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Abstract Today Graphics Processing Units (GPUs) are a
largely underexploited resource on existing desktops and
a possible cost-effective enhancement to high-performance
systems. To date, most applications that exploit GPUs are
specialized scientific applications. Little attention has been
paid to harnessing these highly-parallel devices to support
more generic functionality at the operating system or mid-
dleware level. This study starts from the hypothesis that
generic middleware-level techniques that improve distrib-
uted system reliability or performance (such as content ad-
dressing, erasure coding, or data similarity detection) can be
significantly accelerated using GPU support.

We take a first step towards validating this hypothesis and
we design StoreGPU, a library that accelerates a number of
hashing-based middleware primitives popular in distributed
storage system implementations. Our evaluation shows that
StoreGPU enables up twenty five fold performance gains on
synthetic benchmarks as well as on a high-level application:
the online similarity detection between large data files.
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1 Introduction

Recent advances in processor technology [1] have re-
sulted in a wide availability of massively parallel Graphics
Processing Units (GPUs). Low-end GPUs like NVIDIA’s
GeForce 8600 priced at about $100 have 32 processors and
256 MB of memory while high-end GPUs, like the NVIDIA
8800 GTX priced at about $300, have up to 128 processors
running at 575 MHz and 768 MB of memory, for instance.
With these characteristics, GPUs are often underutilized in
desktops deployments (as these are generally provisioned
for graphics-intensive workloads such as high-definition
video) and may be cost-effective enhancements to high-end
server systems.

However, the constraints introduced by the GPU pro-
gramming model which, until recently, specialized in sup-
porting only graphical processing, have led past efforts
aimed at harnessing this resource to focus exclusively on
computationally intensive scientific applications [2]. Al-
though these efforts confirmed that significant speedup is
achievable, the development cost for this specialized plat-
form was often prohibitive. Recently, however, the in-
troduction of general-purpose programming models (e.g.,
NVIDIA’s CUDA [3]) lowered the development cost mak-
ing GPUs attractive to a broader spectrum of applications.
Additionally, improvements on GPUs architecture created
the opportunity to data intensive applications to benefit from
GPUs.

This study starts from the observation that a number of
techniques that enhance the reliability and/or performance
of distributed storage systems (e.g., content addressability
in data storage [4, 5], erasure codes [6], on-the-fly data sim-
ilarity detection [7]) incur computational overheads that of-
ten preclude their effective usage with today’s commodity

mailto:samera@ece.ubc.ca
mailto:abdullah@ece.ubc.ca
mailto:elizeus@ece.ubc.ca
mailto:matei@ece.ubc.ca


124 Cluster Comput (2009) 12: 123–140

hardware. We study the viability of offloading these data-
processing intensive operations to the GPU. We demonstrate
that GPUs offer up to 25× speedup compared to tradi-
tional CPU-based processing. This brings in a new over-
head tradeoff balance point where the above techniques can
be effectively used to support high-performance computing
system middleware.

In particular, this project proposes StoreGPU a library
that enables transparent use of GPUs to support specialized
uses of hashing for content addressability, on-the-fly sim-
ilarity detection, data integrity, and load balancing all key
techniques to design efficient distributed systems. By mak-
ing the StoreGPU library available to the community, we
open the possibility of efficiently incorporating these mech-
anisms into distributed storage systems, thereby unleashing
a valuable set of optimization techniques. Furthermore, we
argue that this approach can be extended to other routines
that support today’s distributed systems like erasure cod-
ing [8], compact dataset representation using Bloom filters
[9], data compression [10], and data filtering. A library that
transparently outsources these computationally demanding
operations to the GPU will dramatically reduce the CPU
load on the hosting machine and enhance overall system per-
formance.

The contribution of this work is fourfold:

– First, this project explores a new territory: the use of
GPUs to support acceleration of middleware functional-
ity (as opposed to specialized scientific applications). We
show that exploiting GPU in this context brings valuable
performance gains. Moreover, we present preliminary ev-
idence that GPUs can enhance the performance of stor-
age systems, a usage scenario where the challenge lays
in the data-intensive nature of system operations. In this
scenario, large volumes of data need to be sequentially
processed; an operational case outside the scope of the
original GPU design. To the best of our knowledge, no
previous study has attempted to use the GPUs to enhance
the performance of this category of applications.

– Second, we explore techniques to efficiently use this
processing resource. Additionally we provide a memory
management subsystem that can be reused across applica-
tions and GPU models to efficiently harness the device’s
shared memory and to reduce the programming effort.

– Third, we present a minimal performance model that al-
lows the estimation of a data-processing application’s per-
formance on a given GPU model. The performance model
can be used to evaluate whether modifying an application
to exploit GPUs is worth the effort. We also present a de-
tailed analysis of the factors that influence performance
for a subset of applications and quantitatively evaluate
their effect.

– Finally, we make the StoreGPU library available to the
community. This library can be used to harness the com-
putational power of GPUs with minimal modifications

to current systems.1 Depending on its configuration and
the target application’s data usage patterns, StoreGPU en-
ables significant performance gains. When comparing the
performance enabled by a commodity GPU (the NVIDIA
8800 GTX) and one core on a commodity CPU (Intel
Core2 Duo 6600), StoreGPU achieves up to 25-fold per-
formance gains on not only synthetic benchmarks but also
when supporting a high-level application.

The rest of the paper is organized as follows. The next
section justifies our choice to focus on optimizing hash-
based operations through a survey of hashing use in stor-
age systems (Sect. 2.1) and describes the GPU programming
model and the main factors influencing application perfor-
mance when using GPUs (Sect. 2.2). Section 3 details the
design of StoreGPU library. Section 4 presents our experi-
mental results, Sect. 5 surveys the related work, and Sect.
6 presents a discussion of our approach. We conclude in
Sect. 7.

2 Background

This section surveys the use of hashing to support efficiency
and reliability in data storage systems (whether distributed
or not) and presents the NVIDIA GPU’s architecture and
programming model.

2.1 Use of hashing in storage systems

Hash-based primitives are commonly used by data-oriented
system middleware. Content addressability, data integrity,
load balancing, data similarity detection, and compact set
representation are all middleware primitives with best im-
plementations based on various uses of hashing. Yet the
computational overheads of these implementations sets
them apart as potential bottlenecks [4] in today’s high-
performance distributed systems that commonly employ
multi-Gbps optical links.

This section briefly details some of these hashing-based
primitives with two goals in mind: First, to support the argu-
ment that their computational overheads prevent their use in
conventional high-performance systems. Second, to derive
the scenarios which inform the design of StoreGPU.

2.1.1 Content addressable storage

In systems that support content addressability [4], data
blocks are identified based on their content. In this context,
hashing is used as an identification technique: data-block

1StoreGPU is an open source project, the code can be found at: http://
netsyslab.ece.ubc.ca
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identifiers are simply the hash value of the data [4, 5, 11].
There are multiple advantages to this approach: it provides a
flat namespace for data-block identifiers and a naming sys-
tem which, in turn, simplifies the separation of file-metadata
from data-block metadata. However, the overhead required
to compute block hashes may limit performance for work-
loads that have frequent updates.

2.1.2 Data-similarity detection

Content addressability enables tradeoffs between computa-
tion and storage space overheads. Consider a versioning file
system [7]: When a client saves a new version of a file, the
file system divides the file into blocks, computes their iden-
tifiers (often hashes of the block), and sends these identifiers
to the storage system. The storage system, in turn, com-
pares the identifiers received with the identifiers of blocks
of previous versions of the file to detect which blocks have
changed and need to be persistently stored. The client, in-
formed of the presence of similar blocks, will not store them
again, saving considerable storage space and network band-
width. Previous studies report that space savings can be as
high as 60% in production [4] and research systems [12].

2.1.3 Data integrity

In an untrustworthy environment, hashing is used to sup-
port data integrity and non-repudiability guarantees. For ex-
ample, in accountable storage systems [13], Samsara [14],
SFS [15], and SafeStore [16], integrity of the stored data is
protected using digital signatures. To keep the overhead of
signing and verifying integrity manageable, only the hash of
the data is signed and stored together with the data and the
public credentials of the signing entity.

2.1.4 Load balancing

Hashing is used to load-balance a distributed storage system.
For instance, systems based on consistent-hashing [17–19]
use a hash value of the data to assign it to nodes [20, 21].
A good hashing function that minimizes collisions leads
to an efficient data distribution since blocks are distributed
evenly between the storage nodes.

2.1.5 Computing block boundaries

To implement the aforementioned techniques, storage sys-
tems need to divide large files into multiple blocks. To this
end, two approaches are possible: fixed- or variable-size
blocks. In the first approach, the file is divided into a set of
equally-sized blocks. In the second approach, block bound-
aries (i.e., markers for blocks’ start and end) are defined
based on file content. For instance, the Low-Bandwidth File

System (LBFS) [7] and JumboStore [22] both detect block
boundaries by passing all successive 48 byte ‘windows’ of
the file through a hash function and declaring a block bound-
ary if the last 20 bits of the hash value are all zero. The
advantage of this approach is that, unlike fixed-blocks, the
ability to detect block similarities is preserved even in the
presence of data insertion and deletion. However, this tech-
nique is computationally intensive since a large number of
hashes need to be computed to determine the block bound-
aries, therefore imposing a high overhead and making usage
in the context of general-purpose data storage systems diffi-
cult. In fact, the low throughput provided by this technique is
the main reason its proponents recommend its use in storage
systems supported by low-bandwidth networks [7].

2.1.6 Summary of usage scenarios

We can reduce the use cases presented above to two main
uses of hashing:

– Direct Hashing, where the hash of an entire data block is
computed (to support, for example, content addressabil-
ity, data integrity, or fixed-block similarity detection), and

– Sliding Window Hashing, where a large number of hashes
of possibly overlapping windows in a large data block
are computed (to support detection of content-based block
boundaries as outlined in Sect. 2.1.5).

Finally, we note that some of the aforementioned tech-
niques (e.g., data integrity, content addressable storage) re-
quire a collision-resistant hash function, such as MD5 or
SHA, which are more computationally intensive than sim-
ple hashing functions (e.g., CRC codes).

2.2 GPU programming

This section presents an overview of the latest GPU models’
architecture, main performance factors, and the program-
ming model. We focus on NVIDIA’s architecture and pro-
gramming environment: the Compute Unified Device Ar-
chitecture (CUDA) [3]. We have selected the NVIDIA cards
for two reasons. First, it has the largest market share [23, 24]
and second, the CUDA programming model is the most ma-
ture GPU programming environment. Recently, other ven-
dors have developed similar programming environments:
for example AMD’s Stream Computing SDK [25, 26], Ap-
ple’s OpenCL [27] and RapidMind Development Platform
[28], in addition to research based environments such as
BrookGPU [29] and Sh [30].

NVIDIA GPUs have a Single Program, Multiple-Data
(SPMD) architecture. It offers a number of Single Instruc-
tion Multiple Data (SIMD) multiprocessors and four dif-
ferent memories each with their own performance charac-
teristics (detailed in the next subsection). The CUDA pro-
gramming model extends the C language with directives
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Fig. 1 GPU architecture

that expose the GPU’s memory and execution models to the
developers, and a runtime library that manages the execu-
tion of programs on the GPU. Moreover, CUDA provides
an API for GPU-specific functions, such as multi-GPU sup-
port, timers, memory management, and per-multiprocessor
thread synchronization mechanisms.

Although using C as the programming language low-
ers the barriers to developing general purpose code on
GPUs, the programming model requires that the application
fits the Single-Instruction Multiple-Data (SIMD) program-
ming model. Moreover, despite the abstractions provided
by CUDA, it is still challenging to make efficient use of
GPU resources; for example, as our performance analysis
(Sect. 4) shows, suboptimal memory management may crit-
ically impair performance.

2.2.1 GPU architecture

Figure 1 presents a high-level view of NVIDIA’s GPU ar-
chitecture. The device is composed of a number of SIMD
multiprocessors. Each multiprocessor incorporates a shared
memory, a small (16 KB in all NVIDIA’s GPUs includ-
ing the GeForce 8600 GTS and GeForce 8800 GTX) but
fast memory, shared by all processors in the multiproces-
sor. Additionally, all multiprocessors have access to three
other GPU-device-level memory modules: the global (a.k.a.
device memory), texture, and constant memory modules.
These memories are also accessible from the host machine.
The global memory supports read and write operations and
it is the largest memory in the GPU (with size ranging from
256 to 1024 MB). In comparison, the texture and constant
memories are much smaller and have restricted access poli-
cies. Apart from size, the critical characteristic of the vari-
ous GPU memory modules is their access latencies. While
accessing an entry in the shared memory takes up to four cy-

cles, it takes 400 to 600 cycles to access the global memory
[3, 31].

Typically, a general purpose application will first transfer
the application data from host’s (CPU) memory to the GPU
global memory and then try to maximize the usage of the
shared memory throughout the computation.

Programming an application that efficiently exploits
the GPU resources implies extracting the target applica-
tion’s parallelism and employing efficient memory and
thread management techniques. Improper task decomposi-
tion, memory allocation, or memory transfers can lead to
dramatic performance degradation. Particularly, efficient use
of the shared memory is a challenging task for three reasons.
First, the shared memory is often small compared to the vol-
ume of data being processed. Second, the shared memory
is divided into banks and all read and write operations that
access the same bank are serialized, hence, reducing concur-
rency. Consequently, to maximize the performance, an ap-
plication should schedule concurrent threads to access data
on different banks. The fact that a single bank does not rep-
resent a contiguous memory space increases the complexity
of efficient memory utilization. Finally, increasing the num-
ber of threads per multiprocessor helps hiding global mem-
ory access latency as the threads that have to wait for access
to memory are not scheduled on the processors. However,
increasing the number of threads does not directly lead to
a linear performance gain. The reason is that increasing the
number of threads decreases the amount of shared memory
available per thread. Recent studies by Ryoo et al. [32] and
by Che et al. [33] has reached this same observation. Ob-
viously, the optimal resource usage configuration is tightly
related to the application’s characteristics (e.g., the data ac-
cess patterns) and GPU hardware specifications (the number
of registers in the multiprocessor or the size of the shared
memory available).

2.2.2 GPU performance factors

When using the GPU, an application passes through five
main stages: preprocessing, host-to-GPU data transfer,
processing, GPU-to-host results transfer, and post-proces-
sing. Table 1 describes these stages, identifies the main per-
formance factors for each stage, and introduces the notation
used throughout the rest of this paper to model performance.
(We note that not all applications will have the preprocess-
ing or post-processing stages.)

For a data-parallel application, the processing step is usu-
ally repeated multiple times until all input data is processed.
In each iteration part of the data is copied from global mem-
ory to each multiprocessor’s shared memory and processed
by the application’s ‘kernel’ before the results are then trans-
ferred back to the global memory. Thus, the runtime of a
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Table 1 Application processing
stages and performance factors Stage Sub-stages Operations performed

(1)
Preprocessing

1.1.GPU initialization
(TGPUInit)

GPU initialization

1.2.Memory allocation
(TMemAlloc)

Memory allocation at the
host and the GPU

1.3.Pre-processing
(TPreProc)

Application-specific data
preprocessing on the CPU

(2) Data
Transfer In

Data transfer to GPU
(TDataHtoG)

Data transfer from host’s
memory to GPU global
memory

(3)
Processing

3.1.Data transfer to
shared memory
(TDataGtoS)

Data transfer from global
GPU memory to shared
memories.

3.2.Processing
(TGPUProc)

Application ‘kernel’
processing

3.3.Data transfer to de-
vice global mem-
ory (TDataStoG)

Result transfer from shared
memory to global memory

(4) Data
Transfer Out

4.1.Output data transfer
(TDataGtoH)

Transfer the results to the
host system memory.

(5) Post-
processing

5.1.Post-processing
(TPostProc)

Application-specific post
processing on CPU resource
release

data parallel application can be modeled as:

TTotal = TPreprocesing + TDataHtoG + TProcessing + TDataGtoH

+ TPostProcH

= TGPUInit + TMemAlloct + TPreProc + TDataHtoG

+ DataSize

N × SMSize
× (TDataGtoS + TProc + TDataStoG)

+ TDataGtoH + TPostProc (1)

where DataSize is the size of an application data set, N is
the number of multiprocessors, and SMSize is the size of the
multiprocessor’s shared memory.

The parameters that influence the formula above (e.g.,
host-to-memory transfer throughput, device global-to-sha-
red memory throughput, initialization overheads) can be ei-
ther benchmarked or found in the GPU data sheets. Equa-
tion (1) allows system designers to estimate GPU execution
overheads and possibly to identify parts of the application
that need optimization.

GPUs are known for their ability to accelerate number-
crunching applications, but are less efficient when hashing
large volumes of data. This is due not only to the over-
heads incurred when transferring large amounts of data to
and from the device, but also to the fact that the various float-
ing point units are not used. In fact, trivial data processing,
such as a simple XOR between two data blocks, even on a
large amount of data, is faster on the CPU than on the GPU.
While the GPU can perform computations at a huge theoreti-

cal sustained instruction-per-second peak rate (46.4 GIPS—
Giga Instruction per Second for the GeForce 8600 GTS card,
and 172.8 GIPS for GeForce 8800 GTX card), the data trans-
fer from/to the two GPUs is limited at 4 GB/s, the theoretical
maximum bandwidth of PCIe 16× interface.

To give the reader an intuition of how the various over-
heads interplay, we present the time breakdown to hash a
96 MB data block: On the GeForce 8600 GTS, transfer-
ring the data to the GPU takes 37.4 ms (for an achieved
throughput of 2.5 GBps), hashing takes 41.8 ms (using the
32 GT8600 stream processors), and copying the results back
takes 1.0 ms. Overall, in this configuration, the memory
transfers represent over 48% of the execution time. While
on the GeForce 8800 GTX, transferring the data to the GPU
takes 37.06 ms (for an achieved throughput of 2.5 GBps),
hashing takes 14.7 ms (using the 128 GT8800 stream
processors), and copying the results back takes 0.72 ms.
Overall, in this configuration, the memory transfers repre-
sent over 71% of the execution time.

3 StoreGPU design

The design of StoreGPU is driven by storage systems’ use
of hashing as presented in Sect. 2.1 This section presents
StoreGPU’s application programming interface (API) and
a high-level design overview. We present a number of
performance-oriented design improvements in the evalua-
tion section.
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SHA1 (RFC 3174) and MD5 (RFC 1321), as well as most
widely used hash functions, follow the sequential Merkle-
Damgård construction approach [34, 35]. In this sequential
approach, at each stage, one chunk of data is processed to
produce a fixed size output. The output of each stage is used
as an input to the following stage together with a new data
chunk. This sequential construction does not allow multi-
ple threads to operate concurrently to hash the data. To ex-
ploit the highly parallel GPU architecture, our design uses
the original hash functions as a building block to process
multiple chunks of data in parallel. The discussion section
presents evidence that the hash function we build is as strong
as the original, sequentially built, hash function.

3.1 StoreGPU API

We designed StoreGPU API to correspond to the two main
use cases presented in Sect. 2.1.

Direct Hashing. I.e., hashing large blocks of data, with
size ranging from kilobytes to megabytes or more. To ad-
dress this scenario, the library provides the following inter-
face (C syntax):

char* SHA(char* DataBuffer,int DataBufferSize)
char* MD5(char* DataBuffer,int DataBufferSize)

Sliding Window Hashing. As opposed to the first case,
content-based detection of block boundaries requires hash-
ing numerous small data blocks (sized from tens to hundreds
of bytes). To address this usage pattern, the library provides
the following interface:

char* SHA(char* DataBuffer,
int DataBufferSize,int WinSize,int Offset)

char* MD5(char* DataBuffer,
int DataBufferSize,int WinSize,int Offset)

This API returns an array of hashes, where each entry of
this array is the result of hashing a window of data of size
WinSize at shifting offset Offset.

The rest of this section presents the two main modules of
StoreGPU with a focus on parallelizing hash computations.

3.2 Design of the direct hashing module

Figure 2 presents StoreGPU’s direct hashing module design.
Once input data is transferred from the CPU, it is divided
into smaller blocks and, every small block is hashed. The
result is placed in a single output buffer and, finally, the out-
put buffer is hashed to produce the final hash value.

Two aspects are worth mentioning. First, there are no de-
pendencies between the intermediate hashing computations
in Step 2 (Fig. 2). Consequently, each computation can be
executed in a separate thread. Second, this design uses the

Fig. 2 Direct hashing module architecture. The blocks with circular
arrows represent the standard hashing kernel. Stages numbers corre-
spond to Table 1

Fig. 3 Sliding window hashing module architecture. The blocks with
circular arrows represent the standard hashing kernel. Stage numbers
correspond to Table 1

CPU to aggregate the intermediary hashes (Step 3). The rea-
son is that synchronization of GPU threads across the blocks
inside the GPU is not possible [3].

3.3 Design of the sliding window hashing module

To parallelize the computation of a large number of small
hashes drawn from a large data block, we hash in parallel
all the small blocks and aggregate the result in a buffer. This
module’s architecture is presented in Fig. 3.



Cluster Comput (2009) 12: 123–140 129

Each of the hash functions in Fig. 3 can be executed in
a separate thread since there are no dependencies between
computations. The challenge in implementing this module
lies in the memory management to extract maximum perfor-
mance. Note that the input data is not divided into smaller
blocks as the previous case. The reason is that the input data
for each thread may overlap with the neighboring threads.

3.4 Optimized memory management

Although the design of the two modules presented here is
relatively simple, optimizing their performance for GPU de-
ployment is a challenging task. For example, one aspect
that induces additional complexity is maximizing the num-
ber of threads to extract maximal parallelism (around 100
K threads are created for large blocks) while avoiding mul-
tiple threads accessing the same shared memory bank and
maximizing the use of each processors’ registers.

To this end, we have implemented our own memory man-
agement sub-system for shared memory. This sub-system
has two main goals. First, to reduce memory access latency,
the memory management sub-system allocates a memory
workspace for each thread. This workspace has a fixed-
size and is located in the shared memory. Additionally, also
to lower the access latency, the memory management sub-
system allocates workspaces for different threads on a sep-
arate shared memory banks, effectively avoiding bank con-
flict problem. When a thread starts, it copies its data from
the global memory to its shared memory workspace, hence
avoiding subsequent accesses to the slower global mem-
ory. Second, while allocating the thread’s workspaces as de-
scribed offers better access latency, it complicates applica-
tion programming since a shared memory bank does not rep-
resent a contiguous memory address space. To avoid com-
plicating the programming task, the memory management
sub-system abstracts the shared memory to allow the thread
to access its workspace as a contiguous address space.

In effect, the shared memory management sub-system in-
creases the shared memory performance by avoiding bank
conflicts while reducing the programming effort by provid-
ing a contiguous memory address abstraction.

3.5 Other optimizations

In addition to optimizing the shared memory usage, we con-
sider two other optimizations: the use of pinned memory,
and reducing the size of the output hash.

Allocating and initializing the input data in host’s pinned
memory (i.e., non-pageable memory) saves the GPU driver
from an extra memory copy to an internal pinned memory
buffer. In fact, the GPU driver always uses DMA (Direct
Memory Access) from its internal pinned memory buffer
when copying data between the host memory and the GPU

global memory. Therefore, if the application allocates the in-
put data in pinned memory from the beginning, it saves the
driver from performing the extra copy to its internal pinned
buffer. However, allocating pinned memory adds some over-
head since the kernel is involved in finding and preparing a
contiguous set of memory pages before locking it. Our per-
formance numbers do not show a pronounced effect for this
overhead. Moreover, if the overhead of allocating pinned
memory buffers becomes an issue, allocated buffers can be
reused by subsequent library calls and thus this overhead can
be amortized.

Additionally, we allow users to specify the size of the de-
sired output hash. The rationale behind this feature is that,
some applications such as block boundary for similarity de-
tection only need the first few bytes of the hash value.

4 Experimental evaluation

We evaluate StoreGPU both with synthetic benchmarks
(Sect. 4.1) and an application driven benchmark: similar-
ity detection between multiple versions of the same file
(Sect. 4.2).

4.1 Synthetic benchmarks

This section presents the performance and speedup delivered
by StoreGPU under a synthetic workload: it first compares
GPU-supported performance with the performance for the
same workload running on a commodity CPU. Next, this
section investigates the factors that determine the observed
performance.

4.1.1 Experiment design

The experiments are divided into two parts, each corre-
sponding to the evaluation of one of the two usage scenar-
ios of hashing described in Sect. 3 (i.e., Direct Hashing and
Sliding Window Hashing).

Table 2 summarizes the factors considered in the perfor-
mance evaluation. Currently, StoreGPU provides the imple-
mentation of two hashing algorithms: MD5 and SHA1. The
data size variation is intended to expose the impact of mem-
ory copy overhead between the host and the GPU. Addition-
ally the sliding-window hashing technique introduces two
specific parameters: the window and offset sizes.

In particular, we explore the impact of the three perfor-
mance optimizations presented in Sect. 3: (i) the optimized
use of shared memory; (ii) memory pinning; and (iii) re-
duced output size.

Our experiments follow a factorial experimental design
and evaluate the impact of each combination of factors pre-
sented in Table 2. For all performance data points, we report
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Table 2 The list of factors considered in the experiments and their re-
spective levels. Note that the sliding-window hashing module has extra
parameters

Direct and sliding window hashing

Factors Levels

Algorithm MD5 & SHA1

Data size 4 KB to 96 MB

Shared memory Enabled or disabled

Pinned memory Enabled or disabled

Sliding-window hashing only

Window size 20 or 52 bytes

Offset 4, 20 or 52 bytes

Reduced hash size Enabled or disabled

the speedup computed from the average execution time col-
lected from 40 experiments. We confirmed that this number
of experiments is sufficient to guarantee an average speedup
estimate with confidence level of 95%. The following sec-
tions present a summary of these experiments.

The devices used in the performance analysis are: an Intel
Core2 Duo 6600 2.40 GHz processor (released late 2006),
an Intel Core2 Quad Q6700 2.66 GHz processor (released
mid 2007), an NVIDIA GeForce 8600 GTS GPU (released
mid 2007) and an NVIDIA GeForce 8800 GTX (released
late 2006). The GeForce 8600 GTS GPU was installed on
a machine with Intel Core2 Duo 6600 2.40 GHz processor,
running WindowsXP, and CUDA 1.0 driver and runtime li-
brary. While the GeForce 8800 GTX was installed on a ma-
chine with Intel Core2 Duo E6850 3 GHz processor, running
Linux 2.6.24, and CUDA 2.0 driver and runtime library.

We note that, in all cases, our implementation uses out-
of-the-box hash function implementations. These original
implementations are single-threaded and use only one core
of the Intel processor; when we use them on multi-core ar-
chitecture, we execute in parallel multiple instances of the
original hash function implementation.

For this reason, in the rest of this section, we use the
performance the original single-threaded implementation
running on a single core on the Intel Core2 Duo 6600
2.40 GHz processor as the baseline to compute and compare
the speedups achieved by StoreGPU configurations. To offer
a more comprehensive perspective on the achieved perfor-
mance we also offer a speedup evaluation when using mul-
tiple traditional cores.

Due to space limitations, we do not report performance
on all the platforms we use for all experiments. Figure 4,
however, offers a first indication that StoreGPU provides
better performance when compared to an optimized multi-
threaded CPU implementation harnessing all cores of a tra-
ditional (e.g., Intel) multicore architecture and optimized for
maximum parallelism. Although for small data sizes, the

Fig. 4 Speedups for MD5 direct hashing module for fully optimized
GPU implementations running on GeForce 8600 and 8800, and mul-
tithreaded CPU implementations harnessing all available cores. The
value x = 1 separates the speedup (right) from the slowdown values
(left)

multithreaded CPU implementation has better performance
than StoreGPU, as the data size increase (i.e., data larger
than 1 MB), StoreGPU achieves much higher speedups. It is
worth noting that, even though not presented here, the slid-
ing window module and SHA1 algorithm have a similar be-
havior.

This comparison highlights that for a comparable price
(or even lower), a GPU offers much higher performance than
a high end CPU. A more comprehensive discussion on the
impact of the experiment platform choices is presented in
Sect. 6.

We note that the lower-end GPU (GeForce 8600) achieved
a better performance for smaller data sizes than the high-end
GPU model (GeForce 8800). This is due to two main rea-
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Fig. 5 StoreGPU speedup for the MD5 implementation of the direct
hashing module

sons; first, a careful examination of the results break down
reveals that CUDA 2.0 run time library takes considerably
longer time to allocate pinned memory buffers (around 14×
slower) than CUDA 1.0. Second, the GeForce 8600 GPU
cores (a.k.a. shaders) are clocked at 1450 MHz while the
newer GeForce 8800 GTX GPU shaders are clocked at
1350 MHz; consequently, for small data sizes that do not
utilize the 16 multiprocessors of the GeForce 8800, the
GeForce 8600 will complete the computation faster.

4.1.2 Experimental results

The first question addressed by our experiments is: What is
the speedup offered by StoreGPU compared to the original
single-threaded CPU implementation? To answer this ques-
tion, we determine the ratio between the execution time on

Fig. 6 StoreGPU speedup for the SHA1 implementation of the direct
hashing module

the GPU and the CPU for both MD5 and SHA1 hashing al-
gorithms.

Figure 5 and Fig. 6 show the speedups achieved by
StoreGPU for MD5 and SHA1 respectively for the Direct
Hashing module. Values larger than one indicate perfor-
mance improvements, while values lower than one indicate
a slow down (this is indicated by a line at x = 1). The re-
sults show that the fully optimized (i.e., pinned and shared
memory optimizations enabled) StoreGPU starts to offer
speedups for blocks larger than 700 KB and offer up to 6×
speedup for large data blocks.

Note that as the data size increases, the performance
improvement reaches a saturation point. Further, optimiz-
ing for shared memory accesses has the biggest impact on
the achieved speedup. This highlights the fact that efficient
memory management is paramount to gain maximum per-
formance when considering data-intensive applications. It
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Fig. 7 StoreGPU sliding-window hashing module speedup for MD5.
Window = 20 bytes, offset = 4 bytes, reduced hash

is also important to observe that for small blocks the GPU
performs much worse than its CPU counterpart (e.g., when
memory accesses are not optimized, the performance can
decrease up to 37× slow down for 4 KB and MD5). This is
mainly due to the overhead of host to device data transfers
compared to the processing cost. We discuss the latter point
in more detail in the next section.

Figure 7 to Fig. 10 present the results of experiments
for the sliding-window hashing module. Qualitatively, the
observed behavior is similar to the direct hashing module.
Quantitatively, however, the speedup delivered by StoreGPU
is significantly higher (up to 25× speedup).

The sliding window hashing introduces two extra pa-
rameters that influence performance: the window size and
the offset. The window size determines how much data is
hashed while the offset determines by how many bytes the
window is advanced after each hash operation. The experi-

Fig. 8 StoreGPU sliding window hashing module speedup for SHA1.
Window = 20 bytes, offset = 4 bytes, reduced hash

ments explore four combinations for these two factors with
values chosen to match those used by storage systems like
LBFS [7], Jumbostore [22], and stdchk [12]. Due to space
constraints, we present the results of window size of 20 bytes
and offset of 4 bytes, and window size of 52 bytes and offset
of 52 bytes. Although not reported here the other combina-
tions of window sizes and offset present the same character-
istics.

Figure 7 and Fig. 8 show the results for a configuration
that leads to intense computational overheads: a window
size of 20 bytes and an offset of 4 bytes. In this configu-
ration (in fact suggested by stdchk), StoreGPU hashes the
input data approximately 20× faster for MD5 and up to 25×
faster for SHA1. Figure 9 and Fig. 10 present the results for
larger chunks (52 bytes) and offset (52 bytes). It is inter-
esting to note that StoreGPU performs a little slower when
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Fig. 9 StoreGPU sliding-window hashing module speedup for MD5.
Window size = 52 bytes. Offset = 52 bytes

compared to the previous, more computing intensive, sce-
nario.

The sliding window hashing achieves higher speedup
compared to direct hashing module for two reasons: First,
the CPU implementation of the sliding window hashing
will pay an additional overhead of a function call to hash
each window, while StoreGPU spawns one thread per win-
dow that can execute in parallel. Second, since the window
size is usually less than 64 bytes (the minimum input size
for SHA or MD5), every window is padded to complete
the 64 bytes. This translates to hashing considerably larger
amounts of data for the same given input data, making this
module more computationally intensive and thus a better
fit for GPU processing due to its intrinsic parallelism. This
is also the reason we observe larger speedups with smaller
window sizes and offsets.

Fig. 10 StoreGPU sliding-window hashing module speedup for
SHA1. Window size = 52 bytes. Offset = 52 bytes

Finally, we observed that the speedup achieved for SHA1
is better than MD5. We attribute that to SHA1 being more
computationally demanding than MD5 algorithm and hence
fitting better GPU’s application domain.

4.1.3 Dissecting the overheads

The execution time of a particular computation on the GPU
can be divided into the five stages outlined in Sect. 2.2.2:
preprocessing, host-to-GPU data transfer, code execution,
GPU-to-host result transfer, and finally post-processing op-
erations on CPU (e.g., result aggregation, release of re-
sources).

This section analyzes how the execution time of each
of these stages is affected by the three optimization fea-
tures available: use of pinned memory, optimized use of
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Fig. 11 Stage 1 (preprocessing and initialization) execution time for
MD5 direct hashing module of StoreGPU

shared memory, and reduced output size. Due to space con-
straints, we limit our analysis to the direct hashing module
and MD5 algorithm implementation. Although not reported
here, the sliding-window module and the SHA1 implemen-
tations present the same characteristics.

Stage 1: Preprocessing. Our application does not have a
special data preprocessing operation. Therefore, this stage
consists of memory allocation and GPU initialization only.
The allocation of memory buffers (host and GPU) and the
allocation of the buffer for returned results on the host main
memory take between 3 ms and 30 ms depending on the data
size and whether the pinned memory optimization is enabled
(Fig. 11). The initialization takes longer with pinned mem-
ory and larger data sizes as it is costly to find contiguous
pages to accommodate larger data sizes.

At a first glance, the proportional overhead due to the
initialization time may seem significant for the overall
StoreGPU performance (Stage 1 in Fig. 16 and Fig. 17).
However, the pinned memory allocation impact can be re-
duced by reusing buffers once allocated.

Stage 2: Data Transfer In. The host-to-device transfer
time varies depending on the data size and on whether
Pinned Memory optimization is used. As expected, although
using pinned memory slows down Stage 1, it significantly
improves transfer performance (Fig. 12). Compared to the
theoretical 4 GBps peak throughput of the PCIe 16× bus,
we obtain, for large blocks, 2.5 GB/s with pinning and 1.7
GB/s without.

Stage 3: Data Processing. The performance of kernel ex-
ecution is highly dependent on the utilization of shared

Fig. 12 Stage 2 (input data transfer) execution time of MD5 direct
hashing module with and without using pinned memory feature

Fig. 13 Kernel execution time for MD5 direct hashing module
with/without shared memory optimization enabled

GPU memory and its optimized use (i.e., avoiding bank
conflicts—Fig. 13). For large data volumes, without the opti-
mized memory management, the kernel contributes approx-
imately up to 65% to the overall operation time (Fig. 16).
When all optimizations are enabled, efficient use of shared
memory reduces the kernel execution impact to about 20%
of the total execution time (Fig. 16 and Fig. 17).

Stage 4: Data Transfer Out. Transferring the output (Fig.
14) causes proportionally less impact on the overall exe-
cution than transferring the input (Fig. 16 to Fig. 17). The
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Fig. 14 Execution times for MD5 direct hashing module data transfer
operation from the GPU global memory to the host memory with and
without using pinned memory feature

Fig. 15 Execution times for the last stage—the hash aggregation

reason is that, for direct hashing, the output size is several
orders of magnitude smaller than the input. Moreover, the
output buffers are always pinned; therefore, this step always
benefits from the high throughput achieved by using pinned
memory pages. As a result, we do not observe any major dif-
ference in terms of the impact caused by the output transfer
across tested configurations.

Stage 5: Post-processing. Finally, the aggregation of the
kernel output into one hash value takes only up to a few mil-
liseconds and has a minor impact on the overall execution

Fig. 16 Percentage of total execution time spent on each stage when
none of the optimizations are enabled

Fig. 17 Percentage of total execution time spent on each stage with
pinned and shared memory optimizations enabled

time (Fig. 15). Enabling GPU optimizations do not influ-
ence the performance of the last stage (hash aggregation),
since the execution is performed on the CPU.

Figure 16 and Fig. 17 illustrate the proportion of total ex-
ecution time that corresponds to each execution stage. These
results show the major impact of pinned and shared mem-
ory optimizations on the contribution of each stage to the
total runtime. Using pinned memory reduces the impact of
data transfer (compare Stage 2 in Fig. 16 and Fig. 17), while
using the shared memory reduces kernel execution impact
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(compare Stage 3 in Fig. 16 and Fig. 17). Finally, enabling
both optimizations increases the impact of the copy opera-
tion, since pinning memory demands a higher overhead dur-
ing the allocation stage (Stage 1 in Fig. 17).

4.2 Application level performance

This section complements the synthetic benchmarks pre-
sented so far. We evaluate the application-level gains
achieved by using StoreGPU. Concretely, we evaluate the
speedup offered using StoreGPU to detect similarities be-
tween successive checkpoint images of the same applica-
tion.

Checkpointing is an indispensable fault tolerance tech-
nique adopted by long-running applications. These applica-
tions periodically write large volumes of snapshot data to
persistent storage in an attempt to capture their current state.
In the event of a failure, applications recover by rolling-back
their execution state to a previously saved checkpoint. Con-
secutive checkpoint images have often a high degree of sim-
ilarity (for instance, Al-Kiswany et al. [12] detect up to 82%
similarity).

We have collected the checkpoint images using BLCR
checkpointing library [36] from 24 hour-long runs of
BLAST, a popular bioinformatics application [37]. The in-
terval between the checkpoints is 5 min. The average image
size is 279 MB.

Table 3 and Table 4 compare the throughput of on-
line similarity detection between using standard hashing
functions running on a single core of Intel Core2 Duo
6600 2.40 GHz processor and using StoreGPU running on
NVIDIA 8800 GTX. The fixed block size similarity detec-
tion uses a block size of 20 MB, and the variable block
size similarity detection uses window size of 20 bytes and
an offset of 4 bytes. These results show dramatic improve-
ment in the throughput of online similarity detection with
both fixed and variable size blocks. The results indicate that
fixed-block similarity detection can be used even on 10 Gbps
systems while the variable block size technique can be used
for systems connected with 1 Gbps links without introduc-
ing a performance bottleneck. Note that this experiment con-
siders the similarity detection mechanism at the application
level only, without integrating with a file system.

5 Related work

Exploiting GPUs for general purpose computing has re-
cently gained popularity particularly as a mean to increase
the performance of scientific applications. We refer the
reader to Owens et al. [2] for a comprehensive survey.

A number of science-oriented applications stand out. Liu
et al. [38] implement the Smith-Waterman algorithm, which

Table 3 Online similarity detection throughput (in MBps) and
speedup using SHA1

Throughput (MBps) Similarity

StoreGPU Standard ratio detected

Fixed block size (using
direct hashing)

1015.9 155.76
23%

Speedup: 6.5×
Variable block size
(LBFS technique using
sliding window hashing)

194.24 8.06
82.0%

Speedup: 24.1×

Table 4 Online similarity detection throughput (in MBps) and
speedup using MD5

Throughput (MBps) Similarity

StoreGPU Standard ratio detected

Fixed block size (using
direct hashing)

1101.6 234.17
23%

Speedup: 4.7×
Variable block size
(LBFS technique using
sliding window hashing)

255.21 11.05
80%

Speedup: 23.1×

compares two biological sequences by computing the num-
ber of steps required to transfer one sequence to the other,
for a GPU platform and report a 16× speedup in some cases.
The algorithm is often used by bioinformatics applications
to compare an unknown sequence with a database of known
sequences.

Thompson et al. [39] compare GPU with CPU implemen-
tations for a variety of programs, such as matrix multiplica-
tions and a solver for the 3-SAT problem. They also sug-
gest minor extensions to current GPU architectures to im-
prove their effectiveness in solving general purpose prob-
lems. Kruger et al. [40] implement linear algebra operators
for GPUs and demonstrate the feasibility of offloading a
number of matrix and vector operations to GPUs.

More related to our infrastructural focus, Govindaraju
et al. [41] implement a number of database operations
for GPUs, including conjecture selection, aggregation, and
semi-linear query operations. Curry et. al [42] explore the
feasibility of using GPUs to enhance RAID system reliabil-
ity. Their preliminary results show that GPUs can be used to
accelerate Reed Solomon codes [43], used in RAID 6 sys-
tems, to facilitate generating more than two parity blocks
without affecting system overall performance. Along the
same lines Falcao et al. [44] show that GPUs can be used
to accelerate Low Density Parity Checks (LDPC) error cor-
recting codes. Their LDPC GPU implementation achieves
up to 700× speedup compared to CPU implementation, a
performance that enables using LDPC codes on commodity
systems without special decoding hardware.
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Harrison and Waldron [45] studied the feasibility of us-
ing the recent GPUs as a cryptographic accelerator. To this
end they implemented the AES encryption algorithm using
OpenGL instead of CUDA. Although their implementation
did not outperform the CPU implementation, they show that
the AES cryptography can successfully be offloaded from
the CPU to the GPU. Their moderate performance gains
may be attributed to using OpenGL and rendering the AES
encryption process to match the graphical pipeline process-
ing which does not leave space for GPU side optimization.
In a latter attempt Harrison and Waldron [46] implemented
AES using CUDA and reported 4× speedup. Manavski [47]
also implement AES encryption using CUDA and report up
to 20× speedups. Finally, Moss et. al [48] study the fea-
sibility of accelerating the mathematical primitives used in
RSA encryption. They use OpenGL and render the applica-
tion into a graphics application and report up to 3× speedup.
Moreover, recently exploiting GPUs to accelerate security
operations was adopted in few security products, including
Kaspersky antivirus [49] and Elcomsoft password recovery
software [50].

Our study is different from the above studies in four
ways. First, we employ the latest GPU generation and the
CUDA programming model which are more suitable for
general purpose programming. Unlike most of the previous
studies, this relieves us from having to retrofit the problem
we solve into a graphics problem. Second, unlike the previ-
ous studies, we focus on accelerating primitives that support
a broad range of storage system techniques and place them
in a library, thus providing infrastructure for a large set of
applications. Third, we provide a memory management sub-
system that can be reused across application and GPU mod-
els to efficiently harness the device’s shared memory and re-
duce the programming effort. Finally, the hashing primitives
we focus on are data-intensive with a ratio of computation
to input data size of at least one order of magnitude lower
than in previous studies.

6 Discussion

This section focuses on a number of interrelated questions:

1. Are StoreGPU hash function implementations strong? Is
the system backward compatible?

Most of today’s hash functions are designed using the
Merkle-Damgard construction [35]. Merkle and Damgard
show that collision-free hash functions can divide data into
fixed-sized blocks to be processed either sequentially, using
the output of each stage as the input to the next, or in par-
allel and then concatenating and hashing the intermediate
hash results to produce a single final hash value. Most hash
functions such as MD5 and SHA adopt the iterative model

because it does not require extra memory to store the inter-
mediate hash results.

Our approach for the direct-hashing module is based on
the parallel construction. This choice has two implications.
First, as a direct implication of the Merkle and Damgard
argument, the resulting hash function will still have the
same strength as the original sequential construction. Sec-
ond, while our sliding-window module is still backward-
compatible, as it is hashing only small data windows, our
direct-hashing technique produces different hash values
compared to the sequential MD5 or SHA versions. This does
not have an impact on the StoreGPU usability as long as all
entities in the storage system use the same library. While
we are still investigating alternatives to maintain backward-
compatibility, one way to reduce the migration burden is to
provide CPU implementations of StoreGPU that implement
the same algorithm.

2. What are the implications of newer GPU cards (e.g.,
NVIDIA GeForce 9800 priced at $300) and of the new pro-
gramming model (CUDA v2.0)?

Two enhancements in the newer GPU cards have the po-
tential to increase GPU-supported application performance:
First, high-end cards are much more powerful. For example
the GF9800 GTX has four times as many processors (128
cores), two times higher memory bandwidth (70.4 GB/s),
and two times higher host-to-GPU bandwidth (due to us-
ing PCIe 2 16× interface) [51] than the card we use. This
additional capacity should speed up the GPU-supported ex-
ecution.

Second, our work is based on CUDA v1.0. NVIDIA
has recently released CUDA v2.0 which supports, among
other features, overlapping computation and data transfers
(through the streaming API). A stream (not confused with
stream processing) is a sequence of operations that execute
in a strictly serial order. Different streams, however, may
execute operations out of order, with respect to one another
or concurrently. This creates an opportunity for concurrent
memory transfers and computations on the GPU, thus re-
ducing the data transfer overhead between the host and the
GPU [3]. For example, stream S1 can be defined to hash
block B1 by the following operations: (i) copy block B1 to
the GPU, (ii) execute the hash kernel on B1, (iii) copy the
hash result out. Since these operations belong to the same
stream S1, they are executed sequentially. However, if an-
other stream S2 is defined with the same operations but for
block B2, the operations of the two streams can execute con-
currently. For instance, the execution of the hash kernel on
B1 can overlap with the copy of block B2 to the GPU, ef-
fectively hiding the data transfer overhead of bock B2.We
conjecture that by exploiting these features, we will be able
to provide additional speedups.
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3. Can other middleware primitives benefit from this idea?
We believe that a host of other popular primitives used in

distributed systems can benefit from GPU support, such as
erasure coding, compressed set representation using Bloom
filters, and data compression among others. For example,
different parallel algorithms for Reed-Solomon coding ex-
ist [52] and can be deployed on GPUs; on the other hand,
Gilchrist [53] proposes a parallel implementation of the
bzip2 loss-less data compression algorithm that may ben-
efit from GPU support, and Nightingale et al. [54] design
Speck a framework aimed at parallelizing different types
of security checks. Currently, we are experimenting with a
GPU-optimized Bloom filter implementation. In general, we
believe that GPUs can be used by any data-parallel applica-
tion to provide significant performance improvements, pro-
vided that the number of operations performed per byte be-
ing processed is sufficiently high to amortize the additional
host-to-device memory transfer overheads.

4. How does StoreGPU perform against the theoretical
peak?

Since StoreGPU is a data-intensive application as op-
posed to a compute-intensive one, we first consider mem-
ory access throughput. While the memory bandwidth listed
in NVIDIA’s specification [55] is as a high 32 GB/s for
GeForce 8600 GTS GPU and 86.4 GB/s for GeForce 8800
GTX GPU, the real memory access bottleneck is the PCIe
bus, listed at 4 GB/s in each direction. This is congruent
to our experiments, which show that pinned memory trans-
fers achieve up to 2.48 GB/s. Furthermore, we estimate
NVIDIA’s GeForce 8600 theoretical non floating point in-
struction exaction peak rate at to 46.4 GIPS (Giga Instruc-
tion Per Second). Our StoreGPU kernel performs at up to
19.54 GIPS, a slowdown compared to the peak rate mainly
due to internal memory copy operations inside the GPU.

As a mater of fact, recently, Bakhoda et al. [56] built
a detailed micro-architecture performance simulator for
NVIDIA cards and evaluated the performance of a dozen
of non graphical application on the GPU including our
StoreGPU code. The study concludes with insightful guide-
lines for optimizing general purpose programming on GPUs.
Based on micro-architecture level information, Bakhoda et
al. [56] estimate that StoreGPU uses the shared memory ef-
ficiently: over 90% of the memory accesses are to shared
memory and less than 10% to global memory. Moreover the
study estimates that StoreGPU is able to maximally use all
the running threads and avoid stalls.

5. Is the comparison fair?
We have used four devices: Intel Core2 Duo 6600 and In-

tel Core2 Quad Q6700 2.66 GHz processors, and NVIDIA
GeForce 8600 GTS and GeForce 8800 GTX GPUs, for our
comparison. In all cases, we used the unmodified hashing
functions (with best compiler options). On the CPU-side, an

additional optimization may also be considered: using In-
tel’s Streaming SIMD Extensions (SSE).

We believe that not exploring this optimization does not
impact the validity of our argument that GPUs can effec-
tively be used to accelerate distributed system middleware.
Moreover, to use the SSE computational units the applica-
tion needs to be transformed into vector processing opera-
tions, an operation that complicates the development if done
manually and for which compiler support has just begun to
emerge.

7 Conclusions

This study demonstrates the feasibility of harvesting GPU
computational power to support distributed systems middle-
ware. We focus on accelerating compute- and data-intensive
primitives of distributed storage systems. We implemented
StoreGPU, a library which enables distributed storage sys-
tem designers to offload hashing-based operations to GPUs,
demonstrating speedups as high as 25× when comparing
StoreGPU performance to a standard CPU implementa-
tion. Additionally, we show that applications that depend
on hashing computations to effectively identify similarity
among large volumes of data, such as comparing two check-
point images, benefit from the throughput boost enabled by
StoreGPU.

Despite the positive outcome of our study, it is impor-
tant to highlight the challenges involved in the process. As
pointed out by our experiments and discussion section, care-
ful optimization of memory access patterns is paramount
to achieving such levels of performance. Nevertheless, we
expect that, as offloading computations to GPU becomes a
mainstream feature, hardware vendors will offer better sup-
port for memory access optimizations in the form of com-
pilers, profilers, etc.

An immediate future exploration is a deeper performance
analysis with a broader set of techniques used in distrib-
uted storage systems, such as erasure coding and Bloom
filters. Furthermore, we plan to fully integrate the library
with a distributed storage system prototype to evaluate its
impact from an application perspective. The efforts briefly
described above and the further exploration of the new fea-
tures in CUDA 2.0 will certainly occupy our minds with ex-
citing investigations in the near future.
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