network to the original data size. (The lower the ratio the better).  
Gzip uses the default compression level which is biased towards 
better compression rather than speed.  The deduplication 
algorithm uses 1KB blocks. 
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Figure 3. Compression rate evaluation when the destination 
site has one image similar to one image in the migrating 
VMFlock. 

The compression rate is calculated as the ratio of the volume of 
data transferred over the network (including metadata-related 
overheads) to the original data size. Consequently, the lower this 
ratio, the better the compression rate. The results presented in 
Figure 2 and Figure 3 lead to the following observations: 

• All approaches achieve a 40% or better compression rate. 

• As expected, the VMFlockMS achieves the highest 
compression rate with the app workload. This is the result of 
the high similarity (the same OS version) between the VM 



images part of the same application. We expect that this will be 
the most common scenario in practice. 

• When the destination site does not have any images that may 
have some similarity with the images transferred (Figure 2) 
VMFlockMS generally achieves a better compression rate than 
alternatives. When images in the VMFlock are based on the 
same OS distribution, VMFlockMS achieves up to 2.2x better 
compression rate than the best GZip based approach, and up to 
2.7x better than the Dedup-separate approach. However, when 
there is limited similarity between images in the same 
VMFlock, that is for the diff-os workload, VMFlockMS leads 
to a slightly worse compression rate than GZip based 
approaches.  

• When the destination site stores a VM image that is similar to 
(some of) the VM images in the migrating VMFlock (Figure 
3), deduplication based approaches achieve much better 
compression rate (4x-12x better) than the best GZip based 
approach for the app and same-os workloads and slightly better 
for the diff-os workload. Additionally, depending on the 
workload VMFlockMS can compress up to 2.8x better that the 
dedup-separate approach; due to its ability to exploit intra-
flock similarity. . 

• Unexpectedly, GZip-All does not achieve a better compression 
rate than GZip-Separate although the data is compressible. We 
attribute this shortcoming to its design: gzip is unable to detect 
similar data blocks that are tens of MBs apart. 

• Dedup-separate achieves the worst performance when the 
destination does not contain any images. This is mainly due to 
two reasons. First, the mechanism does not exploit similarities 
across the VM images in the migrating VMFlock. Second, the 
mechanism chunks the VM images into small blocks (1KB 
each) and the associated block metadata that is transferred over 
the network is relatively large.  

4.2.1 Compression Overheads 
In addition to the compression rate, an important metric to 
consider is the compression effort. To give rough approximation, 
Figure 4 compares the time taken to read the data from the disk, 
compress it using each of the alternatives explored, and write the 
result back to disk data using the different tools (the three boxes 
of each bar in Figure 4 present this three-way split).  

To include the overheads resulted by detecting similarity across 
datacenters, Figure 4 presents the compression time for two 
alternatives: when the destination does not have any files, and 
when the destination has provided the hash-index for a single 
‘Fedora-desktop’ VM image (thus, for each technique, Figure 4 
presents a pair of bars).  

Since our goal is to compare the overall compression effort, the 
experiments use a single-thread implementation of the tools. We 
note that each of these tools can be parallelized to reduce the 
compression time (VMFlockMS demonstrates this for data 
deduplication), however, our point here is to roughly estimate the 
compression overheads. 

The results lead to the following observations: 

• The deduplication-based approaches (VMFlock and dedup-
separate) have the lowest compression effort. They are 
significantly faster than GZip-based approaches. This is 

testimonial to the lower computational overheads imposed.  

• The deduplication based approaches (VMFlock and Dedup-
seperate) work at significantly higher throughput than 
compression based approaches (over 250MB/sec when 
excluding disk overheads). This makes the reading the data 
form the VM repository the main throughput bottleneck in our 
experimental setup. (For comparison gzip-all achieves 
19.8MB/sec compression throughput). 

 
Figure 4. Compression time evaluation with the app workload. 
Each pair of bars represents one compression/deduplication 
technique with and without a similar VM image as the destination. 
(e.g., the first bar presents the runtime for gzip-all technique with 
no data at the destination). Each bar has three boxes: The bottom 
box is the time to read the data form disk, the middle box is the 
time to compress/deduplicate the data, and the top box is the time 
to write the data back to disk. 

4.2.2 Block Size Effect on Compression Rate 
The block size is an important parameter for configuring the 
deduplication algorithm and controlling the associated tradeoffs. 
While larger block sizes produce smaller metadata (and thus 
reduce the tool’s memory footprint), they often lead to worse 
compression rates [15]. Figure 5, shows the compression rate for 
the app workload while varying the block size. A block size of 
1KB leads to the best compression rate in both cases, that is, 
regardless of whether a similar VM image is present at the 
destination or not. A block size of 4KB is an attractive alternative: 
it preserves most of the compression gains, yet it is 4x better in 
terms of memory footprint. 
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Figure 5. Block size effect on the VMFlockMS compression 
rate for app workload.  
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4.2.3 Summary 
These experiments demonstrate that VMFlockMS is able to 
efficiently detect the multiple types of similarity present in the 
data and to significantly reduce the data transfer volumes required 
for the transfer of VMFlocks across datacenters. Additionally, the 
evaluation confirms that the overheads of the deduplication 
scheme used are lower those of competing approaches. Finally, 
the experiments inform the choice of block size to control the 
tradeoff between the compression rate and the memory overheads 
and ultimately the data granularity VMFlockMS operates with.  

4.3 Evaluating the Opportunity to Support 
Early VM Boot 
To evaluate the potential gains brought by the 
VMProfiler/VMLaunchPad pair we estimate the data volumes 
needed to completely boot a VM image and launch an application. 
To this end we have used the data produced by the VMProfiler. 

• To boot the VMs belonging to the app workload, only around 
13.5MB of the data (representing 0.6% of the uncompressed 
VM image size, and roughly 5% of the compressed VMFlock 
size) are needed. The boot process takes 41s once the data is 
available locally.  

We expect, however, that if a VM image similar to the one 
transferred by VMFlockMS is already available at the 
destination, the data volume actually transferred will be much 
lower than 13.5MB (as we expect the similarity rate to be high 
for kernel data) and the main overhead to be related to 
deduplication and transferring block metadata indexes.  

• To start the Spree e-commerce application, 1.5MB of 
additional data is consumed. The process takes an additional 
12s. 

• We measured the overhead introduced by VMLaunchPad by 
running synthetic IO intensive application with and without 
VMLaunchPad. The overhead introduced by VMLaunchpad is 
about 3%. 

While these values will vary across various operating systems, 
applications, and hardware platforms they support our claim that 
there are sizeable benefits to be reaped by starting the VM boot 
process early and overlapping the data transfers and the 
application startup processes. 

4.4 End-to-end Data Transfer Evaluation 
To evaluate the efficiency of the entire system we evaluate the 
transfer time for an entire VMFlock between two distant 
datacenters: IBM Almaden and IBM T.J.Watson. The transfer 
time is measured as the time from the launch of the VMFlock 
transfer command until all the VMFlock data is transferred and all 
VM images are completely reconstructed at the destination site.   

The experiment is configured as follows: We use the app 
workload and assume that the destination has one VM image, a 
‘Fedora-desktop’ image. Deduplication is configured to use 1KB 
blocks.  

Figure 6 compares the performance of VMFlockMS to the other 
alternatives.   

The results are surprising: despite the fact that VMFlockMS (as 
well as dedup-separate, the other deduplication-based technique) 
offers significantly better compression rates than gzip-based 

solutions, end-to-end they perform significantly worse (more than 
2x slower) in terms of migration time using our testing platform.  

There are two reasons behind this degraded performance: first, an 
intensely random disk workload for the deduplication-based 
techniques (as opposed to a sequential workload for the gzip-
based ones) and, second, our poorly provisioned experimental 
testbed (the VM image repository is hosted on a single node using 
a single SAS commodity disk and accessed through NFS). While 
gzip-based approaches generate a sequential write workload, the 
deduplication based approaches generate an intense random 
read/write pattern: all destination nodes operate the deduplication 
in parallel, thus their reads/writes to the VM image repository are 
interleaved. Additionally, even the accesses from a single 
destination node are random as (at least with the current 
implementation) the blocks are processed as they arrive from the 
network (in what is essentially random order), and each new block 
might need to be written to multiple VM images.  Similarly a 
block identified as already existing at the destination implies a 
read then possible multiple writes. Additionally, our chosen block 
size (1KB) stresses the disk to the maximum. With this workload, 
the roughly 100MBps sequential read/write throughput of our VM 
repository is degraded to a few MBps.  
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Figure 6. Transfer time for an entire VMFlock.  The workload 
used is app; the destination has one image similar to one image in 
the migrating VMFlock. We evaluate VMFlockMS with 1, 8, and 
128KB block sizes. 

While various optimizations to increase the sequentiality of the 
disk accesses are possible we have not explored them in this work.  

We explore instead two avenues to get around the above 
limitations:  First, we explore the performance with larger blocks: 
8KB, and 128KB blocks lead to a worse compression rate (4.5% 
and 7.5%, respectively, vs. 2.07% see Figure 5) yet they reduce 
the number of disk seeks. Indeed we observe significantly better 
performance; with block sizes of 128KB VMFlock achieves 1.5x 
better migration time than GZip based approaches.  

Second, we explore the impact of having a faster storage system, 
more realistic for the environment where the VM image 
repository will be deployed to support a cloud.  To this end we 
have developed a storage system emulator based on the FUSE 
[32] file system. The emulator receives the VMFlockMS write 
operations and emulates writing them to a storage system by 
imposing a fixed seek delay and serving the read/write requests at 
certain throughput. To validate the emulator we have emulated the 
NFS based repository in our testbed and repeated the VMFlock 
transfer experiments: the transfer times obtained this way roughly 
match the actual results (presented in Figure 6). We configure the 
emulator to match a mid-level storage system with 4 SAS disks @ 



10,000 RPMs and configure the emulator to use 0.20ms average 
seek time and 100MBps throughput. We also configure the 
deduplicaton mechanisms to use 4KB block sizes. 

We repeat the same experiments using the emulator to host the 
VM image repository. Figure 7 presents the migration time. For 
this system, VMFlockMS completes migrating the VMFlock in 
around 10min, 3.5x faster than GZip based approaches, and 1.3x 
faster than dedup-separate. 
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Figure 7. Migration time evaluation using a VM image 
repository emulator. The workload used is app; the destination 
has one image similar to one image in the migrating VMFlock. 

Summary. These experiments demonstrate that, even over our 
poorly provisioned testbed, a well configured VMFlockMS is able 
to achieve 1.5x shorter migration time than compression based 
approaches. Further, emulating a more realistic VM repository 
infrastructure indicates that VMFlockMS can achieve up to 4x 
shorter migration time. Finally, optimizations to increase the 
sequentiallity of the VMFlockMS workload will likely bring 
further performance improvements. 

5. DISCUSSION 
This section focuses on a number of interrelated questions: 

1.) Can VMFlockMS migrate VMs across different cloud 
providers given the incompatible cloud APIs? Can it transfer data 
not stored in VM images? 

VMFlockMS can migrate VM images and virtual disks across the 
cloud. Further, VMFlockMS can be extended to transfer other 
virtual assets, e.g. Amazon S3 buckets [38], among datacenters as 
long as a read/write or even a put/get API is provided. We 
estimate that inter-cloud compatibility issues will be limited: 
VMFlockMS will need to be specialized to interface with the 
specific API provided by each cloud to access the VM image 
repository or its data store.  

2.) Can the techniques introduced by VMFlockMS be used in 
other scenarios?  

While this paper presents and evaluates VMFlockMS in the 
context of VM migration, VMFlockMS can be used as a general 
tool for data migration across datacenters as it can exploit multiple 
types of similarity existing in the dataset to reduce the transferred 
data volume.  

One of the scenarios where our approach can be directly applied 
is: scientific computing. Scientific data sets, in fields as diverse as 
bioinformatics and high energy physics, are large (TBytes) and 
are often transferred between collaborating datacenters for further 
analysis. GridFTP [39] is currently a de facto standard for data 

transfer between datacenters and uses multiple nodes at the source 
and destination to accelerate data transfers. VMFlockMS 
techniques could directly be imported into GridFTP to reduce the 
volume of data volume transferred. Further, our infrastructure to 
prioritize data transfers according to application data-usage 
profiles can also be adapted to prioritize data transfers and enable 
earlier application launch in order to accelerate transfer / compute 
pipelines.  Monti et al. [40] demonstrate the benefits of a similar 
approach, dubbed prefix computation, limited however to 
sequential data accesses.  

3.) Can hash collisions corrupt the VM images? 

Deduplicating data using hash functions has been a topic of debate 
[41, 42] since a hash collision can lead to incorrectly inferring that 
two blocks are similar, and thus lead to silent data corruptions.  

While we do not intend to settle this debate for the general case, 
we note that, VMFlockMS uses SHA1 with a hash length of 160 
bits. With this length the probability of a hash collision is 
significantly lower (10-48) than other sources of silent errors (e.g., 
disk errors [43], or an alpha particle hitting the bits storing the 
data in memory [44]). Moreover, it is easy to further reduce this 
probability if this issue becomes a concern either by using longer 
hashes (e.g. SHA256, and SHA512) or by adding a mechanism to 
verify the integrity of complete VM images after retrieving all 
data blocks. 

4.) What if instead of preserving the isolation between the 
VMFlock migration service and the VM image repository they are 
co-designed?  

Nowadays, cloud infrastructures do not provide an easy path for 
VM migration. As clouds mature, we envision that VM migration 
across data centers will be adopted by cloud providers and will be 
integrated as a cloud service (as it is the case today with intra-
datacenter live migration). 

Integrating the VM migration service with the cloud infrastructure 
opens new design avenues to co-design the migration service and 
the VM image repository. Multiple opportunities can be 
harnessed: First, as we argue in this paper, the cloud infrastructure 
can facilitate early launch of migrated VMs through services 
similar to the VMProfile/VMLaunchPad we prototype. Second, 
the VM image repository can be built as a content addressable 
storage (CAS) (e.g., similar to Mirage [6]) and allow the 
migration service to access its block-level information.  This will 
eliminate most of the deduplication-based overheads. Finally, the 
cloud infrastructure may provide an SSD based scratch space for 
on the fly VM image creation. This will significantly increase the 
migration performance since SSDs better handle the random 
access workload generated by reconstructing VMFlocks. 

6. SUMMARY 
This paper presents VMFlockMS, a migration service optimized 
for cross-datacenter transfer and instantiation of groups of virtual 
machine (VM) images. We dub these groups of related VM 
images VMFlocks. The optimizations we propose include: data 
deduplication within the VMFlock to be migrated and between the 
VMFlock and the data already present at the destination 
datacenter, as well as prioritization of data transfers and system 
support to accelerate VM and application startup. VMFlockMS is 
designed to be deployed as virtual appliance in the cloud: it can 
make efficient use of the available could resources to accelerate 
the deduplication and data transfer processes and has minimal 



requirements on the cloud API to access the VM image 
repository.  

VMFlockMS provides an incrementally scalable and high-
performance migration service. Our evaluation shows that 
VMFlockMS can achieve compression rates as low as 3% of the 
original VMFlock size, enables the complete transfer of the VM 
images belonging to a VMFlock over transcontinental link up to 
3.5x faster than alternative approaches, and enables booting these 
VM images as soon as little as 5% of the compressed VMFlock 
data is available at the destination. 
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