
VMFlock: VM Co-Migration for the Cloud
Samer Al-Kiswany1, Dinesh Subhraveti2, Prasenjit Sarkar2, Matei Ripeanu1
 1 University of British Columbia

Vancouver, BC, Canada
{samera, matei}@ece.ubc.ca

2 IBM Almaden Research Center
San Jose, CA, USA

dineshs@us.ibm.com,
psarkar@almaden.ibm.com

ABSTRACT
This paper presents VMFlockMS, a migration service optimized
for cross-datacenter transfer and instantiation of groups of virtual
machine (VM) images that comprise an application-level solution
(e.g., a three-tier web application). We dub these groups of related
VM images VMFlocks. VMFlockMS employs two main
techniques: first, data deduplication within the VMFlock to be
migrated and between the VMFlock and the data already present
at the destination datacenter, and, second, accelerated instantiation
of the application at the target datacenter after transferring only a
partial set of data blocks and prioritization of the remaining data
based on previously observed access patterns originating from the
running VMs. VMFlockMS is designed to be deployed as a set of
virtual appliances which make efficient use of the available cloud
resources to locally access and deduplicate the images and data in
a distributed fashion with minimal requirements imposed on the
cloud API to access the VM image repository.

VMFlockMS provides an incrementally scalable and high-
performance migration service. Our evaluation shows that
VMFlockMS can reduce the data volumes to be transferred over
the network to as low as 3% of the original VMFlock size, enables
the complete transfer of the VM images belonging to a VMFlock
over transcontinental link up to 3.5x faster than alternative
approaches, and enables booting these VM images with as little as
5% of the compressed VMFlock data available at the destination.

Categories and Subject Descriptors
C.2.4 (Computer-Communication Networks): Distributed
Systems – distributed applications, cloud computing. E.4 (Coding
and Information Theory): data compaction and compression.

General Terms
Design, Algorithms, Performance, Evaluation.

Keywords
Distributed deduplication, VM migration, Cloud computing.

1. INTRODUCTION
The ability to boot a virtual machine (VM) image on any available
physical node in a datacenter, or even across datacenters, is a key
enabler for the many benefits promised by cloud computing such
as resource consolidation, elastic scaling, and computation
migration.

This project starts from the observation that today, while VM
images are not tied to any specific physical node, they are still
locked within the boundaries of a datacenter.

Flexible deployment of VMs across datacenters enables essential
load-management services that support a number of important
scenarios. For instance, if a datacenter is overloaded, requests to
launch new VM instances can be served by a different datacenter
of the same provider. This functionality enables reducing

datacenter provisioning costs as peak load can be shared across
datacenters. Similarly, to accommodate scheduled maintenance
operations, load can be redirected to new VMs instantiated at
another datacenter. Finally, flexible VM deployment across
datacenters enables arbitration for energy costs, that is, providers
can deploy VMs at the datacenter that benefits from the lowest
energy price for a certain time interval, as suggested by Qureshi et
al. [1] who evaluate the benefits of this technique.

Additionally, flexible deployment of VMs across datacenters is a
key enabler for federating clouds. Tools that support users to
transfer and instantiate their VMs on any cloud that is part of a
federation will eliminate one of the important adoption barriers of
the cloud technology: the users’ concern that they will be ‘locked
in’ by a specific cloud provider. Section 2.3 further motivates the
need to support cross-datacenter VM deployment.

Migration of VMs across clouds and datacenters is challenging for
four main reasons: First, migrating VMs across datacenters
involves transferring large volumes of data. On the one side, VM
images are large (typically 1-30GB in size); on the other side,
applications deployed on the cloud often involve multiple VMs
with different images [2] (e.g., a three-tier web application [3], a
business analytics solution [4], or a virtual cluster [5]).
Consequently, application migration often involves transferring
multiple large VM images. Second, these large data transfers are
often done over wide area networks with limited bandwidth. A
naive application migration approach may easily clog the network
links between the datacenters, leading to unacceptable
performance degradation. Third, a VM image transfer service has
to operate within the limits imposed by the existing APIs of
clouds’ VM image repositories (e.g., IBM’s Mirage [6]). Not only
these APIs are still not standardized but, more importantly, they
expose limited information on the data stored in the VM
repository and are not designed to support efficient cross-
datacenter VM image transfer. At the same time, a migration
mechanism that requires changes to a cloud’s VM image
repository is not acceptable by the cloud providers for strategic as
well as for technical reasons. Finally, the problem is more
complex when the transferred VM images are to be instantiated
(i.e., booted) at the destination site, in which case the image
transfer needs to be completed in a reasonable time.

Despite the aforementioned challenges, three characteristics of the
VM images can be exploited to build an efficient migration
mechanism. First, the volumes of data transferred over the
network can be reduced as the VM images often have high
similarity. This is especially true for the VM images belonging to
the same application (which we dub virtual machine ‘flocks’, or
simply VMFlocks). The reason is that the VM images belonging
to the same VMFlock are often based on the same OS distribution,
yet with different installed applications, leading to similarity
ratios across images as high as 96% [7]. Second, the transferred

data volumes can be further reduced as the VM images to be
transferred often have high similarity with some of the VM
images already existing at the destination datacenter. Finally, the
VM instantiation and application startup time can be reduced by
intelligent prioritization of the data blocks that are transferred.
The reason is that while the VM images may include millions of
data blocks, only a fraction of these blocks are needed to boot the
VM and start the application.

This project proposes VMFlockMS, a migration system optimized
for virtual machine flocks. VMFlockMS exploits the
aforementioned characteristics to reduce the migration time and to
reduce the data volume transferred across the network. First,
VMFlockMS, exploits the similarity among the VM images
within the same VMFlock and the similarity among VM images
across datacenters to reduce the amount of data transferred.
Second, VMFlockMS accelerates application startup by
prioritizing the data transfers and by booting the VMs at the
destination datacenter immediately after the blocks needed for
VM boot and application startup have been transferred.

Notably, the main component of the migration service (i.e., the
VM image transfer service) harnesses these opportunities without
requiring access to the internal information of the cloud’s VM
image repository. The VM image transfer service can be deployed
as a user-level ‘appliance’ at any datacenter that provides access
to VM images through a basic interface able to read/write VM
images and does not require any infrastructural changes at the
datacenter. This characteristic reduces the adoption barrier for the
migration service, and makes it a good building block to support
aggregating resources across cloud providers and cloud
federation. Additionally, this design facilitates separation of
concerns between the VM repository and the VM transfer service.
We note that, to accelerate application startup (by booting VMs
before the entire image transfer completes) however,
VMFlockMS requires additional support from the cloud
infrastructure, as detailed in § 3.

The contribution of this work is threefold:

• First, this paper presents a distributed high-throughput data
deduplication algorithm (§ 3.3). The algorithm uses multiple
nodes at the source and destination datacenter to identify
similarities among local and remote VM images. The
algorithm is completely distributed and incrementally scalable.
Additionally, the algorithm evenly balances the deduplication
effort among the participating nodes, naturally supports the use
of multiple streams to accelerate the data transfers, and is
optimized to minimize the memory footprint at each node.

• Second, this paper presents the design (§ 3.2) and
implementation of a migration system for flocks of virtual
machines (VMFlockMS), which, to the best of our knowledge,
is the first to address the challenges of migrating applications
that are deployed over multiple VMs. Not only VMFlockMS
uses the specialized data deduplication algorithm mentioned
above to reduce the volume of data transferred over the
network (§ 3.3), but it exploits the fixed order in which data is
used at boot and application startup to accelerate application
migration. To this end, VMFlockMS includes additional
components: VMProfiler (§ 3.4) which records the order in
which VM image data is used at startup, a prioritization
algorithm for data transfers, as well as VMLaunchPad (§ 3.5) a

solution to start booting at the destination site when key data is
available, yet before the VM image transfer is complete.

• Third, this paper presents a detailed evaluation of the
VMFlockMS prototype (§ 4). The evaluation compares the
performance of the VMFlockMS to current alternatives under
migration scenarios for real applications. We evaluate the
reduction in data volumes transferred over the network, the
compression overheads, the feasibility of and the potential
gains brought by early VM image boot, and we perform
end-to-end VMFlock migration experiments between two IBM
Research cloud datacenters. The performance of the proposed
algorithm varies with the offered workload. However, for a
setup that is arguably close to the scenarios that will be seen in
practice, the proposed mechanism achieves up to 10x better
compression rate, compresses the data up to 2x faster, and
enables migrating a complete application up to 3.5x faster than
alternative techniques.

We argue that VM image transfer and instantiation are sufficient
to enable flexible deployment of VMs across datacenters as
migrating still VM images (as opposed to live migration of
running VMs [8]) is sufficient for supporting most of the
aforementioned use cases. Further, the techniques developed in
this work can be applied to support live migration of running VM
images; either directly, through taking a snapshot of the running
VM and including the snapshot state within the VM image as
Qemu/KVM does (in such a case, our system can be tuned to
prioritize the snapshot data for a quick VM resume),or by
integrating the proposed distributed migration mechanism in a
live migration service [9, 10]. For the rest of this paper we will
use VM migration to mean migration of VM still images across
datacenters.

Finally, while we present and evaluate VMFlockMS in the context
of VM migration, the ideas we put forward and even our
implementation can be used to optimize other computational
pipelines that combine data transfers and computation by
exploiting the same characteristics our system exploits. On the
one side, data transfers volumes can be reduced not only through
compression of individual items or batches of items, but more
importantly, by detecting and harnessing the partial similarities
between the data to be transferred and the data already at the
destination. On the other side, intelligent transfer protocols that
harness data usage profiles to prioritize data transfers will enable
overlapping data transfer and data consumption thus accelerating
long computational pipelines. Section 5 discusses existing and
potential applications in others areas than VM migration (e.g., a
scientific computing scenario supported by a GridFTP service).

2. BACKGROUND AND RELATED WORK
Our work draws from two research fields: virtual machine
migration (§ 2.1) and data deduplication (§ 2.2). This section
briefly presents the ways VMFlockMS builds on this past work
and presents a number of cloud scenarios that are enabled by
efficient cross-datacenter VM image transfer and fast VM
instantiation.

2.1 Virtual Machine Migration
A number of projects have proposed mechanisms for migrating
individual VM images over local- and wide-area networks. To the
best of our knowledge, no previous work addressed the issue of
optimizing migration for VMFlocks, multiple VMs that are

coupled together in an application.

Clark et al. [8] build a live VM migration tool capable of
migrating live VMs between LAN-connected nodes. The
mechanism assumes that the source and destination nodes share a
network-accessed storage system that maintains the VM’s
persistent image, and only proposes a solution for migrating the
in-memory state of the live VM. Similarly, Lagar-Cavilla et al.
[11] propose a mechanism for cloning live VMs in LAN-
connected platforms. The proposed mechanism assumes as well a
shared copy-on-write storage system storing the VM images.

Sapuntzakis et al. [12] present a system for virtual machine live
migration that includes disk images. The approach proposes using
copy-on-write images to derive users’ custom images from a root
image. The approach reduces the amount of data transferred using
two optimizations: exploiting similarities between the transferred
image and the root image and the possible similarities with images
already present at the destinations site. Hirofuchi et al. [9] present
a mechanism that complements the live migration of VM memory
with transferring the VM disk image over long-haul networks.
After completing the migration of a live VM state stored in
memory and starting the VM at the destination site, the approach
proposed by Hirofuchi et al. transfers the VM disk image to the
destination, giving priority to the blocks accessed by the VM after
migration. In the same vein, Bradford et al. [10] propose
transferring the VM disk image at the same time as transferring
the live VM’s in-memory state. The VM keeps running at the
source machine while the transfer of the VM memory and disk
image takes place. Similar to past approaches (e.g., Clark et al.
[8]) changes to migrated disk blocks are forwarded to the
destination as deltas. When most of the memory and disk are
migrated, the VM machine is stopped at the source and the rest of
its memory and disk are migrated to the destination. Finally, the
VM is started on the destination machine.

The aforementioned projects either do not address the migration
of VMs’ disk images, or focus on migrating a single VM image
across wide area networks. As our evaluation will demonstrate,
migrating multiple VM images using these approaches results in
data transfer redundancies and high overheads.

VMFlockMS complements these approaches: it exploits the
similarity among the VM images within a VMFlock and between
the VMFlock and the destination VM image repository to
significantly reduce the amount of data transferred. To detect and
take advantage of these similarities, VMFlockMS proposes a
distributed deduplication algorithm so that multiple end-nodes can
be allocated to match the size of the VMFlock to transfer. Finally,
VMFlockMS is designed with ease of deployment as a main
focus. Unlike the aforementioned projects which require
infrastructure changes, the main image transfer component of
VMFlockMS can be deployed as a virtual appliance on multiple
VM instances and it does not require changes to the VM image
repository provided by the cloud infrastructure.

2.2 Data Deduplication
A number of storage systems [13, 14, 15] use data deduplication
to reduce their storage footprint or to reduce the volume of data
transferred across the network. These storage systems often adopt
a ‘content addressable storage’ (CAS) approach which names the
data-blocks based on their content. In this context, hashing is used
as a naming technique: data-block names are simply the hash
value of the block’s data. To store a new file, the system divides

the file into blocks, hashes them, and compares the blocks’ hashes
with the hashes of the already stored blocks. This way the system
identifies new data blocks (which are stored) and uses references
to already stored blocks thus reducing the storage costs.

Defining the data block boundaries: Blocks of fixed size vs.
detecting block boundaries based on content. Once a content
addressable storage approach is selected, a second issue to decide
on is the technique to define block boundaries. The fixed block
size approach divides each file into equal size blocks and names
blocks by their hash value. Venti [16] and Foundation [14] are
two storage systems focused on archival workloads that adopt this
approach for deduplication. Alternatively, block boundaries can
be defined based on the data itself, by using Rabin fingerprints
over a sliding window [17]. While this approach results in higher
compression rates (as it is stable against file insertions/deletions),
it also incurs higher computational overheads. LBFS [13], a
storage system optimized for backup operations over low
bandwidth links, and JumboStore [18],, a storage system
optimized for multimedia content, adopt this approach. Stdchk
[15] project explores quantitatively the tradeoffs between these
two approaches.

VMFlockMS directly draws from these data-deduplication
techniques to reduce the volume of data transferred across the
network. We have implemented and experimented with both
deduplication approaches – fixed blocks and detecting block
boundaries based on content. While the later approach offered a
slightly better compression rate, it adds additional computation
overheads and implies higher code complexity. Thus for this work
we use fixed size blocks.

Improving data deduplication throughput. Two recent projects
propose parallel solutions to improve deduplication throughput.
The DataDomain system [19] and Debar [20] are custom-built
hardware/software stacks optimized for high throughput
deduplication. Both systems use specialized or dedicated
hardware resources, and are optimized for long-term retention of
large amounts of data. Consequently, most of their optimizations
relate to avoiding accessing the metadata information which is
often stored on the disk.

VMFlockMS differs from the aforementioned approaches in two
ways. First, unlike DataDomain and Debar, this project, targets a
cloud deployment rather than a deployment over custom
resources. Consequently, the VMFlockMS system is designed to
be incrementally scalable such that it will benefit form any
number of nodes allocated and to efficiently operate in spite of the
scarcer resources available per allocated node. Second,
VMFlockMS targets a different workload, namely migrating VM
images instead of processing data for long-term archival. The
main implication is that while archival services are generally
designed for offline operation, VM migration is often in the
critical path thus requiring higher performance.

2.3 Motivating Scenarios
This section presents a set of services that are enabled by
providing efficient, cross-datacenter VM image transfer and fast
VM instantiation. The goal is twofold: to further motivate and to
inform the system requirements for the VMFlockMS migration
service (discussed in § 3.1).

We assume that users can personalize VM images and store them
in the VM image repository at one datacenter. Users can launch a

VM at the same datacenter where the VM image repository is
hosted, yet they need an external service to transfer images across
repositories. We also assume that VM repositories, regardless of
whether they belong to the same cloud provider or not, do not
share data.

Cross Datacenter Load Management. An efficient VM image
transfer and instantiation service enables flexible load
management across datacenters. Migrating VMs between
datacenters to accommodate scheduled maintenance operations, or
redirecting new VM instantiation requests from a highly loaded
datacenter to another are only two of the possible use cases. The
main requirement is the ability to reduce image transfer overheads
and to bootstrap the VM images as quickly as possible at the
destination site (ideally, within a few minutes).

Our migration scheme complements live migration by expanding
the scope of migration and by addressing the state of persistent
storage. While live VM migration is a useful primitive for fine
grain load balancing within a data center, it is not suitable for
migrating VFlocks across the cloud. In particular, the typically
employed technique of iteratively transferring dirty memory
blocks may not converge in bounded time across a high latency
wide area link. We expect that VMFlockMS can be used in
conjunction with live migration, where live migration is used for a
more dynamic control over load placement and VMFlockMS is
used by a scheduler at a higher layer.

Replication. Similarly, an efficient VM migration service can be
used as the main building block for multi-site VM image and
virtual disk replication. For instance, virtual machine record-
replay techniques [21, 22] often require an initially synchronized
persistent storage state, from which they make identical
incremental updates to keep the replicas synchronized. While, for
this case, bootstrapping the VMFlock at the destination datacenter
is not a requirement, efficient usage of the limited network
bandwidth is still necessary.

Cloud Federation. Efficient VM migration is a basic service
required for federation clouds regardless of whether this is
achieved as a third-party integration service or through pair-wise
inter-cloud agreements. Cloud federation is envisioned as a
public, open, inter-cloud infrastructure that enables the users to
use the resource of multiple clouds. This is envisioned as ‘the next
step in cloud computing technology’ [23, 24] and is the driver for
active standardization efforts ongoing nowadays [25, 26, 27].

3. SYSTEM DESIGN
This section discusses the VMFlockMS design requirements
(§ 3.1), briefly presents the overall system architecture (§ 3.2), and
presents in detail, the design of each of the system’s main
components: the VM image transfer service (VMFlockMA in
§ 3.3), the service to profile VM image usage to infer the data
access patterns at VM boot and application startup (VMProfiler in
§ 3.4), and the service to launch VM images in spite of partially
completed data transfers (VMLaunchPad in § 3.5).

3.1 Design Requirements
This section presents the requirements of a VM migration system:

 Data compression. The migration system should reduce the
volume of data to be transferred across the network to reduce
the migration time and the load on network connections.

 Low overheads. To be attractive, the migration system should
lead to low overheads. Three types of overheads are crucial:
first, computational overheads resulting from the data
deduplication technique to compress/decompress data; second,
storage system overheads resulting from additional accesses to
the storage system to fingerprint VM images that will not be
transferred, to store and access VM boot profiles, and to store
and access VM images’ metadata; and, finally, the memory
footprint.

 Boot time. The migration system should be able to boot the
migrated VM images as soon as possible. This is especially
important for cross-datacenter load management.

 Scalability over multiple axes. On the one side, the migration
tool should scale with the offered load. That is, the migration
tool should scale to support migration of tens to hundreds of
virtual machines, each potentially hundreds of GBs in size. On
the other side, the migration tool should make efficient use of
additional compute resources, that is, make efficient use of
possibly multiple nodes at the source and destination sites
allocated to the VMFlockMS system.

 Easy to deploy. The migration tool should be easy to deploy by
cloud providers as well as by cloud end-users. To this end, a
popular approach for encapsulating complex services [28] is
designing them as ‘virtual appliances’. In this approach, a
virtual machine is setup with necessary software stack, and
configured to provide the specific service (e.g., a database
appliance, or an Apache webserver appliance). Consequently,
the migration service should not assume any custom hardware
and should be able to run using the sometimes modest
resources allocated by the cloud to individual VM machine
instances (for example, the system should be able to operate
with a memory footprint on each node limited by the
capabilities of the target cloud infrastructure).

 Easy to adopt. The migration tool should be easy to adopt by
current cloud infrastructures. Consequently, the migration tool
can not assume access to cloud infrastructure internal state
(e.g., it can not assume access to block-level information of the
VM image repository). An advantage of delivering the
migration service as an appliance is that it allows it to be
transparent to the details of the cloud infrastructure. Given that
cloud providers limit access to their underlying system and
resources, an appliance provides an available means to package
our "logic" and directly deploy it where the data is located.

3.2 System Architecture
Figure 1 shows the VMFlockMS system architecture. The system
is composed of three main components: the VM Profiler
(VMProfiler), the VM Migration Appliance (VMFlockMA)
present at the source and destination nodes, and the VM Launch
Pad (VMLaunchPad).

Figure 1. VMFlock migration system architecture.

The VMProfiler (§ 3.4) profiles a VM image to identify which
data blocks are accessed at boot time (and possibly at application
startup time). This profiling information is collected at VM boot
and application startup time and stored as part of the VM
metadata in the repository. We assume that this information is
available before the migration of the virtual machine.

The VMFlockMA migration appliance (§ 3.3) implements the
distributed data deduplication and transfer algorithm. The nodes
collaborate to divide the VMFlock’s VM images into data blocks,
deduplicate the blocks (i.e., identify the similarities among
images), migrate unique blocks from the source datacenter to the
destination while prioritizing the blocks the image’s profile
indicates as needed at startup time, and, finally, reconstruct full
images at the destination.

Finally, the VMLaunchPad (§ 3.5) enables launching a VM image
at the destination even if the transfer of a VM image is not
complete (i.e., not all the image’s data blocks are present at the
destination). The VMLaunchPad intercepts the I/O requests of the
running VM image and, if the requested data is not yet migrated
from the source, the VMLaunchPad will ask the migration nodes
to migrate the needed data block at a higher priority. Once the
needed data block is migrated, the VMLaunchPad services the I/O
request and the running VM resumes its execution.

Note that the three systems above are independent. The migration
appliance can transfer VMFlocks and they can be booted at the
destination site when transfer finishes even without having a
VMLaunchPad available. However, having the profile
information enables prioritizing data transfers such that
VMFlocks can be booted earlier if a VMLaunchPad is available at
the destination site. We note that while the main component of
our system, VMFlockMA, the image compression and transfer
service, can be deployed as a virtual appliance, the two support
services, the VM Profiler and the VM Launch Pad, need support
from the cloud infrastructure.

The following three subsections present the detailed design of
each of these three components.

3.3 VMFlockMA - A Migration Appliance for
Flocks of Virtual Machines
VMFlockMA reduces the amount of data transferred between
datacenters by exploiting the data similarity that exists at multiple
levels: first, within a single VM image; second, between the VM
images that belong to the same VMFlock; and, finally, between
the VM images of the migrated VMFlock and the images that
already exist at the destination site. While traditional data
compression techniques [29] might be able to harness the first two
levels of similarity mentioned above (i.e., by compressing single
images or bundles of images) these techniques can not exploit
similarities across datacenters. Additionally, these compression
techniques are unable to exploit the available parallelism in the
workload and the wealth of cloud resources potentially available
to increase the compression and data transfer performance.

Designing an efficient deduplication system that can be deployed
as a virtual appliance for VM migration is a challenging task for
two main reasons: First, data size, the amount of data that need to
be deduplicated is large (tens to hundreds of GBs). Second,
depending on the data compression technique used and on its
configuration, metadata size, the size of the deduplication
metadata (block hash value, position in a file) can be large (GBs

of metadata). To tackle these challenges, we harness the elasticity
of the cloud and aim for a migration appliance that is able to
control the load allocated to the individual node by integrating
multiple resources, proportional to the size of the VMFlock to be
transferred.

In summary, VMFlockMA adopts a distributed approach to
deduplication and employs the compute power, memory space,
and I/O bandwidth of multiple virtual nodes allocated to the
appliance to provide an efficient migration service. Additionally,
VMFlockMA operates parallel data transfer streams, and, if the
necessary information is available, it prioritizes the data transfers
to make the blocks necessary for VM boot and application startup
available early at the destination site.

VMFlockMA operates as follows:

Pre-processing at the source datacenter: The VMFlockMA
nodes at the source datacenter (source nodes for short) read the
VMFlock images from the VM repository, chunk the images into
fixed size blocks, and hash the blocks.

To identify the similarities across the blocks processed at different
source nodes, these nodes need to exchange blocks’ metadata.
This step is complicated by the fact that, to fulfill scalability
requirements, none of the source nodes can be assumed to have
enough memory space to hold all the metadata for all the migrated
blocks. Thus, to exchange the blocks’ metadata while limiting the
memory footprint of each individual node, the source nodes build
a distributed metadata index similar to a one-level distributed hash
table (or consistent hashing) [30]: depending on its ID, each node
is responsible for holding metadata for the blocks with hashes in a
specified range. The source nodes send out the metadata for the
blocks not part of their hash range. This data structure is then used
to identify the data blocks that are identical across the VM images
that belong to the same VMFlock.

Pre-processing at the destination datacenter: VMFlockMA at the
destination site selects a set of VM images from images found in
the destination VM repository. The selection is made using the
metadata of the images to be transferred (e.g., operating system
version, list of applications installed) to find images with
potentially higher similarity to the migrating VMFlock.
VMFlockMA then chunks the selected images and hashes each
data block and prepare a similar distributed metadata index at the
source datacenter.

Data transfer: The block metadata obtained is used to identify the
blocks at the source that are already present at the destination.
Each source node collaborates with the destination node
responsible for the same hash-range to transfer these data blocks,
and each node pair attempts to further reduce the transfer volume
transferring only the blocks not already present at the destination.

The block transfer is prioritized based on the information found in
the profile, such that the blocks needed at startup time are sent
first.

Post-processing at the destination datacenter: The destination
nodes reassemble images: once a block is retrieved from the
destination, or from a locally stored image, the block is written to
all new VM images it is part of.

The rest of this section presents in more detail the algorithm at
source (§ 3.3.1) and destination nodes (§ 3.3.2), and highlights the
main advantages of the proposed approach (§ 3.3.3).

3.3.1 Source Node Algorithm
The source nodes collaborate on deduplicating the images
belonging to the VMFlock to be transferred. All the source nodes
follow the following steps to migrate a set of virtual machines:

• Each source node reads, and chunks, one or a few VM
images. Each block is hashed using SHA1 hashing.

• The source nodes participate in building a distributed data
structure to hold blocks’ metadata (i.e., block’s hash value,
and a list of locations --image name, offset-- where the block
appears). Depending on their node IDs, each node is
responsible for holding the metadata for blocks that hash in a
specific range.

• After all source nodes finish their chunking and hashing step,
the source nodes exchange the blocks metadata according to
a solution similar to that used for consistent hashing [30]..At
the end of this step each node will only hold the metadata for
blocks in its hash space.

• Each source node is paired with a destination node to transfer
the blocks for which it stores metadata.

• Each source node sends the blocks metadata it has to the pair
node at the destination, identifies the blocks that are not
already present at the destination, and transfers them.

3.3.2 Destination Node Algorithm
VMFlockMA uses an equal number of source and destination
nodes. The destination nodes perform two tasks:

Building the local block metadata repository. The destination
nodes locate a set of local images which, based on available image
metadata (e.g., operating system version) are likely to be similar
with those belonging to the migrating VMFlock. The destination
nodes will then chunk and hash these local images and build a
distributed data structure to store block metadata using the same
algorithm as the source nodes and described in the previous
section. This step runs concurrently with the deduplication step
performed by the source nodes. This metadata will be used to
identify which of the blocks to be migrated already exist at the
destination.

Block Migration. Each destination node works with the source
node responsible for the same range of hash values to transfer of
the blocks it is responsible for. The destination node runs the
following steps:

• The destination node receives the blocks’ metadata from the
corresponding source node.

• For each block, the destination node checks if the block is
present in the local images. If it is not, then the block will be
requested from the source node (Transfer from the source is
batched for higher throughput; additionally each block is
further compressed using the zlib [31] compression library).

• After receiving a block (or the information that a block
already exists at destination), the data is written to all images
the block is part of. This information is found in the block’s
metadata.

3.3.3 Algorithm Analysis
The VMFlock migration algorithm has the following set of
important characteristics:

• Decentralized. The algorithm does not have any central
component that can from a performance bottleneck.

• Parallel. The algorithm is highly parallel: the source and
destination nodes chunk and hash VM images in parallel,
further the data is transferred in parallel streams between the
source and destination nodes.

• Load Balanced. The algorithm uses a hash function to assign
blocks to migration nodes. Past work [30] has explored the
load balancing properties of this solution.

• Incrementally Scalable. The algorithm can integrate any
number of nodes and handle workloads of migrating tens to
hundreds VM images using tens of source and destination
nodes. This is mainly due to its load balanced and distributed
nature.

• Low Memory Footprint. Each migration node is responsible
of handling the metadata for, at most, one or a few VM
images. The metadata generated for a single VM image is
well below the memory space available to a virtual appliance
node. Further, the block metadata is evenly distributed
among the migration nodes.

• Easy to Adopt. The algorithm is able to exploit the similarity
across VM images within the same VMFlock and across
datacenters without requiring access to the VM repository’s
internal data block information. VMFlockMA only requires
some from of access to read/write VM images.

We note that one possible drawback of this algorithm is that, at
least conceptually, it performs two passes when reading the data
at the source site: in the first pass all data is sequentially read from
the disk to hash the blocks, and in the second pass blocks are read
from the disk and sent them across the network. However, if there
is high similarity between source and destination (and our
experiments demonstrate that, for the scenarios we target,
similarity can be as high as 96%) then only for a small portion of
the data, the part that is dissimilar between source and destination,
duplicated reads are performed. A second possible drawback is
the lack of failure tolerance: if one source fails the entire system
needs to be restarted. However, since the system is meant to be
run as an appliance for relatively short time intervals we do not
consider this a major issue.

3.4 The VM Profiler
The main objective of the VMProfiler and VMLaunchPad
(detailed in § 3.5) is to enable faster booting of the migrated VM
images. It is important to note that due to the non-sequential
access pattern at VM boot time, traditional read-ahead/pre-
fetching techniques fail to reduce boot time. Hence a profile that
captures the boot-time access pattern in detail is required.

The VMProfiler extracts this profile: it identifies the VM image
regions necessary to boot the VM image and to launch
applications in order to prioritize the data transfers. The profiles
are stored as part of the VM metadata.

Note that the blocks within the VM image may be rearranged
either by the VM image repository due to an offline maintenance
operation or by the guest file system itself as a part of a
defragmentation. As a result, some of the block offsets captured in
the profile may point to incorrect data. To guarantee correctness,
when data is transferred, it is checked against a checksum for the

region. The checksum is matched against the checksum of the
region computed at the time of capturing the profile, and, if
discrepancies are detected, the profile is marked as invalid and
deleted. Each time a profile is used, it is updated -- invalid entries
are pruned and new entries are added based on new accesses.

We have implemented the VMProfiler as a user-level file system
based on FUSE [32] that profiles the VM disk access pattern at
startup time. The VMProfiler intercepts and records the running
VM access pattern and builds the image profile. To profile a VM
image, the profiling script mounts the VMProfiler, starts the VM
image, and stops the VM image after a configurable timeout.

3.5 The VM Launch Pad
VM images can be booted at the destination datacenter before the
full VM image transfer is complete, only the data blocks indicated
by the profile as needed at boot time and application startup are
required. The VMLaunchPad fulfils exactly this function. This
enables parallelizing data transfer and application startup, thus
leading to lower apparent VMFlock migration time.

To evaluate the feasibility and the potential benefits of such a
mechanism, we have implemented VMLaunchPad as a user-level
file system based on FUSE [32].

We note that the boot and application startup processes might be
slightly different at different datacenters. Thus, even when all
blocks indicated by the profile have been fetched, the VM might
access blocks that have not been migrated yet. This would cause
the boot process to fail if no further measures are taken. To handle
this case VMLaunchPad maintains a file block-map indicating
which data blocks are available locally for the given image. The
VMLaunchPad intercepts the VM disk access operations and
checks if the VM is trying to access blocks that have not been
fetched yet. If this is the case, the VMLaunchPad will inform the
VMFlockMA to prioritize the transfer of these blocks. At the
same the VMLaunchPad will block the I/O operation until the
needed data is available locally.

We note that, while blocking the I/O request of a running machine
for a long time may cause the VM device driver to timeout and
cause I/O errors, we have not experienced such error in our
deployments even when migrating VMFlocks over a network with
more than 40ms latency.

File block-map construction. VMLaunchPad requires access to
block-level metadata for a VM image. More specifically, since
data accesses are offset based, VMLaunchPad needs to be able to
identify the block that is accessed at a certain offset. However,
VMFlockMA transfers data in a different format: The metadata
managed by VMFlockMA is block oriented, that is, for each block
the metadata contains a list of images and locations where the
block appears. The VMFlockMA avoids storing a blockmap per
image to reduce the memory footprint of the appliance.

In the current implementation, to construct an image’s block-map,
the VMLaunchPad contacts all the VMFlockMA nodes at the
destination asking for all block metadata related to a particular
VM image. Armed with this information, the VMLaunchPad can
reconstruct the image’s blockmap.

3.6 Implementation Details
VMFlockMS is implemented in 19,000 lines of C++ code (12,000
lines for VMFlockMA, and about 6,000 for the VMProfile, and
VMLaunchPad). We have used the tool internally to migrate VM

images among the datacenters hosting IBM’s internal research
cloud and the University of British Columbia in Vancouver BC,
Canada for the last two months.

The implementation uses FUSE [32] kernel module for
developing the VMProfiler and VMLaunchPad. Zlib compression
library [31] for compressing/uncompressing the data, PolarSSL
[33] for the SHA1 implementation.

4. EVALUATION
We evaluate the VMFlockMS performance and compare it with
the performance of currently proposed mechanisms for VM
migration. The rest of this section presents the experimental setup
used (§ 4.1), an evaluation of VMFlockMA ability to reduce the
data volumes transferred over the network and VMFlockMA
overheads (§ 4.2), an evaluation of the gains resulted from early
booting of VM images (i.e., before the whole image transfer
completes § 4.3), and an evaluation of the VMFlockMS end-to-end
data transfer performance (§ 4.4)

4.1 Experimental Setup
This section presents the workload (i.e., groups of VM images)
used for experimentation (§ 4.1.1), the experimental platform
(§ 4.1.2), and the set of alternative approaches we compare
VMFlockMS performance against (§ 4.1.3). All results present the
average and standard deviation of 5 runs of each experiment.

4.1.1 VM Images
The evaluation uses three workloads representative of popular
cloud applications. The main difference between these workloads
is in the similarity, at the operating system level, among the VM
images belonging to the same VMFlock. Similarity can vary from
using the same operating system installation yet with different
applications on top, to using different versions of the same
operating system, to using completely different operating systems.

Note that all images we use are based on the QCOW2 (QEMU
copy-on-write) VM image format [34] a compact representation
of VM images. QCOW2 is optimized for sparse images; that is, it
stores only the blocks of the image disk that are used, not the
unused blocks. Consequently, QCOW2 images are often
significantly smaller in size than the actually disk size they
represent. All VM images in the workloads we use are about
30GB in RAW format and QCOW2 reduces them roughly ten
fold.

The workloads are:

• Application (labeled as app in all plots). This is a group of
three VM images part of Spree eCommerce application [35]
The application contains: an image running the Spree 0.9.4
application itself, one running a MySql server, and an NFS
backend storage node. The three images use the same OS
distribution: Fedora 13. The total size of all images is 7.9 GB.
This is the closest to the target workload we estimate for
VMFlockMS and is used for all experiments where we choose
to use a single workload to reduce the exploration space.

• Same OS (same-os). This is a group of four VM images using
the same base operating system distribution but that are not
part of the same application. The images are based on Fedora
13 distribution with the different installation options offered by
Fedora: ‘desktop’, ‘development’, ‘plain’, and ‘server’. The
total size of all images is 10.6GB. It is worth noting that, while

these images are based on the same OS distribution, there can
be significant differences among them, since each installation
option is optimized for a different use.

• Different OS (diff-os). This is a group of four VM images
using different OS distribution. The images contain: Fedora 13
desktop, OpenSUSE desktop, Ubuntu Desktop, Ubuntu server.
The total size of all images is 10.6GB. This group of VM
images represents the worst case workload for deduplication
based migration mechanisms.

4.1.2 Evaluation Testbed
We evaluate the VMFlockMS performance by transferring a set of
VM images between IBM research cloud datacenters located at
IBM Almaden Research Center, CA and IBM T. J. Watson
Research Center, NY. The network latency between the two sites
is 41ms and the throughput reported by iperf [36] is 16Mbps
(single TCP stream).

At each datacenter we have three nodes available. At IBM
Almaden each node has four dual-core Intel Xeon @ 2GHz
processors with 8GB memory and a SAS disk. At IBM T. J.
Watson each node has eight quad-core Intel Xeon @ 3.1GHz,
with 8GB memory and a SAS disk.

One node at the source and destination is used as the VM
repository which is accessed through an NFS server.

4.1.3 Alternative Migration Tools
We compare the VMFlockMS performance with the performance
of the migration alternatives available nowadays. These are:

• GZip-All. This approach puts all the images in a single ‘tar-
ball’, then compresses it using GZip. The compressed archive
is migrated to the destination and uncompressed.

This approach does not require any serious implementation
effort, but it has two major drawbacks. First, it is difficult to
exploit the compute power of multiple cores on the same node
or to use multiple nodes. Second, this approach does not
exploit the similarity that may exist between the migrated
VMFlock’s images and the images that already exist at the
destination.

• Gzip-Separate. This approach improves on the previous Gzip-
All approach by distributing the workload over a number of
nodes. Each node will compress a single image and migrate it
to a peer node at the destination. The peer node at the
destination will uncompress the image.

While this approach parallelizes the compression and the
transfer steps, it does not exploit the similarity that may exist
between a VM image to be migrated and other VM images in
the same VMFlock or images already existent at the
destination.

• Dedup-Separate. This approach re-implements the approach
proposed by Hirofuchi et al. [9, 37] for VM migration, that is,
each VM image is deduplicated and transferred separately.
This approach detects similarities within the VM image and
between images across datacenters (yet it can not detect the
similarities within the same VMFlock). For fairness of
comparison, we extend the implementation of this approach
with compressing all blocks sent over the network.

4.2 Compression Rate Evaluation
This section has two goals: first, to estimate compression gains
achievable through each of the three types of data similarity
VMFlockMS exploits (intra-image, across images in the same
VMFlock, and across datacenters), and to compare VMFlockMS
performance and overheads with those of the alternative
compression techniques described in § 4.1.3.

Figure 2 presents the achieved compression rate when the
destination does not have any files, while Figure 3 presents the
compression rate when the destination has a single VM image: a
‘Fedora-desktop’ image.

0

5

10

15

20

25

30

35

40

45

Gzip All Gzip
Separate

Dedup
Separate

VMFlockMS

C
om

pr
es

si
on

 ra
te

 (%
)

Diff-OS
Same-OS
App

Figure 2. Compression rate evaluation when the destination
site does not store any VM images. The compression rate is
calculated as the ratio of the volume of data transferred over the
network to the original data size. (The lower the ratio the better).
Gzip uses the default compression level which is biased towards
better compression rather than speed. The deduplication
algorithm uses 1KB blocks.

0

5

10

15

20

25

30

35

40

Gzip All Gzip
Separate

Dedup
Separate

VMFlockMS

C
om

pr
es

si
on

 ra
te

 (%
)

Diff-OS
Same-OS
App

Figure 3. Compression rate evaluation when the destination
site has one image similar to one image in the migrating
VMFlock.

The compression rate is calculated as the ratio of the volume of
data transferred over the network (including metadata-related
overheads) to the original data size. Consequently, the lower this
ratio, the better the compression rate. The results presented in
Figure 2 and Figure 3 lead to the following observations:

• All approaches achieve a 40% or better compression rate.

• As expected, the VMFlockMS achieves the highest
compression rate with the app workload. This is the result of
the high similarity (the same OS version) between the VM

images part of the same application. We expect that this will be
the most common scenario in practice.

• When the destination site does not have any images that may
have some similarity with the images transferred (Figure 2)
VMFlockMS generally achieves a better compression rate than
alternatives. When images in the VMFlock are based on the
same OS distribution, VMFlockMS achieves up to 2.2x better
compression rate than the best GZip based approach, and up to
2.7x better than the Dedup-separate approach. However, when
there is limited similarity between images in the same
VMFlock, that is for the diff-os workload, VMFlockMS leads
to a slightly worse compression rate than GZip based
approaches.

• When the destination site stores a VM image that is similar to
(some of) the VM images in the migrating VMFlock (Figure
3), deduplication based approaches achieve much better
compression rate (4x-12x better) than the best GZip based
approach for the app and same-os workloads and slightly better
for the diff-os workload. Additionally, depending on the
workload VMFlockMS can compress up to 2.8x better that the
dedup-separate approach; due to its ability to exploit intra-
flock similarity. .

• Unexpectedly, GZip-All does not achieve a better compression
rate than GZip-Separate although the data is compressible. We
attribute this shortcoming to its design: gzip is unable to detect
similar data blocks that are tens of MBs apart.

• Dedup-separate achieves the worst performance when the
destination does not contain any images. This is mainly due to
two reasons. First, the mechanism does not exploit similarities
across the VM images in the migrating VMFlock. Second, the
mechanism chunks the VM images into small blocks (1KB
each) and the associated block metadata that is transferred over
the network is relatively large.

4.2.1 Compression Overheads
In addition to the compression rate, an important metric to
consider is the compression effort. To give rough approximation,
Figure 4 compares the time taken to read the data from the disk,
compress it using each of the alternatives explored, and write the
result back to disk data using the different tools (the three boxes
of each bar in Figure 4 present this three-way split).

To include the overheads resulted by detecting similarity across
datacenters, Figure 4 presents the compression time for two
alternatives: when the destination does not have any files, and
when the destination has provided the hash-index for a single
‘Fedora-desktop’ VM image (thus, for each technique, Figure 4
presents a pair of bars).

Since our goal is to compare the overall compression effort, the
experiments use a single-thread implementation of the tools. We
note that each of these tools can be parallelized to reduce the
compression time (VMFlockMS demonstrates this for data
deduplication), however, our point here is to roughly estimate the
compression overheads.

The results lead to the following observations:

• The deduplication-based approaches (VMFlock and dedup-
separate) have the lowest compression effort. They are
significantly faster than GZip-based approaches. This is

testimonial to the lower computational overheads imposed.

• The deduplication based approaches (VMFlock and Dedup-
seperate) work at significantly higher throughput than
compression based approaches (over 250MB/sec when
excluding disk overheads). This makes the reading the data
form the VM repository the main throughput bottleneck in our
experimental setup. (For comparison gzip-all achieves
19.8MB/sec compression throughput).

Figure 4. Compression time evaluation with the app workload.
Each pair of bars represents one compression/deduplication
technique with and without a similar VM image as the destination.
(e.g., the first bar presents the runtime for gzip-all technique with
no data at the destination). Each bar has three boxes: The bottom
box is the time to read the data form disk, the middle box is the
time to compress/deduplicate the data, and the top box is the time
to write the data back to disk.

4.2.2 Block Size Effect on Compression Rate
The block size is an important parameter for configuring the
deduplication algorithm and controlling the associated tradeoffs.
While larger block sizes produce smaller metadata (and thus
reduce the tool’s memory footprint), they often lead to worse
compression rates [15]. Figure 5, shows the compression rate for
the app workload while varying the block size. A block size of
1KB leads to the best compression rate in both cases, that is,
regardless of whether a similar VM image is present at the
destination or not. A block size of 4KB is an attractive alternative:
it preserves most of the compression gains, yet it is 4x better in
terms of memory footprint.

0
2
4
6
8

10
12
14
16
18
20

1 4 8 128 1024
Block size (KB)

C
om

pr
es

si
on

 ra
te

 (%
)

No images at destination
One image at destination

Figure 5. Block size effect on the VMFlockMS compression
rate for app workload.

0

1

2

3

4

5

6

7

8

Ti
m

e
(m

in
) .

Write
Process
Read

GZip All GZip Separate Dedup Separate VMFlockMS

4.2.3 Summary
These experiments demonstrate that VMFlockMS is able to
efficiently detect the multiple types of similarity present in the
data and to significantly reduce the data transfer volumes required
for the transfer of VMFlocks across datacenters. Additionally, the
evaluation confirms that the overheads of the deduplication
scheme used are lower those of competing approaches. Finally,
the experiments inform the choice of block size to control the
tradeoff between the compression rate and the memory overheads
and ultimately the data granularity VMFlockMS operates with.

4.3 Evaluating the Opportunity to Support
Early VM Boot
To evaluate the potential gains brought by the
VMProfiler/VMLaunchPad pair we estimate the data volumes
needed to completely boot a VM image and launch an application.
To this end we have used the data produced by the VMProfiler.

• To boot the VMs belonging to the app workload, only around
13.5MB of the data (representing 0.6% of the uncompressed
VM image size, and roughly 5% of the compressed VMFlock
size) are needed. The boot process takes 41s once the data is
available locally.

We expect, however, that if a VM image similar to the one
transferred by VMFlockMS is already available at the
destination, the data volume actually transferred will be much
lower than 13.5MB (as we expect the similarity rate to be high
for kernel data) and the main overhead to be related to
deduplication and transferring block metadata indexes.

• To start the Spree e-commerce application, 1.5MB of
additional data is consumed. The process takes an additional
12s.

• We measured the overhead introduced by VMLaunchPad by
running synthetic IO intensive application with and without
VMLaunchPad. The overhead introduced by VMLaunchpad is
about 3%.

While these values will vary across various operating systems,
applications, and hardware platforms they support our claim that
there are sizeable benefits to be reaped by starting the VM boot
process early and overlapping the data transfers and the
application startup processes.

4.4 End-to-end Data Transfer Evaluation
To evaluate the efficiency of the entire system we evaluate the
transfer time for an entire VMFlock between two distant
datacenters: IBM Almaden and IBM T.J.Watson. The transfer
time is measured as the time from the launch of the VMFlock
transfer command until all the VMFlock data is transferred and all
VM images are completely reconstructed at the destination site.

The experiment is configured as follows: We use the app
workload and assume that the destination has one VM image, a
‘Fedora-desktop’ image. Deduplication is configured to use 1KB
blocks.

Figure 6 compares the performance of VMFlockMS to the other
alternatives.

The results are surprising: despite the fact that VMFlockMS (as
well as dedup-separate, the other deduplication-based technique)
offers significantly better compression rates than gzip-based

solutions, end-to-end they perform significantly worse (more than
2x slower) in terms of migration time using our testing platform.

There are two reasons behind this degraded performance: first, an
intensely random disk workload for the deduplication-based
techniques (as opposed to a sequential workload for the gzip-
based ones) and, second, our poorly provisioned experimental
testbed (the VM image repository is hosted on a single node using
a single SAS commodity disk and accessed through NFS). While
gzip-based approaches generate a sequential write workload, the
deduplication based approaches generate an intense random
read/write pattern: all destination nodes operate the deduplication
in parallel, thus their reads/writes to the VM image repository are
interleaved. Additionally, even the accesses from a single
destination node are random as (at least with the current
implementation) the blocks are processed as they arrive from the
network (in what is essentially random order), and each new block
might need to be written to multiple VM images. Similarly a
block identified as already existing at the destination implies a
read then possible multiple writes. Additionally, our chosen block
size (1KB) stresses the disk to the maximum. With this workload,
the roughly 100MBps sequential read/write throughput of our VM
repository is degraded to a few MBps.

0

20

40

60

80

100

120

Gzip All Gzip
Separate

Dedup
Separate

VMFlockMS
1KB

VMFlockMS
8KB

VMFlockMS
128KB

M
ig

ra
tio

n
tim

e
(m

in
)

Figure 6. Transfer time for an entire VMFlock. The workload
used is app; the destination has one image similar to one image in
the migrating VMFlock. We evaluate VMFlockMS with 1, 8, and
128KB block sizes.

While various optimizations to increase the sequentiality of the
disk accesses are possible we have not explored them in this work.

We explore instead two avenues to get around the above
limitations: First, we explore the performance with larger blocks:
8KB, and 128KB blocks lead to a worse compression rate (4.5%
and 7.5%, respectively, vs. 2.07% see Figure 5) yet they reduce
the number of disk seeks. Indeed we observe significantly better
performance; with block sizes of 128KB VMFlock achieves 1.5x
better migration time than GZip based approaches.

Second, we explore the impact of having a faster storage system,
more realistic for the environment where the VM image
repository will be deployed to support a cloud. To this end we
have developed a storage system emulator based on the FUSE
[32] file system. The emulator receives the VMFlockMS write
operations and emulates writing them to a storage system by
imposing a fixed seek delay and serving the read/write requests at
certain throughput. To validate the emulator we have emulated the
NFS based repository in our testbed and repeated the VMFlock
transfer experiments: the transfer times obtained this way roughly
match the actual results (presented in Figure 6). We configure the
emulator to match a mid-level storage system with 4 SAS disks @

10,000 RPMs and configure the emulator to use 0.20ms average
seek time and 100MBps throughput. We also configure the
deduplicaton mechanisms to use 4KB block sizes.

We repeat the same experiments using the emulator to host the
VM image repository. Figure 7 presents the migration time. For
this system, VMFlockMS completes migrating the VMFlock in
around 10min, 3.5x faster than GZip based approaches, and 1.3x
faster than dedup-separate.

0

5

10

15

20

25
30

35

40

45

Gzip All Gzip
Separate

Dedup
Separate

VMFlockMS

M
ig

ra
tio

n
tim

e
(m

in
)

Figure 7. Migration time evaluation using a VM image
repository emulator. The workload used is app; the destination
has one image similar to one image in the migrating VMFlock.

Summary. These experiments demonstrate that, even over our
poorly provisioned testbed, a well configured VMFlockMS is able
to achieve 1.5x shorter migration time than compression based
approaches. Further, emulating a more realistic VM repository
infrastructure indicates that VMFlockMS can achieve up to 4x
shorter migration time. Finally, optimizations to increase the
sequentiallity of the VMFlockMS workload will likely bring
further performance improvements.

5. DISCUSSION
This section focuses on a number of interrelated questions:

1.) Can VMFlockMS migrate VMs across different cloud
providers given the incompatible cloud APIs? Can it transfer data
not stored in VM images?

VMFlockMS can migrate VM images and virtual disks across the
cloud. Further, VMFlockMS can be extended to transfer other
virtual assets, e.g. Amazon S3 buckets [38], among datacenters as
long as a read/write or even a put/get API is provided. We
estimate that inter-cloud compatibility issues will be limited:
VMFlockMS will need to be specialized to interface with the
specific API provided by each cloud to access the VM image
repository or its data store.

2.) Can the techniques introduced by VMFlockMS be used in
other scenarios?

While this paper presents and evaluates VMFlockMS in the
context of VM migration, VMFlockMS can be used as a general
tool for data migration across datacenters as it can exploit multiple
types of similarity existing in the dataset to reduce the transferred
data volume.

One of the scenarios where our approach can be directly applied
is: scientific computing. Scientific data sets, in fields as diverse as
bioinformatics and high energy physics, are large (TBytes) and
are often transferred between collaborating datacenters for further
analysis. GridFTP [39] is currently a de facto standard for data

transfer between datacenters and uses multiple nodes at the source
and destination to accelerate data transfers. VMFlockMS
techniques could directly be imported into GridFTP to reduce the
volume of data volume transferred. Further, our infrastructure to
prioritize data transfers according to application data-usage
profiles can also be adapted to prioritize data transfers and enable
earlier application launch in order to accelerate transfer / compute
pipelines. Monti et al. [40] demonstrate the benefits of a similar
approach, dubbed prefix computation, limited however to
sequential data accesses.

3.) Can hash collisions corrupt the VM images?

Deduplicating data using hash functions has been a topic of debate
[41, 42] since a hash collision can lead to incorrectly inferring that
two blocks are similar, and thus lead to silent data corruptions.

While we do not intend to settle this debate for the general case,
we note that, VMFlockMS uses SHA1 with a hash length of 160
bits. With this length the probability of a hash collision is
significantly lower (10-48) than other sources of silent errors (e.g.,
disk errors [43], or an alpha particle hitting the bits storing the
data in memory [44]). Moreover, it is easy to further reduce this
probability if this issue becomes a concern either by using longer
hashes (e.g. SHA256, and SHA512) or by adding a mechanism to
verify the integrity of complete VM images after retrieving all
data blocks.

4.) What if instead of preserving the isolation between the
VMFlock migration service and the VM image repository they are
co-designed?

Nowadays, cloud infrastructures do not provide an easy path for
VM migration. As clouds mature, we envision that VM migration
across data centers will be adopted by cloud providers and will be
integrated as a cloud service (as it is the case today with intra-
datacenter live migration).

Integrating the VM migration service with the cloud infrastructure
opens new design avenues to co-design the migration service and
the VM image repository. Multiple opportunities can be
harnessed: First, as we argue in this paper, the cloud infrastructure
can facilitate early launch of migrated VMs through services
similar to the VMProfile/VMLaunchPad we prototype. Second,
the VM image repository can be built as a content addressable
storage (CAS) (e.g., similar to Mirage [6]) and allow the
migration service to access its block-level information. This will
eliminate most of the deduplication-based overheads. Finally, the
cloud infrastructure may provide an SSD based scratch space for
on the fly VM image creation. This will significantly increase the
migration performance since SSDs better handle the random
access workload generated by reconstructing VMFlocks.

6. SUMMARY
This paper presents VMFlockMS, a migration service optimized
for cross-datacenter transfer and instantiation of groups of virtual
machine (VM) images. We dub these groups of related VM
images VMFlocks. The optimizations we propose include: data
deduplication within the VMFlock to be migrated and between the
VMFlock and the data already present at the destination
datacenter, as well as prioritization of data transfers and system
support to accelerate VM and application startup. VMFlockMS is
designed to be deployed as virtual appliance in the cloud: it can
make efficient use of the available could resources to accelerate
the deduplication and data transfer processes and has minimal

requirements on the cloud API to access the VM image
repository.

VMFlockMS provides an incrementally scalable and high-
performance migration service. Our evaluation shows that
VMFlockMS can achieve compression rates as low as 3% of the
original VMFlock size, enables the complete transfer of the VM
images belonging to a VMFlock over transcontinental link up to
3.5x faster than alternative approaches, and enables booting these
VM images as soon as little as 5% of the compressed VMFlock
data is available at the destination.

7. ACKNOWLEDGMENTS
We thank Mark Seaman for his contribution at the early stage in
the project and his support for running the experiments.

8. REFERENCES
[1] A. Qureshi, R. Weber, H. Balakrishnan, et al. Cutting the

electric bill for internet-scale systems. SIGCOMM 2009.
[2] T. C. Chieu, A. Mohindra, A. Karve, and A. Segal. Solution-

based Deployment of Complex Application Services on a
Cloud. in IEEE International Conference on Service
Operations and Logistics and Informatics (SOLI). 2010.

[3] WebSphere. [cited 2010;
http://www.ibm.com/software/websphere/.

[4] T. Chieu, S. Kapoor, A. Mohindra, and A. Shaikh. Cross
Enterprise Improvements Delivered via a Cloud Platform: A
Game Changer for the Consumer Product and Retail
Industry. in IEEE International Conference on Services
Computing (SCC). 2010.

[5] K. Keahey, M. Tsugawa, A. Matsunaga, and J. A. B. Fortes,
Sky Computing. IEEE Internet Computing, 2009. 13(5).

[6] D. Reimer, A. Thomas, G. Ammons, et al. Opening Black
Boxes: Using Semantic Information to Combat Virtual
Machine Image Sprawl. in ACM Virtual Execution
Environments (VEE). 2008.

[7] A. Liguori and E. V. Hensbergen. Experiences with content
addressable storage and virtual disks. in Workshop on I/O
Virtualization (WIOV). 2008.

[8] C. Clark, K. Fraser, Steven Hand, et al. Live Migration of
Virtual Machines. NSDI 2005.

[9] T. Hirofuchi, H. Ogawa, H. Nakada, et al. A Live Storage
Migration Mechanism over WAN for Relocatable Virtual
Machine Services on Clouds. in International Symposium on
Cluster Computing and the Grid (CCGrid). 2009.

[10] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schioberg.
Live wide-area migration of virtual machines including local
persistent state. in International conference on Virtual
Execution Environments (VEE). 2007.

[11] H. A. Lagar-Cavilla, J. Whitney, A. Scannell, P. Patchin, et
al. SnowFlock: Rapid Virtual Machine Cloning for Cloud
Computing. in European Conference on Computer Systems
(Eurosys). 2009.

[12] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, et al.
Optimizing the migration of virtual computers. OSDI. 2002.

[13] A. Muthitacharoen, B. Chen, and D. Mazieres. A Low-
bandwidth Network File System. SOSP. 2001.

[14] S. C. Rhea, R. Cox, and A. Pesterev. Fast, Inexpensive
Content-Addressed Storage in Foundation. in USENIX
Annual Technical Conference. 2008.

[15] S. Al-Kiswany, M. Ripeanu, S. Vazhkudai, and A.
Gharaibeh. stdchk: A Checkpoint Storage System for Desktop

Grid Computing. in International Conference on Distributed
Computing Systems (ICDCS ‘08). 2008. Beijing, China.

[16] S. Quinlan and S. Dorward. Venti: A New Approach to
Archival Data Storage. FAST 2002.

[17] M. O. Rabin. Fingerprinting by random polynomials. in
Technical Report TR-15-81, Center for Research in
Computing Technology, Harvard University. 1981.

[18] K. Eshghi, M. Lillibridge, L. Wilcock, et al. JumboStore:
Providing Efficient Incremental Upload and Versioning for a
Utility Rendering Service. FAST 2007.

[19] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck
in the data domain deduplication file system. FAST 2008.

[20] T. Yang, H. Jiang, D. Feng, Z. Niu, et al. DEBAR: A
Scalable High-Performance De-duplication Storage System
for Backup and Archiving. in International Parallel &
Distributed Processing Symposium (IPDPS). 2010.

[21] P. Bergheaud, D. Subhraveti, and M. Vertes. Fault Tolerance
in Multiprocessor Systems Via Application Cloning. in Int.
Conf. on Distributed Computing Systems (ICDCS). 2007.

[22] L. Lu, P. Sarkar, D. Subhraveti, S. Sarkar, et al. CARP:
Handling silent data errors and site failures in an integrated
program and storage replication mechanism. in Int. Conf. on
Distributed Computing Systems (ICDCS). 2009.

[23] Cisco Systems Inc. Cisco Cloud Computing - Data Center
Strategy, Architecture, and Solutions. in White Paper. 2009.

[24] A. Celesti, F. Tusa, M. Villari, and A. Puliafito. How to
Enhance Cloud Architectures to Enable Cross-Federation. in
IEEE Conference on Cloud Computing (CLOUD). 2010.

[25] Cloud Computing Interoperability Forum (CCIF). [cited
2010; http://groups.google.com/group/cloudforum.

[26] Open Cloud Consortium (OCC). [cited 2010;
http://opencloudconsortium.org/.

[27] Cloud Standards Coordination. [cited 2010; http://cloud-
standards.org/.

[28] VMware Virtual Appliances Marketplace. [cited 2011;
http://www.vmware.com/appliances/.

[29] GZip compression tool. [cited 2011; http://www.gzip.org/.
[30] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, et al.

Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web. in
ACM Symposium on Theory of Computing (STOC). 1997.

[31] J.-l. Gailly and M. Adler. zlib Compression Library. [cited
2011; http://www.zlib.net/.

[32] FUSE, Filesystem in Userspace. [cited 2010;
http://fuse.sourceforge.net/.

[33] PolarSSL. [cited 2011; http://polarssl.org/.
[34] QEMU copy-on-write disk format (QCOW2). [cited 2010;

http://www.linux-kvm.org/page/Qcow2.
[35] Spree: Open Source E-Commerce Application. [cited 2011;

http://spreecommerce.com/.
[36] Iperf website. [cited 2008;

http://dast.nlanr.net/Projects/Iperf/.
[37] T. Hirofuchi, H. Nakada, H. Ogawa, S. Itoh, et al. A live

storage migration mechanism over WAN and its performance
evaluation. in international workshop on Virtualization
technologies in distributed computing (VTDC). 2009.

[38] Amazon Simple Storage Service [cited 2010;
http://aws.amazon.com/s3/.

[39] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, et al. The
Globus Striped GridFTP Framework and Server. in
SuperComputing. 2005.

[40] H. M. Monti, A. R. Butt, and S. S. Vazhkudai. Reconciling
Scratch Space Consumption, Exposure, and Volatility to
Achieve Timely Staging of Job Input Data. in IEEE Int.
Parallel & Distributed Processing Sym. (IPDPS). 2010.

[41] V. Henson. An Analysis of Compare-by-hash. in Workshop
on Hot Topics in Operating Systems (HotOS). 2003.

[42] J. Black. Compare-by-Hash: A Reasoned Analysis. in
USENIX Annual Technical Conference. 2006.

[43] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J.
Schindler. An analysis of latent sector errors in disk drives.
SIGMETRICS 2007.

[44] T. May and M. Woods, Alpha-particle-induced soft errors in
dynamic memories. IEEE Transactions on Electron Devices,
1979 26(1).

