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ABSTRACT 
Today Graphics Processing Units (GPUs) are a largely 
underexploited resource on existing desktops and a possible cost-
effective enhancement to high-performance systems. To date, 
most applications that exploit GPUs are specialized scientific 
applications. Little attention has been paid to harnessing these 
highly-parallel devices to support more generic functionality at the 
operating system or middleware level. This study starts from the 
hypothesis that generic middleware-level techniques that improve 
distributed system reliability or performance (such as content 
addressing, erasure coding, or data similarity detection) can be 
significantly accelerated using GPU support.  
We take a first step towards validating this hypothesis, focusing 
on distributed storage systems. As a proof of concept, we design 
StoreGPU, a library that accelerates a number of hashing based 
primitives popular in distributed storage system implementations. 
Our evaluation shows that StoreGPU enables up to eight-fold 
performance gains on synthetic benchmarks as well as on a high-
level application: the online similarity detection between large 
data files. 

Categories and Subject Descriptors 
D.4.3 [Operating Systems]: File Systems Management - 
Distributed file systems. D.4.8 [Operating Systems]: 
Performance - Measurements, Modeling and Prediction. I.3.1 
[Computer Graphics]: Hardware Architecture – Graphics 
processors, Parallel Processing. 

General Terms 
Performance, Design, Experimentation. 

Keywords 
Middleware, Storage System, Graphics Processing Unit, GPU 
hashing, StoreGPU. 

1. INTRODUCTION  
Recent advances in processor technology [31] have resulted in a 
wide availability of massively parallel Graphics Processing Units 
(GPUs) in commodity desktop systems. For example, commodity 
GPUs like NVIDIA’s GeForce 8600 priced at about $100 have 32 
processors and 256 MB of memory while high-end GPUs, like the 

NVIDIA 8800 GTX priced at about $300, have up to 128 
processors running at 575MHz and 768MB of memory. With 
these characteristics, GPUs are often underutilized in 
corporate/educational desktops (as they are generally provisioned 
for graphics-intensive workloads such as high-definition video) 
and may be cost-effective enhancements to high-end server 
systems  
However, the constraints introduced by a GPU programming 
model which, until recently, specialized in supporting only 
graphical processing, have led past efforts aimed at harnessing this 
resource to focus exclusively on computationally intensive 
scientific applications [33]. While these efforts have confirmed 
that significant speedup is achievable, the development cost for 
this specialized platform is often prohibitive. Recently, however, 
the introduction of general-purpose programming models (e.g., 
NVIDIA’s CUDA [7]) has lowered the development cost and 
opened this resource to  a new set of applications. 
This study starts from the observation that a number of techniques 
that enhance distributed system reliability and/or performance 
(e.g., content addressability in data storage [8, 34], erasure codes 
[39], on-the-fly data similarity detection [32]) incur computational 
overheads that often preclude their effective usage with today’s 
commodity hardware. We study the viability of offloading these 
data-processing intensive operations to the GPU. We demonstrate 
that GPUs offer up to 8x speedup compared to traditional CPU-
based processing. This brings in a new overhead tradeoff balance 
point where the above techniques can be effectively used to 
support high-performance computing system middleware. 
While the approach we explore can be employed to support a wide 
range of distributed systems, we focus on distributed storage. The 
reason is the increasing performance gap between the storage 
system and the processor, memory, and network subsystems. This 
performance gap has made the cost-effective engineering of a 
distributed storage system capable of keeping up with the other 
components of a distributed system (e.g., data-processing, 
visualization) an increasingly challenging task.   
This project proposes StoreGPU, a library that enables transparent 
use of a GPU’s computational power to support data- and 
compute-intensive primitives used in distributed storage systems. 
In particular, we focus on specialized use of hashing to support 
content addressability, on-the-fly similarity detection, data 
integrity, and load balancing. By building the StoreGPU library 
and making it available to the community, we open the possibility 
of efficiently incorporating these mechanisms into distributed 
storage systems, thereby unleashing a valuable set of optimization 
techniques. Furthermore, we present evidence that this approach 
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can be extended to other routines that support today’s distributed 
systems like erasure coding [14], compact dataset representation 
using Bloom filters [11], data compression [25], and data filtering.   
For instance, in the digital fountain approach for data 
dissemination [13], the data source continuously generates erasure 
codes of the original data blocks. A library that transparently 
outsources the computationally demanding encoding operation to 
the GPU will dramatically reduce the load of the source CPU and 
enhance overall system performance.  
The contribution of this work is threefold: 
 First, this project explores a new territory: the use of GPUs to 

support general purpose computing middleware (as opposed to 
specialized scientific applications). We show that exploiting 
GPU in this context brings valuable performance gains. 
Moreover, we present evidence that GPUs can enhance the 
performance of storage systems, a usage scenario where the 
challenge lays in the data-intensive nature of system 
operations. In this scenario, large volumes of data need to be 
sequentially processed; an operational case outside the scope of 
the original GPU design. To the best of our knowledge, no 
previous studies have attempted to use the GPUs to enhance 
the performance of this category of applications. 

 Second, we present a performance model that allows the 
estimation of a data-processing application’s performance on a 
given GPU model. The performance model can be used to 
evaluate whether modifying an application to exploit GPUs is 
worth the effort.  We also present a detailed analysis of the 
factors that influence performance for a subset of applications 
and quantitatively evaluate their effect. 

 Finally, we make the StoreGPU library available to the 
community. This library can be used to harness the 
computational power of GPUs with minimal modifications to 
current systems1. Depending on its configuration and the target 
application’s data usage patterns, StoreGPU enables significant 
performance gains. When comparing the performance enabled 
by a low-end GPU (the NVIDIA 8600GTS) and a commodity 
CPU (Intel Core2 Duo 6600), StoreGPU achieves up to eight-
fold performance gains on not only synthetic benchmarks but 
also when supporting a high-level application. 

The rest of the paper is organized as follows. The next section 
justifies our choice of optimizing hash-based operations through a 
survey of hashing use in storage systems (Section  2.1) and 
describes the GPU programming model and the main factors 
influencing application performance when using GPUs (Section 
 2.2). Section  3 details the design of StoreGPU library. Section  4 
presents our experimental results, section  0 surveys the related 
work, and section  6 presents a discussion of our approach. We 
conclude in section  7. 

2. BACKGROUND  
This section surveys the use of hashing techniques to support 
efficiency and reliability in data storage systems (whether 
distributed or not) and presents the architecture and programming 
model of the used GPU. 

2.1 Hashing in Storage Systems 
Hash-based primitives are commonly used by data-oriented 
system middleware. Content addressability, data integrity, load 
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balancing, data similarity detection, and compact set 
representation are all middleware primitives with best 
implementations based on various uses of hashing. Yet the 
computational overheads of these implementations sets them apart 
as potential bottlenecks [34] in today’s high-performance 
distributed systems that commonly employ multi-Gbps optical 
links. 
This section briefly details some of these hashing-based primitives 
with two goals in mind: First, we support the argument that their 
computational overheads prevent their use in conventional 
high-performance systems. Second, we present the usage 
scenarios that inform the design of StoreGPU.  

2.1.1 Content Addressable Storage 
In systems that support content addressability [34], data blocks are 
named based on their content. In this context, hashing is used as a 
naming technique: data-block names are simply the hash value of 
the data [8, 34, 38]. There are multiple advantages to this 
approach: it provides a flat namespace for data-block identifiers 
and a naming system which, in turn, simplifies the separation of 
file-metadata from data-block metadata. However, the overhead 
required to compute block hashes may limit performance in 
workloads that have frequent updates.  

2.1.2 Data-similarity detection 
Content addressability enables tradeoffs between computation and 
storage space overheads. Consider a versioning file system [32]: 
When a client saves a new version of a file, the file system divides 
the file into blocks, computes their identifiers (often hashes of the 
block), and sends these identifiers to the storage system. The 
storage system, in turn, compares the identifiers received with the 
identifiers of blocks of previous versions of the file to detect 
which blocks have changed and need to be persistently stored. The 
client, informed of the presence of similar blocks, will not store 
them again, saving considerable storage space and network 
bandwidth. Experience shows space savings can be as high as 
60% in production [34] and research systems [9]. 

2.1.3 Data Integrity 
In an untrustworthy environment, hashing is used to support data 
integrity and non-repudiability guarantees. For example, in 
accountable storage systems [40], Samsara [15], SFS [21], and 
SafeStore [27], integrity of the stored data is protected using 
digital signatures.  To keep the overhead of signing and verifying 
integrity manageable, only the hash of the data is signed and 
stored together with the data and the public credentials of the 
signing entity. 

2.1.4 Load Balancing 
Hashing is used to load-balance a distributed storage system. For 
instance, hashing is used in systems based on consistent-hashing 
techniques [26, 35, 36] to assign loads to nodes [16, 19]. A good 
hashing function that minimizes collisions leads to an efficient 
data distribution technique since blocks are distributed evenly 
between the storage nodes.  

2.1.5 Computing Block Boundaries 
To implement the aforementioned techniques, storage systems 
need to divide files into multiple blocks. To this end, two 
approaches are possible: fixed- or variable-size blocks. In the first 
approach, the file is divided into a set of equally-sized blocks. In 
the second approach, block boundaries (i.e., markers for block 
start and end) are defined based on file content. For instance, the 



Low-Bandwidth File System (LBFS) [32] and JumboStore [20] 
both detect block boundaries by passing all successive 48 byte 
‘windows’ of the file through a hash function and declaring a 
block boundary if the last 20 bits of the hash value are all zero. 
The advantage of this approach is that, unlike fixed-blocks, the 
ability to detect block similarities is preserved even in the 
presence of data insertion and deletion. However, this technique is 
computationally intensive since a large number of hashes need to 
be computed to determine the block boundaries, therefore 
imposing a high overhead and making usage in the context of 
general-purpose data storage systems difficult. In fact, the low 
throughput provided by this technique is the main reason its 
proponents recommend its use in storage systems supported by 
low-bandwidth networks [32]. 

2.1.6 Summary of Usage Scenarios 
We can reduce the use cases presented to two uses of hashing:  

 Direct Hashing, where the hash for an entire data block is 
computed (to support content addressability, data integrity, or 
fixed-block similarity detection), and  

 Sliding Window Hashing, where a large number of possibly 
overlapping windows in a large data block are computed (to 
support similarity detection based on variable-block sizes). 

Finally, we note that the aforementioned techniques require a 
collision-resistant hash function, such as MD5 or SHA, which are 
more computationally intensive than simple hashing functions 
(e.g., CRC codes). 

2.2 GPU Programming 
This section presents an overview of the latest GPU models’ 
architecture, main performance factors, and the programming 
model. We focus on NVIDIA’s architecture and programming 
environment: the Compute Unified Device Architecture (CUDA) 
[7]. Other vendors (e.g., AMD) have also developed similar 
architectures and programming environments [1]. We have 
selected the NVIDIA cards for two reasons. First, it has the largest 
market share [5, 6] and second, the CUDA programming model is 
more suitable for general purpose computing. Unlike AMD’s 
Close To Metal (CTM) programming model [1], which provides a 
low-level assembly language for GPU programming, CUDA 
supports the use of C programming language for application 
programming.   
The GPU has a Single-Instruction Multiple-Data (SIMD) 
architecture. It offers a number of SIMD multiprocessors and four 
different memories each with their own performance 
characteristics (detailed in the next subsection). The CUDA 
programming model extends the C language with directives and 
libraries to abstract the GPU architecture. CUDA allows the 
programmer to control application variables’ allocation (e.g., the 
memory type in which the variable resides), and provides an API 
for GPU specific functions, such as device properties querying, 
timing, memory management, and per multiprocessor thread 
synchronization. 
Although using C as the programming language lowers the 
barriers to developing general purpose code on GPUs, the 
programming model requires that the application fits the Single-
Instruction Multiple-Data (SIMD) model. Moreover, despite the 
abstractions provided by the CUDA API, it is still challenging to 
make efficient use of the GPU memory. As our performance 
analysis (Section  4) shows, poor memory management may 
critically impair performance. 

2.2.1 GPU Architecture  
Figure 1 presents a high-level view of NVIDIA’s GPU 
architecture. The device is composed of a number of SIMD 
multiprocessors. Each multiprocessor incorporates a small (16KB 
in the GeForce 8600GTS) but fast memory, shared by all 
processors in the multiprocessor. All multiprocessors have access 
to three other device-level memory modules: global (a.k.a. device 
memory), texture, and constant. These memories are also 
accessible from the host machine. The global memory supports 
read and write operations and it is the largest memory in the GPU 
(with size ranging from 256 to 768 MB). In comparison, the 
texture and constant memories are much smaller and have 
restricted access policies. Apart from size, the critical 
characteristic of the various GPU memory modules is their access 
latencies. While accessing an entry in the shared memory takes up 
to four cycles, it takes 400 to 600 cycles to access the global 
memory [7].  
Typically, a general purpose application will first transfer the 
application data from host (CPU) memory to the GPU global 
memory and then try to maximize the usage of the shared memory 
throughout the computation. 

 
Figure 1. GPU Architecture.  

Programming efficient applications to exploit GPUs implies 
extracting the target application’s parallelism and employing 
efficient memory and thread management techniques. Improper 
task decomposition, memory allocation, or memory transfers can 
lead to dramatic performance degradation. Particularly, efficient 
use of the shared memory is a challenging task for three reasons. 
First, the shared memory is often small compared to the volume of 
data being processed. Second, the shared memory is divided into 
16 banks and all read and write operations that access the same 
bank are serialized, hence, reducing concurrency. Consequently, 
to maximize the performance, an application should schedule 
concurrent threads to access data on different banks. The fact that 
a single bank does not represent a contiguous memory space 
increases the complexity of efficient memory utilization. Finally, 
increasing the number of threads per multiprocessor does not 
directly lead to a linear performance gain although it may help 
hide global memory access latency. The reason is that increasing 
the number of threads decreases the amount of shared memory 
available per thread. Obviously, the optimal resource usage 
configuration is tightly coupled with the application 
characteristics (e.g., the data access patterns) and GPU hardware 
specifications (the number of registers in the multiprocessor or the 
size of shared memory available).  



2.2.2 GPU Performance Factors 
When using the GPU, an application passes through five main 
stages: preprocessing, host-to-GPU data transfer, processing, 
GPU-to-host results transfer, and post-processing. Table 1 
describes these stages, identifies the main performance factors for 
each stage, and introduces the notation used throughout the rest of 
this paper to model performance. (We note that not all 
applications will have the preprocessing or post-processing 
stages.)   
Table 1. Application processing stages and performance factors. 

Stage Sub-stages Operations performed  
1.1.GPU initialization 

(TGPUInit) 
GPU initialization 

1.2.Memory allocation 
(TMemAlloc) 

Memory allocation at the host 
and the GPU 

(1) 
Preprocessing 

1.3.Pre-processing 
(TPreProc) 

Application-specific data 
preprocessing on the CPU 

(2) Data 
Transfer In 

Data transfer to GPU 
(TDataHtoG) 

Data transfer from host’s 
memory to GPU global memory

3.1.Data transfer to shared 
memory (TDataGtoS) 

Data transfer from global GPU 
memory to shared memories. 

3.2.Processing (TGPUProc) Application ‘kernel’ processing(3) 
Processing 3.3.Data transfer to device 

global memory 
(TDataStoG) 

Result transfer from shared 
memory to global memory 

(4) Data 
Transfer Out 

4.1.Output data transfer 
(TDataGtoH) 

Transfer the results to the host 
system RAM. 

(5) Post-
processing 

5.1.Post-processing 
(TPostProc) 

Application-specific post 
processing on CPU resource 
deallocation  

For a data-parallel application, the processing step is usually 
repeated multiple times until all input data is processed. During 
each iteration, parts of the data are copied from global memory to 
each multiprocessor’s shared memory and processed by the 
application ‘kernel’ before the results are then transferred back to 
the global memory. Thus, the runtime of a data parallel 
application can be modeled as: 

TTotal = TPreprocesing+ TDataHtoG + TProcessing + TDataGtoH + TPostProcH  
 =  TGPUInit + TMemAlloct + TPreProc + TDataHtoG + 

×
× SMSizeN

DataSize (TDataGtoS + TProc + TDataStoG) +  

TDataGtoH + TPostProc            (1) 
where DataSize is the size of an application data set, N is the 
number of multiprocessors, and SMSize is the size of the 
multiprocessor’s shared memory. The parameters that influence 
the formula above (e.g., host-to-memory transfer throughput, 
device global-to-shared memory throughput, initialization 
overheads) can be either benchmarked or found in the GPU data 
sheets. 
Equation 1 allows system designers to estimate the benefits of 
offloading processing to the GPU and to identify parts of the 
application that need optimization. GPUs are known for their 
ability to accelerate number-crunching applications, but are less 
efficient when hashing large volumes of data. This is due not only 
to the overheads incurred when transferring large amounts of data 
to and from the device, but also to the fact that the various floating 
point units are not used. In fact, trivial data processing, such as a 
simple XOR between two data blocks, even on a large amount of 
data, is faster on the CPU than on the GPU. While the GPU can 
perform computations at a huge theoretical sustained instruction-
per-second peak rate (46.4 GIPS -Giga Instruction Per Second for 
the NVIDIA 8600 GTS card), the data transfer from the machine 

to the GPU is limited at 4GB/s, the theoretical maximum 
bandwidth of PCIe 16x interface.  
To give the reader an intuition of how the various overheads 
interplay, we present the time breakdown to hash a 96MB data 
block: transferring the data to the GPU takes 37.4ms (for an 
achieved throughput of 2.5GBps), hashing takes 41.8ms( using the 
four GT8600 multiprocessors), and copying the results back takes 
1.0ms. Overall, in this configuration, the memory transfers 
represent over 48% of the execution time. 

3. StoreGPU Design 
The design of StoreGPU is driven by storage systems’ use of 
hashing as presented in section  2.1. This section presents 
StoreGPU’s application programming interface (API) and a high-
level design overview. We present a number of performance-
oriented design improvements in the evaluation section. 
SHA1 (RFC 3174) and MD5 (RFC 1321), as well as most widely 
used hash functions, follow the sequential Merkle-Damgård 
construction approach [18, 30]. In this sequential approach, at 
each stage, one chunk of data is processed to produce a fixed size 
output. The output of each stage is used as an input to the 
following stage together with a new data chunk. This sequential 
construction does not allow multiple threads to operate 
concurrently in hashing the data. To exploit the highly parallel 
GPU architecture, our design uses the original hash functions as a 
building block to process multiple chunks of data in parallel. The 
discussion section presents evidence that the hash function we 
build is as strong as the original, sequentially built, hash function. 

3.1 StoreGPU API 
We designed StoreGPU API to correspond to the two main use 
cases presented in Section  2.1.  
Direct Hashing, i.e., hashing large blocks of data, with size 
ranging from kilobytes to megabytes or more.  To address this 
scenario, the library provides the following interface: 
char* SHA(char* DataBuffer,int DataBufferSize) 
char* MD5(char* DataBuffer,int DataBufferSize) 

Sliding Window Hashing. As opposed to the first case, content-
based detection of block boundaries requires hashing numerous 
small data blocks (sized from tens to hundreds of bytes). To 
address this usage pattern, the library provides the following 
interface: 
char* SHA(char* DataBuffer, 
  int DataBufferSize,int WinSize,int Offset) 
char* MD5(char* DataBuffer, 
  int DataBufferSize,int WinSize,int Offset) 

This API returns an array of hashes, where each entry of this array 
is the result of hashing a window of data of size WinSize at 
shifting offset Offset.  
The rest of this section presents the two main modules of 
StoreGPU with a focus on parallelizing hash computations. 

3.2 Design of the Direct Hashing Module 
Figure 2 presents StoreGPU’s direct hashing module design. Once 
input data is transferred from the CPU, it is divided into smaller 
blocks and, every small block is hashed. The result is placed in a 
single output buffer and, finally, the output buffer is hashed to 
produce the final hash value. 
Two aspects are worth mentioning. First, there are no 
dependencies between the intermediate hashing computations in 
Step 2 (Figure 2). Consequently, each computation can be 



executed in a separate thread. Second, this design uses the CPU to 
aggregate the intermediary hashes (Step 3). The reason is that 
synchronization of GPU threads across the blocks inside the GPU 
is not possible. 

 
Figure 2: Direct hashing module architecture. The blocks with 
circular arrows represent the standard hashing kernel. Stages 
numbers correspond to Table 1.  

3.3 The Sliding Window Hashing Module 
To parallelize the computation of a large number of small hashes 
drawn from a large data block, we hash in parallel all the small 
blocks and aggregate the result in a buffer. This module’s 
architecture is presented in Figure 3. 

 
Figure 3: Sliding window hashing module architecture. The 
blocks with circular arrows represent the standard hashing 
kernel. Stage numbers correspond to Table 1. 
Each of the hash functions in Figure 3 can be executed in a 
separate thread since there are no dependencies between 
computations. The challenge in implementing this module lies in 
the memory management to extract maximum performance. Note 
that the input data is not divided into smaller blocks as the 
previous case. The reason is that the input data for each thread 
may overlap with the neighboring threads. 

3.4 Optimized Memory Management  
Although the design of the two modules presented here are 
relatively simple, optimizing their performance for GPU 
deployment is a challenging task. For example, one aspect that 
induces additional complexity is maximizing the number of 
threads to extract maximal parallelism (around 100K threads are 
created for large blocks) while avoiding multiple threads 
accessing the same shared memory bank and maximizing the use 
of each processors’ registers. To this end, we have implemented 
our own shared memory management mechanism with two main 
functions. First, it allocates a fixed space for every thread in a 
single shared memory bank and avoids assigning workspaces 
allocated on the same memory bank to concurrent threads in the 
same multiprocessor. When a thread starts, it copies its data from 

the global memory to its shared memory workspace, hence 
avoiding subsequent accesses to the slower global memory. 
Second, it abstracts the shared memory to allow the thread to 
access its workspace as a contiguous address space. Effectively 
the shared memory management mechanism serves to increase the 
shared memory performance through avoiding bank conflicts 
while providing a contiguous memory address abstraction. 

3.5 Other Optimizations 
In addition to optimizing the shared memory usage, we considered 
two other optimizations: the use of pinned memory, and reducing 
the size of the output hash. 
Allocating and initializing the input data in host’s pinned memory 
(i.e., non-pageable memory) saves the GPU driver from an extra 
memory copy to an internal pinned memory buffer. In fact, the 
GPU driver always uses DMA (Direct Memory Access) from its 
internal pinned memory buffer when copying data from the host 
memory to the GPU global memory. Therefore, if the application 
allocates the input data in pinned memory from the beginning, it 
saves the driver from performing the extra copy to its internal 
buffer. However, allocating pinned memory adds some overhead 
since the kernel is involved in finding and preparing a contiguous 
set of pages before locking it. Our performance numbers do not 
show a pronounced effect for this overhead, since pinned memory 
buffers can be reused over subsequent library calls and thus this 
overhead is amortized. 
Additionally, we allow users to specify the size of the desired 
output hash. The rationale behind this feature is that, some 
applications such as block boundary for similarity detection only 
need the first few bytes of the hash value. 

4. EXPERIMENTAL EVALUATION 
We evaluate StoreGPU both with synthetic benchmarks (Section 
 4.1) and an application driven benchmark: we estimate the 
performance gain of an application using StoreGPU to compare 
similarities between multiple versions of the same checkpoint 
image (Section  4.2).  

4.1 Synthetic Benchmarks 
This section presents the performance speedup delivered by 
StoreGPU under a synthetic workload. We first compare GPU-
supported performance with the performance of the same 
workload running on a commodity CPU. Next, this section 
investigates the factors that determine the observed performance.  

4.1.1 Experiment Design 
The experiments are divided into two parts, each corresponding to 
the evaluation of one of the two uses of hashing described in 
Section  3 (i.e. Direct Hashing and Sliding Window Hashing). The 
performance metric of interest is execution speedup. 

Table 2 summarizes the factors that influence performance. 
Currently, StoreGPU provides the implementation of two hashing 
algorithms: MD5 and SHA1. The data size variation is intended to 
expose the impact of memory copy between the host and the GPU. 
Additionally the sliding-window hashing module has two specific 
parameters: window and offset size.  
Additionally, we explore the impact of the three performance 
optimizations presented in section  3 : i) the optimized use of 
shared memory; ii) memory pinning; and iii) reduced output size.  
 



Table 2: Factors considered in the experiments and their 
respective levels. Note that the sliding-window hashing module 
has extra parameters.   

Direct and Sliding Window Hashing 
Factors Levels 

Algorithm MD5 & SHA1 
Data Size 8KB to 96MB 
Shared Memory Enabled or Disabled 
Pinned Memory Enabled or Disabled 

Sliding-Window Hashing only 
Window Size 20 or 52 bytes 
Offset 4, 20 or 52 bytes 
Reduced Hash Size Enabled or Disabled 

The devices used in the performance analysis are: an Intel Core2 
Duo 6600 processor (released late 2006) and an NVIDIA GeForce 
8600 GTS GPU (released early 2007). We note that, in both cases, 
our implementation uses out-of-the-box hash function 
implementations. These implementations are single-threaded and 
use only one core of the Intel processor. We defer the discussion 
on the impact of the experiment platform choices to Section  6.  
For all performance data points, we report averages over multiple 
experiments. The number of experiments is adjusted to guarantee 
90% confidence intervals. We applied a full factorial experimental 
design to evaluate the impact of each combination of factors 
presented in Table 2.  The following sections present a summary 
of these experiments. 

4.1.2 Experimental Results 
The first question addressed by our experiments is: What is the 
execution time speedup offered by StoreGPU compared to a CPU 
implementation? To answer this question, we determine the ratio 
between the execution time on the GPU and the CPU for both 
MD5 and SHA1 hashing algorithms.  
Figure 4 shows the speedup achieved by StoreGPU for MD5 and 
SHA1 respectively for the Direct Hashing module. Values larger 
than one indicate performance improvements, while values lower 
than one indicate a slow down. The results show that the 
optimized (pinned and shared memory optimizations enabled) 
StoreGPU starts to offer speedups for blocks larger than 300KB  
and offer up to 4x speedup for large data blocks (>5MB).  
Note that as the data size increases, the performance improvement 
reaches a saturation point. It is also important to observe that non-
optimized GPU implementations may perform much worse than 
its CPU counterpart. When memory accesses are not optimized, 
the performance can decrease up to 30x for small blocks (8KB 
and MD5). This fact highlights two aspects: first, efficient 
memory management is paramount to achieving maximum 
performance in data-intensive applications running on GPUs; 
second, as the data size grows, the impact of the overhead in 
moving the data from the host to the device lowers compared to 
the processing cost. We discuss the latter point in more detail in 
the next section. 
Figure 5 and Figure 6 present the results of experiments for the 
sliding-window hashing module. Qualitatively, the observed 
behavior is similar to the direct hashing module. Quantitatively, 
however, the speedup delivered by StoreGPU is much higher. The 
figures show the results for MD5 sliding window hashing module. 
Other parameter choices and choosing SHA1 lead to similar 
patterns. Hence we do not include these results here. We direct the 
reader to our technical report.  

 
Figure 4: StoreGPU speedup for MD5 implementations for 

direct hashing. SHA1 performs similarly. 
Sliding window hashing introduces two extra parameters that 
influence performance: the window size and the offset. The 
window size determines how much data is hashed while the offset 
determines by how many bytes the window is advanced after each 
hash operation. The experiments explore four combinations for 
these two factors with values chosen to match those used by 
storage systems like LBFS [32], Jumbostore [20], and stdchk [9]. 
Figure 5 shows the results for a configuration that leads to intense 
computational overheads:  a window size of 20 bytes and an offset 
of 4 bytes. In this configuration (in fact suggested by LBFS), 
StoreGPU hashes the input data up to 9x faster for MD5 and up to 
5x faster for SHA1. For slightly larger chunks (56 bytes), 
StoreGPU performs a little slower when compared to the previous 
scenario. The speedup offered is over 7x for the MD5 algorithm 
and about 4.8x for SHA1. The same trend is also observed for 
experiments where the offset is increased to 20 bytes, as shown in 
Figure 6 .  

 
Figure 5: StoreGPU sliding-window hashing module speedup 

for MD5. Window size=20 bytes, offset=4 bytes. 

The sliding window hashing achieves higher speedup compared to 
direct hashing module for two reasons: First, the CPU 
implementation of the sliding window hashing will pay an 
additional overhead of a function call to hash each window, while 
StoreGPU spawns one thread per window that can execute in 
parallel. Second, since the window size is usually less than 64 
bytes (the input size for SHA or MD5), every window is padded 
to complete the 64 bytes. This translates to hashing considerably 
larger amounts of data for the same given input data, making this 
module more computationally intensive and thus a better fit for 
GPU processing.  This is also the reason we observe larger 
speedups with smaller window sizes and offsets. 



Finally, we observed that the speedup achieved for MD5 is better 
than SHA1. Although we do not have a precise understanding of 
the reasons for this performance disparity, our intuition is that this 
is due to the intrinsic characteristics of the algorithms. 

 
Figure 6: StoreGPU sliding-window hashing module speedup 
for MD5 Window size=56 bytes. Offset=56 bytes. 

4.1.3 Dissecting the Overheads 
The execution time of a particular computation on the GPU can be 
divided into the five stages outlined in section  2.2.2.: 
preprocessing, host-to-GPU data transfer, code execution, GPU-
to-host result transfer, and finally post-processing operations on 
CPU (e.g., result aggregation, release of resources).  

This section analyzes how the execution time of each of these 
stages is affected by the three optimization features available: 
pinned memory, shared memory and reduced hash size. Due to 
space constraints, we limit our analysis to the direct hashing 
module and MD5 algorithm implementation. Although not 
reported here, the sliding-window module and the SHA1 
implementations present the same characteristics.  
Stage 1: Preprocessing. Our application does not have a special 
data preprocessing operation, consequently this stage is effectively 
reduces to memory allocation only. The allocation of memory 
buffers (host and GPU) and the allocation of the buffer for 
returned results on the host main memory take between 0.3ms and 
14ms depending on the data size and whether the pinned memory 
optimization is enabled (Figure 7). The initialization takes longer 
with pinned memory and larger data sizes as it is costly to find 
contiguous pages to accommodate larger data sizes. However, the 
proportional overhead implied by the initialization time follows is 
negligible (Step 1 in Figure 10 to Figure 11).   
Stage 2: Data transfer In. The host-to-device transfer time varies 
depending on the data size and whether Pinned Memory 
optimization is used. As expected, although using pinned memory 
slows down Step I, it significantly improves transfer performance 
(Figure 8).  Compared to the theoretical 4GBps peak throughput 
of the PCIe 16x bus, we obtain, for large blocks, 2.5GB/s with 
pinning and 1.7GB/s without. 
Stage 3: Data processing. The performance of kernel execution is 
highly dependent on the utilization of shared GPU memory and its 
optimized use (i.e. avoiding bank conflicts - Figure 9). For large 
data volumes, without the optimized memory management, the 
kernel contributes up to 80% to the overall operation time (Figure 
10). When all optimizations are enabled, efficient use of shared 
memory reduces the kernel execution impact to about 40% of the 
total execution time (Figure 11). 

 
Figure 7: Stage 1 duration with and w/o pinned memory. 

 
Figure 8: Stage 2: Input transfer time.  

 
Figure 9: Stage 3: Time spent on kernel execution 
with/without shared memory optimization enabled. 
Stage 4: Data Transfer Out. Transferring the output causes 
proportionally less impact on the overall execution than transferring 
the input (Figure 10 to Figure 11). The reason is that, for direct 
hashing, the output size is several orders of magnitude smaller than 
the input. Moreover, the output buffers are always pinned; therefore, 
this step always benefits from the high throughput achieved by 
using pinned memory pages. As a result, we do not observe any 
major difference in terms of the impact caused by the output transfer 
across tested configurations. 
Stage 5: Post-processing. Finally, the aggregation of the kernel 
output into one hash value takes only up to a few milliseconds and 
has a minor impact on the overall execution time. Enabling GPU 
optimizations do not influence the performance of the last stage 
(hash aggregation), since the execution is performed on the CPU. 
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Figure 10: Percentage of total execution time spent on each 
stage when none of the optimizations are enabled. 

Figure 10 and Figure 11 illustrate the proportion of total execution 
time that corresponds to each execution stage. These results show 
the major impact of pinned and shared memory optimizations on the 
contribution of each stage to the total runtime  Using pinned 
memory reduces the impact of data transfer (compare Stage 2 in 
Figure 10 to Figure 11), while using the shared memory reduces 
kernel execution impact (compare Stage 2 in Figure 10 to Figure 
11). Finally, enabling both optimizations increases the impact of the 
copy operation, since pinning memory demands a higher overhead 
during the allocation stage (Stage 1 in Figure 11).    
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Figure 11: Percentage of total execution time spent on each 
stage with pinned and shared memory optimizations enabled. 

4.2 Application Level Performance 
This section complements the synthetic benchmarks presented so 
far. We evaluate the application-level gains achieved by using 
StoreGPU. Concretely, we evaluate the speedup offered by using 
StoreGPU to detect similarities between successive checkpoint 
images of the same application. 
Checkpointing is an indispensable fault tolerance technique adopted 
by long-running applications. These applications periodically write 
large volumes of snapshot data to persistent storage in an attempt to 
capture their current state. In the event of a failure, applications 
recover by rolling-back their execution state to a previously saved 
checkpoint. Consecutive checkpoint images  have often a high 
degree of similarity (for instance, Al-Kiswany et al. [9] detect up to 
82% similarity). 
We have collected the checkpoint images using BLCR 
checkpointing library [24] from 24 hour-long runs of BLAST, a 
popular bioinformatics application [10]. The interval between the 
checkpoints is 5min. The average image size is 279MB. 

Table 3. Online similarity detection throughput (in MBps) and 
speedup using SHA1. 

Throughput (MBps)  
StoreGPU Standard 

Similarity 
ratio detected

460.2 126.3 Fixed block size (using 
direct hashing) Speedup: 3.6x 23.4% 

51.9 9.7 Variable block size 
(LBFS technique using 
sliding window hashing) Speedup: 5.4x 

82.0% 

Table 4. Online similarity detection throughput (in MBps) and 
speedup using MD5. 

Throughput (MBps)  
StoreGPU Standard 

Similarity 
ratio detected

840 193 Fixed block size (using 
direct hashing) Speedup: 4.3x 

23% 

114 13.5 Variable block size 
(LBFS technique using 
sliding window hashing) Speedup: 8.4x 

80% 

Table 3 and Table 4 compare the throughput of online similarity 
detection between using standard hashing functions running on 
CPU and using StoreGPU. These results show dramatic 
improvement in the throughput of online similarity detection with 
both fixed and variable size blocks. Despite the fact that we are 
using a lower-end GPU, the results indicate that fixed-block 
similarity detection can be used even on 10Gbps systems while the 
variable block size technique can be used for systems connected 
with 1Gbps networks without introducing a performance bottleneck. 
We anticipate that using high-end graphical cards, e.g., NVIDIA 
GeForce 8800 series, will significantly enhance performance even 
further. 

5. RELATED WORK 
Exploiting GPUs for general purpose computing has recently gained 
popularity particularly as a mean to increase the performance of 
scientific applications. We refer the reader to Owens et al. [33]for a 
comprehensive survey. 
A number of science-oriented applications stand out. Liu et al. [29] 
implemented the Smith-Waterman algorithm, which compares two 
biological sequences by computing the number of steps required to 
transfer one sequence to the other, for a GPU platform and reported 
an 16x speedup in some cases. The algorithm is often used by 
bioinformatics applications to compare an unknown sequence with a 
database of known sequences.  
Thompson et al. [37] compared GPU with CPU implementations for 
a variety of programs, such as matrix multiplications and a solver 
for the 3-SAT problem. They also suggest minor extensions to 
current GPU architectures to improve their effectiveness in solving 
general purpose problems. Following this trend, Buck et al. [12] 
proposed a programming environment for general-purpose 
computations on GPUs that provides developers with a view of the 
GPU as a streaming coprocessor. Kruger et al. [28] implemented 
linear algebra operators for GPUs and demonstrated the feasibility 
of offloading a number of matrix and vector operations to GPUs.  
More related to our infrastructural focus, Govindaraju et al. [23] 
have implemented a number of database operations for GPUs, 
including conjecture selection, aggregation, and semi-linear queries 
operations.  
Our study is different from the above studies in three ways. First, we 
employ the latest GPU generation and the CUDA programming 



modes which are more suitable for general purpose programming.  
Unlike most of the previous studies [37], this relieves us from 
having to retrofit the problem that we solve into a graphics problem. 
Second, unlike the previous studies, we focus on primitive storage 
system operations and place them in a library, thus providing 
infrastructure for a broad set of applications.  Finally, we focus on 
data-intensive processing applications with a ratio of computation to 
input data of at least one order of magnitude lower than previous 
studies. 

6. DISCUSSION  
This section focuses on a number of interrelated questions: 
1.) Are StoreGPU hash function implementations strong? Is the 
system backward compatible? 
Most of today’s hash functions are designed using the Merkle-
Damgard construction [18]. Merkle and Damgard show that 
collision-free hash functions can divide data into fixed-sized blocks 
to be processed either sequentially, using the output of each stage as 
the input to the next, or in parallel and then concatenating and 
hashing the intermediate hash results to produce a single final hash 
value. Most hash functions such as MD5 and SHA adopt the 
iterative model because it does not require extra memory to store the 
intermediate hash results.  
Our approach for the direct-hashing module is based on the parallel 
construction. This choice has two implications. First, as a direct 
implication of the Merkle and Damgard argument, the resulting 
hash function will still have the same strength as the original 
sequential construction. Second, while our sliding-window module 
is still backward-compatible, hashing only small data windows, our 
direct-hashing technique produces different hash values compared 
to the sequential MD5 or SHA versions. This does not have an 
impact on the StoreGPU usability as long as all entities in the 
storage system use the same library. While we are still investigating 
alternatives to maintain backward-compatibility, one way to reduce 
the migration burden is to provide CPU implementations of 
StoreGPU that implement the same algorithm. 
2.) What are the implications of newer GPU cards (e.g., NVIDIA 
GeForce 9800 priced at $300) and of the new programming model 
(CUDA 1.1)? 
Two enhancements in the newer GPU cards have the potential to 
increase GPU-supported application performance: First, high-end 
cards are much more powerful. For example the GF9800 GTX has  
four times as many processors (128 cores), two times higher 
memory bandwidth (70.4 GB/s), and two times higher host-to-GPU 
bandwidth (due to using PCIe 2 16x interface) [4] than the card we 
use. This additional capacity should speed up the GPU-supported 
execution. Second, our work is based on CUDA v1.0. NVIDIA has 
recently released CUDA v1.1 which supports, among other features, 
an API which allows asynchronous memory copies for pinned 
memory and kernel launches [2]. This introduces the possibility to 
overlap GPU kernel execution and memory transfers. We estimate 
that by exploiting these features, we will be able to provide 
additional speedups. 
3.) Can other middleware benefit from this idea?  
We believe that a host of other popular primitives used in 
distributed systems can benefit from GPU support, such as erasure 
coding, compressed set representation using Bloom filters, and data 
compression among others. For example, different parallel 
algorithms for Reed-Solomon coding exist [17] and can be deployed 
on GPUs; on the other hand, Gilchrist [22] proposes a parallel 
implementation of the bzip2 loss-less data compression algorithm 

that may benefit from GPU support. Currently, we are 
experimenting with a GPU-optimized Bloom filter implementation. 
In general, we believe that GPUs can be used by any data-parallel 
application to provide significant performance improvements, 
provided that the number of operations performed per byte being 
processed is sufficiently high to amortize the additional overheads 
due to host-device memory transfers.  
4) How does StoreGPU perform against the theoretical peak? 
Since StoreGPU is a data-intensive application as opposed to a 
compute-intensive one, we first consider memory access 
throughput. While the memory bandwidth listed in NVIDIA’s 
GeForce 8600 specification is as a high 32GB/s [3], the real 
memory access bottleneck is the PCI-Express bus, listed at 4GB/s in 
each direction. This is congruent to our experiments, which show 
that pinned memory transfers achieve up to 2.48GB/s. Furthermore, 
we estimate NVIDIA’s GeForce 8600  theoretical non floating point 
instruction exaction peak rate at to 46.4 GIPS (Giga Instruction Per 
Second). Our StoreGPU kernel performs at up to 19.54 GIPS, a 
slowdown compared to the peak rate mainly due to internal memory 
copy operations inside the GPU.  
5) Is the comparison fair?  
We have used two low-end devices, an Intel Core2 Duo 6600 
processor and an NVIDIA GeForce 8600 GTS GPU, for our 
comparison. In both cases, we used the unmodified hashing 
functions (with best compiler options). On the CPU-side, two 
additional optimizations may also be considered: first, using a multi-
threaded implementation to exploit all CPU cores, and second, 
using Intel’s Streaming SIMD Extensions (SSE).  
We believe that not exploring these optimizations does not impact 
the validity of our argument that GPUs can effectively be used to 
accelerate distributed system middleware for three reasons. First, in 
most deployments, CPUs are shared by multiple applications. We 
demonstrate that CPU-intensive middleware primitives can be 
effectively offloaded to a GPU to reduce the load of the main 
processor. Second, to use the SSE computational units the 
application needs to be transformed into vector processing 
operations, an operation that complicates the development if done 
manually and for which compiler support has just begun to emerge.  

7. CONCLUSIONS 
This study demonstrates the feasibility of harvesting GPU 
computational power to support distributed systems middleware. 
We focus on accelerating compute- and data-intensive primitives of 
distributed storage systems. We implemented StoreGPU, a library 
which enables distributed storage system designers to offload 
hashing-based operations to GPUs, demonstrating 8x speedup when 
comparing StoreGPU performance to a standard CPU 
implementation. Additionally, we show that applications that 
depend on hashing computations to effectively identify similarity 
among large volumes of data, such as comparing two checkpoint 
images, benefit from the throughput boost enabled by StoreGPU.  
Despite the positive outcome of our study, it is important to 
highlight the challenges involved in the process. As pointed out by 
our experiments and discussion section, careful optimization of 
memory access patterns is paramount to achieving such levels of 
performance. Nevertheless, we expect that, as offloading 
computations to GPU becomes mainstream, hardware vendors will 
offer better support for memory access optimizations in the form of 
compilers, profilers, etc.  
An immediate future exploration is a deeper performance analysis 
with a broader set of techniques used in distributed storage systems, 



such as erasure coding and Bloom filters. Furthermore, we plan to 
fully integrate the library with a distributed storage system 
prototype to evaluate its impact from an application perspective. 
The efforts briefly described above and the further exploration of 
the new features in CUDA1.1 will certainly occupy our minds with 
exciting investigations in the near future. 
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