
StoreGPU: Exploiting Graphics Processing Units
to Accelerate Distributed Storage Systems

Samer Al-Kiswany, Abdullah Gharaibeh, Elizeu Santos-Neto, George Yuan,
Matei Ripeanu

Electrical and Computer Engineering Department
The University of British Columbia

Vancouver, Canada
{samera, abdullah, elizeus, gyuan, matei}@ece.ubc.ca

ABSTRACT
Today Graphics Processing Units (GPUs) are a largely
underexploited resource on existing desktops and a possible cost-
effective enhancement to high-performance systems. To date,
most applications that exploit GPUs are specialized scientific
applications. Little attention has been paid to harnessing these
highly-parallel devices to support more generic functionality at the
operating system or middleware level. This study starts from the
hypothesis that generic middleware-level techniques that improve
distributed system reliability or performance (such as content
addressing, erasure coding, or data similarity detection) can be
significantly accelerated using GPU support.
We take a first step towards validating this hypothesis, focusing
on distributed storage systems. As a proof of concept, we design
StoreGPU, a library that accelerates a number of hashing based
primitives popular in distributed storage system implementations.
Our evaluation shows that StoreGPU enables up to eight-fold
performance gains on synthetic benchmarks as well as on a high-
level application: the online similarity detection between large
data files.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management -
Distributed file systems. D.4.8 [Operating Systems]:
Performance - Measurements, Modeling and Prediction. I.3.1
[Computer Graphics]: Hardware Architecture – Graphics
processors, Parallel Processing.

General Terms
Performance, Design, Experimentation.

Keywords
Middleware, Storage System, Graphics Processing Unit, GPU
hashing, StoreGPU.

1. INTRODUCTION
Recent advances in processor technology [31] have resulted in a
wide availability of massively parallel Graphics Processing Units
(GPUs) in commodity desktop systems. For example, commodity
GPUs like NVIDIA’s GeForce 8600 priced at about $100 have 32
processors and 256 MB of memory while high-end GPUs, like the

NVIDIA 8800 GTX priced at about $300, have up to 128
processors running at 575MHz and 768MB of memory. With
these characteristics, GPUs are often underutilized in
corporate/educational desktops (as they are generally provisioned
for graphics-intensive workloads such as high-definition video)
and may be cost-effective enhancements to high-end server
systems
However, the constraints introduced by a GPU programming
model which, until recently, specialized in supporting only
graphical processing, have led past efforts aimed at harnessing this
resource to focus exclusively on computationally intensive
scientific applications [33]. While these efforts have confirmed
that significant speedup is achievable, the development cost for
this specialized platform is often prohibitive. Recently, however,
the introduction of general-purpose programming models (e.g.,
NVIDIA’s CUDA [7]) has lowered the development cost and
opened this resource to a new set of applications.
This study starts from the observation that a number of techniques
that enhance distributed system reliability and/or performance
(e.g., content addressability in data storage [8, 34], erasure codes
[39], on-the-fly data similarity detection [32]) incur computational
overheads that often preclude their effective usage with today’s
commodity hardware. We study the viability of offloading these
data-processing intensive operations to the GPU. We demonstrate
that GPUs offer up to 8x speedup compared to traditional CPU-
based processing. This brings in a new overhead tradeoff balance
point where the above techniques can be effectively used to
support high-performance computing system middleware.
While the approach we explore can be employed to support a wide
range of distributed systems, we focus on distributed storage. The
reason is the increasing performance gap between the storage
system and the processor, memory, and network subsystems. This
performance gap has made the cost-effective engineering of a
distributed storage system capable of keeping up with the other
components of a distributed system (e.g., data-processing,
visualization) an increasingly challenging task.
This project proposes StoreGPU, a library that enables transparent
use of a GPU’s computational power to support data- and
compute-intensive primitives used in distributed storage systems.
In particular, we focus on specialized use of hashing to support
content addressability, on-the-fly similarity detection, data
integrity, and load balancing. By building the StoreGPU library
and making it available to the community, we open the possibility
of efficiently incorporating these mechanisms into distributed
storage systems, thereby unleashing a valuable set of optimization
techniques. Furthermore, we present evidence that this approach

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
HPDC’08, June 23–27, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-59593-997-5/08/06...$5.00.

can be extended to other routines that support today’s distributed
systems like erasure coding [14], compact dataset representation
using Bloom filters [11], data compression [25], and data filtering.
For instance, in the digital fountain approach for data
dissemination [13], the data source continuously generates erasure
codes of the original data blocks. A library that transparently
outsources the computationally demanding encoding operation to
the GPU will dramatically reduce the load of the source CPU and
enhance overall system performance.
The contribution of this work is threefold:
 First, this project explores a new territory: the use of GPUs to

support general purpose computing middleware (as opposed to
specialized scientific applications). We show that exploiting
GPU in this context brings valuable performance gains.
Moreover, we present evidence that GPUs can enhance the
performance of storage systems, a usage scenario where the
challenge lays in the data-intensive nature of system
operations. In this scenario, large volumes of data need to be
sequentially processed; an operational case outside the scope of
the original GPU design. To the best of our knowledge, no
previous studies have attempted to use the GPUs to enhance
the performance of this category of applications.

 Second, we present a performance model that allows the
estimation of a data-processing application’s performance on a
given GPU model. The performance model can be used to
evaluate whether modifying an application to exploit GPUs is
worth the effort. We also present a detailed analysis of the
factors that influence performance for a subset of applications
and quantitatively evaluate their effect.

 Finally, we make the StoreGPU library available to the
community. This library can be used to harness the
computational power of GPUs with minimal modifications to
current systems1. Depending on its configuration and the target
application’s data usage patterns, StoreGPU enables significant
performance gains. When comparing the performance enabled
by a low-end GPU (the NVIDIA 8600GTS) and a commodity
CPU (Intel Core2 Duo 6600), StoreGPU achieves up to eight-
fold performance gains on not only synthetic benchmarks but
also when supporting a high-level application.

The rest of the paper is organized as follows. The next section
justifies our choice of optimizing hash-based operations through a
survey of hashing use in storage systems (Section 2.1) and
describes the GPU programming model and the main factors
influencing application performance when using GPUs (Section
 2.2). Section 3 details the design of StoreGPU library. Section 4
presents our experimental results, section 0 surveys the related
work, and section 6 presents a discussion of our approach. We
conclude in section 7.

2. BACKGROUND
This section surveys the use of hashing techniques to support
efficiency and reliability in data storage systems (whether
distributed or not) and presents the architecture and programming
model of the used GPU.

2.1 Hashing in Storage Systems
Hash-based primitives are commonly used by data-oriented
system middleware. Content addressability, data integrity, load

1 StoreGPU is an open source project, the code can be found at:
http://netsyslab.ece.ubc.ca

balancing, data similarity detection, and compact set
representation are all middleware primitives with best
implementations based on various uses of hashing. Yet the
computational overheads of these implementations sets them apart
as potential bottlenecks [34] in today’s high-performance
distributed systems that commonly employ multi-Gbps optical
links.
This section briefly details some of these hashing-based primitives
with two goals in mind: First, we support the argument that their
computational overheads prevent their use in conventional
high-performance systems. Second, we present the usage
scenarios that inform the design of StoreGPU.

2.1.1 Content Addressable Storage
In systems that support content addressability [34], data blocks are
named based on their content. In this context, hashing is used as a
naming technique: data-block names are simply the hash value of
the data [8, 34, 38]. There are multiple advantages to this
approach: it provides a flat namespace for data-block identifiers
and a naming system which, in turn, simplifies the separation of
file-metadata from data-block metadata. However, the overhead
required to compute block hashes may limit performance in
workloads that have frequent updates.

2.1.2 Data-similarity detection
Content addressability enables tradeoffs between computation and
storage space overheads. Consider a versioning file system [32]:
When a client saves a new version of a file, the file system divides
the file into blocks, computes their identifiers (often hashes of the
block), and sends these identifiers to the storage system. The
storage system, in turn, compares the identifiers received with the
identifiers of blocks of previous versions of the file to detect
which blocks have changed and need to be persistently stored. The
client, informed of the presence of similar blocks, will not store
them again, saving considerable storage space and network
bandwidth. Experience shows space savings can be as high as
60% in production [34] and research systems [9].

2.1.3 Data Integrity
In an untrustworthy environment, hashing is used to support data
integrity and non-repudiability guarantees. For example, in
accountable storage systems [40], Samsara [15], SFS [21], and
SafeStore [27], integrity of the stored data is protected using
digital signatures. To keep the overhead of signing and verifying
integrity manageable, only the hash of the data is signed and
stored together with the data and the public credentials of the
signing entity.

2.1.4 Load Balancing
Hashing is used to load-balance a distributed storage system. For
instance, hashing is used in systems based on consistent-hashing
techniques [26, 35, 36] to assign loads to nodes [16, 19]. A good
hashing function that minimizes collisions leads to an efficient
data distribution technique since blocks are distributed evenly
between the storage nodes.

2.1.5 Computing Block Boundaries
To implement the aforementioned techniques, storage systems
need to divide files into multiple blocks. To this end, two
approaches are possible: fixed- or variable-size blocks. In the first
approach, the file is divided into a set of equally-sized blocks. In
the second approach, block boundaries (i.e., markers for block
start and end) are defined based on file content. For instance, the

Low-Bandwidth File System (LBFS) [32] and JumboStore [20]
both detect block boundaries by passing all successive 48 byte
‘windows’ of the file through a hash function and declaring a
block boundary if the last 20 bits of the hash value are all zero.
The advantage of this approach is that, unlike fixed-blocks, the
ability to detect block similarities is preserved even in the
presence of data insertion and deletion. However, this technique is
computationally intensive since a large number of hashes need to
be computed to determine the block boundaries, therefore
imposing a high overhead and making usage in the context of
general-purpose data storage systems difficult. In fact, the low
throughput provided by this technique is the main reason its
proponents recommend its use in storage systems supported by
low-bandwidth networks [32].

2.1.6 Summary of Usage Scenarios
We can reduce the use cases presented to two uses of hashing:

 Direct Hashing, where the hash for an entire data block is
computed (to support content addressability, data integrity, or
fixed-block similarity detection), and

 Sliding Window Hashing, where a large number of possibly
overlapping windows in a large data block are computed (to
support similarity detection based on variable-block sizes).

Finally, we note that the aforementioned techniques require a
collision-resistant hash function, such as MD5 or SHA, which are
more computationally intensive than simple hashing functions
(e.g., CRC codes).

2.2 GPU Programming
This section presents an overview of the latest GPU models’
architecture, main performance factors, and the programming
model. We focus on NVIDIA’s architecture and programming
environment: the Compute Unified Device Architecture (CUDA)
[7]. Other vendors (e.g., AMD) have also developed similar
architectures and programming environments [1]. We have
selected the NVIDIA cards for two reasons. First, it has the largest
market share [5, 6] and second, the CUDA programming model is
more suitable for general purpose computing. Unlike AMD’s
Close To Metal (CTM) programming model [1], which provides a
low-level assembly language for GPU programming, CUDA
supports the use of C programming language for application
programming.
The GPU has a Single-Instruction Multiple-Data (SIMD)
architecture. It offers a number of SIMD multiprocessors and four
different memories each with their own performance
characteristics (detailed in the next subsection). The CUDA
programming model extends the C language with directives and
libraries to abstract the GPU architecture. CUDA allows the
programmer to control application variables’ allocation (e.g., the
memory type in which the variable resides), and provides an API
for GPU specific functions, such as device properties querying,
timing, memory management, and per multiprocessor thread
synchronization.
Although using C as the programming language lowers the
barriers to developing general purpose code on GPUs, the
programming model requires that the application fits the Single-
Instruction Multiple-Data (SIMD) model. Moreover, despite the
abstractions provided by the CUDA API, it is still challenging to
make efficient use of the GPU memory. As our performance
analysis (Section 4) shows, poor memory management may
critically impair performance.

2.2.1 GPU Architecture
Figure 1 presents a high-level view of NVIDIA’s GPU
architecture. The device is composed of a number of SIMD
multiprocessors. Each multiprocessor incorporates a small (16KB
in the GeForce 8600GTS) but fast memory, shared by all
processors in the multiprocessor. All multiprocessors have access
to three other device-level memory modules: global (a.k.a. device
memory), texture, and constant. These memories are also
accessible from the host machine. The global memory supports
read and write operations and it is the largest memory in the GPU
(with size ranging from 256 to 768 MB). In comparison, the
texture and constant memories are much smaller and have
restricted access policies. Apart from size, the critical
characteristic of the various GPU memory modules is their access
latencies. While accessing an entry in the shared memory takes up
to four cycles, it takes 400 to 600 cycles to access the global
memory [7].
Typically, a general purpose application will first transfer the
application data from host (CPU) memory to the GPU global
memory and then try to maximize the usage of the shared memory
throughout the computation.

Figure 1. GPU Architecture.

Programming efficient applications to exploit GPUs implies
extracting the target application’s parallelism and employing
efficient memory and thread management techniques. Improper
task decomposition, memory allocation, or memory transfers can
lead to dramatic performance degradation. Particularly, efficient
use of the shared memory is a challenging task for three reasons.
First, the shared memory is often small compared to the volume of
data being processed. Second, the shared memory is divided into
16 banks and all read and write operations that access the same
bank are serialized, hence, reducing concurrency. Consequently,
to maximize the performance, an application should schedule
concurrent threads to access data on different banks. The fact that
a single bank does not represent a contiguous memory space
increases the complexity of efficient memory utilization. Finally,
increasing the number of threads per multiprocessor does not
directly lead to a linear performance gain although it may help
hide global memory access latency. The reason is that increasing
the number of threads decreases the amount of shared memory
available per thread. Obviously, the optimal resource usage
configuration is tightly coupled with the application
characteristics (e.g., the data access patterns) and GPU hardware
specifications (the number of registers in the multiprocessor or the
size of shared memory available).

2.2.2 GPU Performance Factors
When using the GPU, an application passes through five main
stages: preprocessing, host-to-GPU data transfer, processing,
GPU-to-host results transfer, and post-processing. Table 1
describes these stages, identifies the main performance factors for
each stage, and introduces the notation used throughout the rest of
this paper to model performance. (We note that not all
applications will have the preprocessing or post-processing
stages.)
Table 1. Application processing stages and performance factors.

Stage Sub-stages Operations performed
1.1.GPU initialization

(TGPUInit)
GPU initialization

1.2.Memory allocation
(TMemAlloc)

Memory allocation at the host
and the GPU

(1)
Preprocessing

1.3.Pre-processing
(TPreProc)

Application-specific data
preprocessing on the CPU

(2) Data
Transfer In

Data transfer to GPU
(TDataHtoG)

Data transfer from host’s
memory to GPU global memory

3.1.Data transfer to shared
memory (TDataGtoS)

Data transfer from global GPU
memory to shared memories.

3.2.Processing (TGPUProc) Application ‘kernel’ processing(3)
Processing 3.3.Data transfer to device

global memory
(TDataStoG)

Result transfer from shared
memory to global memory

(4) Data
Transfer Out

4.1.Output data transfer
(TDataGtoH)

Transfer the results to the host
system RAM.

(5) Post-
processing

5.1.Post-processing
(TPostProc)

Application-specific post
processing on CPU resource
deallocation

For a data-parallel application, the processing step is usually
repeated multiple times until all input data is processed. During
each iteration, parts of the data are copied from global memory to
each multiprocessor’s shared memory and processed by the
application ‘kernel’ before the results are then transferred back to
the global memory. Thus, the runtime of a data parallel
application can be modeled as:

TTotal = TPreprocesing+ TDataHtoG + TProcessing + TDataGtoH + TPostProcH
 = TGPUInit + TMemAlloct + TPreProc + TDataHtoG +

×
× SMSizeN

DataSize (TDataGtoS + TProc + TDataStoG) +

TDataGtoH + TPostProc (1)
where DataSize is the size of an application data set, N is the
number of multiprocessors, and SMSize is the size of the
multiprocessor’s shared memory. The parameters that influence
the formula above (e.g., host-to-memory transfer throughput,
device global-to-shared memory throughput, initialization
overheads) can be either benchmarked or found in the GPU data
sheets.
Equation 1 allows system designers to estimate the benefits of
offloading processing to the GPU and to identify parts of the
application that need optimization. GPUs are known for their
ability to accelerate number-crunching applications, but are less
efficient when hashing large volumes of data. This is due not only
to the overheads incurred when transferring large amounts of data
to and from the device, but also to the fact that the various floating
point units are not used. In fact, trivial data processing, such as a
simple XOR between two data blocks, even on a large amount of
data, is faster on the CPU than on the GPU. While the GPU can
perform computations at a huge theoretical sustained instruction-
per-second peak rate (46.4 GIPS -Giga Instruction Per Second for
the NVIDIA 8600 GTS card), the data transfer from the machine

to the GPU is limited at 4GB/s, the theoretical maximum
bandwidth of PCIe 16x interface.
To give the reader an intuition of how the various overheads
interplay, we present the time breakdown to hash a 96MB data
block: transferring the data to the GPU takes 37.4ms (for an
achieved throughput of 2.5GBps), hashing takes 41.8ms(using the
four GT8600 multiprocessors), and copying the results back takes
1.0ms. Overall, in this configuration, the memory transfers
represent over 48% of the execution time.

3. StoreGPU Design
The design of StoreGPU is driven by storage systems’ use of
hashing as presented in section 2.1. This section presents
StoreGPU’s application programming interface (API) and a high-
level design overview. We present a number of performance-
oriented design improvements in the evaluation section.
SHA1 (RFC 3174) and MD5 (RFC 1321), as well as most widely
used hash functions, follow the sequential Merkle-Damgård
construction approach [18, 30]. In this sequential approach, at
each stage, one chunk of data is processed to produce a fixed size
output. The output of each stage is used as an input to the
following stage together with a new data chunk. This sequential
construction does not allow multiple threads to operate
concurrently in hashing the data. To exploit the highly parallel
GPU architecture, our design uses the original hash functions as a
building block to process multiple chunks of data in parallel. The
discussion section presents evidence that the hash function we
build is as strong as the original, sequentially built, hash function.

3.1 StoreGPU API
We designed StoreGPU API to correspond to the two main use
cases presented in Section 2.1.
Direct Hashing, i.e., hashing large blocks of data, with size
ranging from kilobytes to megabytes or more. To address this
scenario, the library provides the following interface:
char* SHA(char* DataBuffer,int DataBufferSize)
char* MD5(char* DataBuffer,int DataBufferSize)

Sliding Window Hashing. As opposed to the first case, content-
based detection of block boundaries requires hashing numerous
small data blocks (sized from tens to hundreds of bytes). To
address this usage pattern, the library provides the following
interface:
char* SHA(char* DataBuffer,
 int DataBufferSize,int WinSize,int Offset)
char* MD5(char* DataBuffer,
 int DataBufferSize,int WinSize,int Offset)

This API returns an array of hashes, where each entry of this array
is the result of hashing a window of data of size WinSize at
shifting offset Offset.
The rest of this section presents the two main modules of
StoreGPU with a focus on parallelizing hash computations.

3.2 Design of the Direct Hashing Module
Figure 2 presents StoreGPU’s direct hashing module design. Once
input data is transferred from the CPU, it is divided into smaller
blocks and, every small block is hashed. The result is placed in a
single output buffer and, finally, the output buffer is hashed to
produce the final hash value.
Two aspects are worth mentioning. First, there are no
dependencies between the intermediate hashing computations in
Step 2 (Figure 2). Consequently, each computation can be

executed in a separate thread. Second, this design uses the CPU to
aggregate the intermediary hashes (Step 3). The reason is that
synchronization of GPU threads across the blocks inside the GPU
is not possible.

Figure 2: Direct hashing module architecture. The blocks with
circular arrows represent the standard hashing kernel. Stages
numbers correspond to Table 1.

3.3 The Sliding Window Hashing Module
To parallelize the computation of a large number of small hashes
drawn from a large data block, we hash in parallel all the small
blocks and aggregate the result in a buffer. This module’s
architecture is presented in Figure 3.

Figure 3: Sliding window hashing module architecture. The
blocks with circular arrows represent the standard hashing
kernel. Stage numbers correspond to Table 1.
Each of the hash functions in Figure 3 can be executed in a
separate thread since there are no dependencies between
computations. The challenge in implementing this module lies in
the memory management to extract maximum performance. Note
that the input data is not divided into smaller blocks as the
previous case. The reason is that the input data for each thread
may overlap with the neighboring threads.

3.4 Optimized Memory Management
Although the design of the two modules presented here are
relatively simple, optimizing their performance for GPU
deployment is a challenging task. For example, one aspect that
induces additional complexity is maximizing the number of
threads to extract maximal parallelism (around 100K threads are
created for large blocks) while avoiding multiple threads
accessing the same shared memory bank and maximizing the use
of each processors’ registers. To this end, we have implemented
our own shared memory management mechanism with two main
functions. First, it allocates a fixed space for every thread in a
single shared memory bank and avoids assigning workspaces
allocated on the same memory bank to concurrent threads in the
same multiprocessor. When a thread starts, it copies its data from

the global memory to its shared memory workspace, hence
avoiding subsequent accesses to the slower global memory.
Second, it abstracts the shared memory to allow the thread to
access its workspace as a contiguous address space. Effectively
the shared memory management mechanism serves to increase the
shared memory performance through avoiding bank conflicts
while providing a contiguous memory address abstraction.

3.5 Other Optimizations
In addition to optimizing the shared memory usage, we considered
two other optimizations: the use of pinned memory, and reducing
the size of the output hash.
Allocating and initializing the input data in host’s pinned memory
(i.e., non-pageable memory) saves the GPU driver from an extra
memory copy to an internal pinned memory buffer. In fact, the
GPU driver always uses DMA (Direct Memory Access) from its
internal pinned memory buffer when copying data from the host
memory to the GPU global memory. Therefore, if the application
allocates the input data in pinned memory from the beginning, it
saves the driver from performing the extra copy to its internal
buffer. However, allocating pinned memory adds some overhead
since the kernel is involved in finding and preparing a contiguous
set of pages before locking it. Our performance numbers do not
show a pronounced effect for this overhead, since pinned memory
buffers can be reused over subsequent library calls and thus this
overhead is amortized.
Additionally, we allow users to specify the size of the desired
output hash. The rationale behind this feature is that, some
applications such as block boundary for similarity detection only
need the first few bytes of the hash value.

4. EXPERIMENTAL EVALUATION
We evaluate StoreGPU both with synthetic benchmarks (Section
 4.1) and an application driven benchmark: we estimate the
performance gain of an application using StoreGPU to compare
similarities between multiple versions of the same checkpoint
image (Section 4.2).

4.1 Synthetic Benchmarks
This section presents the performance speedup delivered by
StoreGPU under a synthetic workload. We first compare GPU-
supported performance with the performance of the same
workload running on a commodity CPU. Next, this section
investigates the factors that determine the observed performance.

4.1.1 Experiment Design
The experiments are divided into two parts, each corresponding to
the evaluation of one of the two uses of hashing described in
Section 3 (i.e. Direct Hashing and Sliding Window Hashing). The
performance metric of interest is execution speedup.

Table 2 summarizes the factors that influence performance.
Currently, StoreGPU provides the implementation of two hashing
algorithms: MD5 and SHA1. The data size variation is intended to
expose the impact of memory copy between the host and the GPU.
Additionally the sliding-window hashing module has two specific
parameters: window and offset size.
Additionally, we explore the impact of the three performance
optimizations presented in section 3 : i) the optimized use of
shared memory; ii) memory pinning; and iii) reduced output size.

Table 2: Factors considered in the experiments and their
respective levels. Note that the sliding-window hashing module
has extra parameters.

Direct and Sliding Window Hashing
Factors Levels

Algorithm MD5 & SHA1
Data Size 8KB to 96MB
Shared Memory Enabled or Disabled
Pinned Memory Enabled or Disabled

Sliding-Window Hashing only
Window Size 20 or 52 bytes
Offset 4, 20 or 52 bytes
Reduced Hash Size Enabled or Disabled

The devices used in the performance analysis are: an Intel Core2
Duo 6600 processor (released late 2006) and an NVIDIA GeForce
8600 GTS GPU (released early 2007). We note that, in both cases,
our implementation uses out-of-the-box hash function
implementations. These implementations are single-threaded and
use only one core of the Intel processor. We defer the discussion
on the impact of the experiment platform choices to Section 6.
For all performance data points, we report averages over multiple
experiments. The number of experiments is adjusted to guarantee
90% confidence intervals. We applied a full factorial experimental
design to evaluate the impact of each combination of factors
presented in Table 2. The following sections present a summary
of these experiments.

4.1.2 Experimental Results
The first question addressed by our experiments is: What is the
execution time speedup offered by StoreGPU compared to a CPU
implementation? To answer this question, we determine the ratio
between the execution time on the GPU and the CPU for both
MD5 and SHA1 hashing algorithms.
Figure 4 shows the speedup achieved by StoreGPU for MD5 and
SHA1 respectively for the Direct Hashing module. Values larger
than one indicate performance improvements, while values lower
than one indicate a slow down. The results show that the
optimized (pinned and shared memory optimizations enabled)
StoreGPU starts to offer speedups for blocks larger than 300KB
and offer up to 4x speedup for large data blocks (>5MB).
Note that as the data size increases, the performance improvement
reaches a saturation point. It is also important to observe that non-
optimized GPU implementations may perform much worse than
its CPU counterpart. When memory accesses are not optimized,
the performance can decrease up to 30x for small blocks (8KB
and MD5). This fact highlights two aspects: first, efficient
memory management is paramount to achieving maximum
performance in data-intensive applications running on GPUs;
second, as the data size grows, the impact of the overhead in
moving the data from the host to the device lowers compared to
the processing cost. We discuss the latter point in more detail in
the next section.
Figure 5 and Figure 6 present the results of experiments for the
sliding-window hashing module. Qualitatively, the observed
behavior is similar to the direct hashing module. Quantitatively,
however, the speedup delivered by StoreGPU is much higher. The
figures show the results for MD5 sliding window hashing module.
Other parameter choices and choosing SHA1 lead to similar
patterns. Hence we do not include these results here. We direct the
reader to our technical report.

Figure 4: StoreGPU speedup for MD5 implementations for

direct hashing. SHA1 performs similarly.
Sliding window hashing introduces two extra parameters that
influence performance: the window size and the offset. The
window size determines how much data is hashed while the offset
determines by how many bytes the window is advanced after each
hash operation. The experiments explore four combinations for
these two factors with values chosen to match those used by
storage systems like LBFS [32], Jumbostore [20], and stdchk [9].
Figure 5 shows the results for a configuration that leads to intense
computational overheads: a window size of 20 bytes and an offset
of 4 bytes. In this configuration (in fact suggested by LBFS),
StoreGPU hashes the input data up to 9x faster for MD5 and up to
5x faster for SHA1. For slightly larger chunks (56 bytes),
StoreGPU performs a little slower when compared to the previous
scenario. The speedup offered is over 7x for the MD5 algorithm
and about 4.8x for SHA1. The same trend is also observed for
experiments where the offset is increased to 20 bytes, as shown in
Figure 6 .

Figure 5: StoreGPU sliding-window hashing module speedup

for MD5. Window size=20 bytes, offset=4 bytes.

The sliding window hashing achieves higher speedup compared to
direct hashing module for two reasons: First, the CPU
implementation of the sliding window hashing will pay an
additional overhead of a function call to hash each window, while
StoreGPU spawns one thread per window that can execute in
parallel. Second, since the window size is usually less than 64
bytes (the input size for SHA or MD5), every window is padded
to complete the 64 bytes. This translates to hashing considerably
larger amounts of data for the same given input data, making this
module more computationally intensive and thus a better fit for
GPU processing. This is also the reason we observe larger
speedups with smaller window sizes and offsets.

Finally, we observed that the speedup achieved for MD5 is better
than SHA1. Although we do not have a precise understanding of
the reasons for this performance disparity, our intuition is that this
is due to the intrinsic characteristics of the algorithms.

Figure 6: StoreGPU sliding-window hashing module speedup
for MD5 Window size=56 bytes. Offset=56 bytes.

4.1.3 Dissecting the Overheads
The execution time of a particular computation on the GPU can be
divided into the five stages outlined in section 2.2.2.:
preprocessing, host-to-GPU data transfer, code execution, GPU-
to-host result transfer, and finally post-processing operations on
CPU (e.g., result aggregation, release of resources).

This section analyzes how the execution time of each of these
stages is affected by the three optimization features available:
pinned memory, shared memory and reduced hash size. Due to
space constraints, we limit our analysis to the direct hashing
module and MD5 algorithm implementation. Although not
reported here, the sliding-window module and the SHA1
implementations present the same characteristics.
Stage 1: Preprocessing. Our application does not have a special
data preprocessing operation, consequently this stage is effectively
reduces to memory allocation only. The allocation of memory
buffers (host and GPU) and the allocation of the buffer for
returned results on the host main memory take between 0.3ms and
14ms depending on the data size and whether the pinned memory
optimization is enabled (Figure 7). The initialization takes longer
with pinned memory and larger data sizes as it is costly to find
contiguous pages to accommodate larger data sizes. However, the
proportional overhead implied by the initialization time follows is
negligible (Step 1 in Figure 10 to Figure 11).
Stage 2: Data transfer In. The host-to-device transfer time varies
depending on the data size and whether Pinned Memory
optimization is used. As expected, although using pinned memory
slows down Step I, it significantly improves transfer performance
(Figure 8). Compared to the theoretical 4GBps peak throughput
of the PCIe 16x bus, we obtain, for large blocks, 2.5GB/s with
pinning and 1.7GB/s without.
Stage 3: Data processing. The performance of kernel execution is
highly dependent on the utilization of shared GPU memory and its
optimized use (i.e. avoiding bank conflicts - Figure 9). For large
data volumes, without the optimized memory management, the
kernel contributes up to 80% to the overall operation time (Figure
10). When all optimizations are enabled, efficient use of shared
memory reduces the kernel execution impact to about 40% of the
total execution time (Figure 11).

Figure 7: Stage 1 duration with and w/o pinned memory.

Figure 8: Stage 2: Input transfer time.

Figure 9: Stage 3: Time spent on kernel execution
with/without shared memory optimization enabled.
Stage 4: Data Transfer Out. Transferring the output causes
proportionally less impact on the overall execution than transferring
the input (Figure 10 to Figure 11). The reason is that, for direct
hashing, the output size is several orders of magnitude smaller than
the input. Moreover, the output buffers are always pinned; therefore,
this step always benefits from the high throughput achieved by
using pinned memory pages. As a result, we do not observe any
major difference in terms of the impact caused by the output transfer
across tested configurations.
Stage 5: Post-processing. Finally, the aggregation of the kernel
output into one hash value takes only up to a few milliseconds and
has a minor impact on the overall execution time. Enabling GPU
optimizations do not influence the performance of the last stage
(hash aggregation), since the execution is performed on the CPU.

0%

20%

40%

60%

80%

100%

8 32 12
8

37
5

15
00

60
00

24
00

0

96
00

0

Data Size (KB)

R
un

tim
e

P
er

ce
nt

ag
e

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 10: Percentage of total execution time spent on each
stage when none of the optimizations are enabled.

Figure 10 and Figure 11 illustrate the proportion of total execution
time that corresponds to each execution stage. These results show
the major impact of pinned and shared memory optimizations on the
contribution of each stage to the total runtime Using pinned
memory reduces the impact of data transfer (compare Stage 2 in
Figure 10 to Figure 11), while using the shared memory reduces
kernel execution impact (compare Stage 2 in Figure 10 to Figure
11). Finally, enabling both optimizations increases the impact of the
copy operation, since pinning memory demands a higher overhead
during the allocation stage (Stage 1 in Figure 11).

0%

20%

40%

60%

80%

100%

8 32 12
8

37
5

15
00

60
00

24
00

0

96
00

0

Data Size (KB)

R
un

tim
e

Pe
rc

en
ta

ge

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 11: Percentage of total execution time spent on each
stage with pinned and shared memory optimizations enabled.

4.2 Application Level Performance
This section complements the synthetic benchmarks presented so
far. We evaluate the application-level gains achieved by using
StoreGPU. Concretely, we evaluate the speedup offered by using
StoreGPU to detect similarities between successive checkpoint
images of the same application.
Checkpointing is an indispensable fault tolerance technique adopted
by long-running applications. These applications periodically write
large volumes of snapshot data to persistent storage in an attempt to
capture their current state. In the event of a failure, applications
recover by rolling-back their execution state to a previously saved
checkpoint. Consecutive checkpoint images have often a high
degree of similarity (for instance, Al-Kiswany et al. [9] detect up to
82% similarity).
We have collected the checkpoint images using BLCR
checkpointing library [24] from 24 hour-long runs of BLAST, a
popular bioinformatics application [10]. The interval between the
checkpoints is 5min. The average image size is 279MB.

Table 3. Online similarity detection throughput (in MBps) and
speedup using SHA1.

Throughput (MBps)
StoreGPU Standard

Similarity
ratio detected

460.2 126.3 Fixed block size (using
direct hashing) Speedup: 3.6x 23.4%

51.9 9.7 Variable block size
(LBFS technique using
sliding window hashing) Speedup: 5.4x

82.0%

Table 4. Online similarity detection throughput (in MBps) and
speedup using MD5.

Throughput (MBps)
StoreGPU Standard

Similarity
ratio detected

840 193 Fixed block size (using
direct hashing) Speedup: 4.3x

23%

114 13.5 Variable block size
(LBFS technique using
sliding window hashing) Speedup: 8.4x

80%

Table 3 and Table 4 compare the throughput of online similarity
detection between using standard hashing functions running on
CPU and using StoreGPU. These results show dramatic
improvement in the throughput of online similarity detection with
both fixed and variable size blocks. Despite the fact that we are
using a lower-end GPU, the results indicate that fixed-block
similarity detection can be used even on 10Gbps systems while the
variable block size technique can be used for systems connected
with 1Gbps networks without introducing a performance bottleneck.
We anticipate that using high-end graphical cards, e.g., NVIDIA
GeForce 8800 series, will significantly enhance performance even
further.

5. RELATED WORK
Exploiting GPUs for general purpose computing has recently gained
popularity particularly as a mean to increase the performance of
scientific applications. We refer the reader to Owens et al. [33]for a
comprehensive survey.
A number of science-oriented applications stand out. Liu et al. [29]
implemented the Smith-Waterman algorithm, which compares two
biological sequences by computing the number of steps required to
transfer one sequence to the other, for a GPU platform and reported
an 16x speedup in some cases. The algorithm is often used by
bioinformatics applications to compare an unknown sequence with a
database of known sequences.
Thompson et al. [37] compared GPU with CPU implementations for
a variety of programs, such as matrix multiplications and a solver
for the 3-SAT problem. They also suggest minor extensions to
current GPU architectures to improve their effectiveness in solving
general purpose problems. Following this trend, Buck et al. [12]
proposed a programming environment for general-purpose
computations on GPUs that provides developers with a view of the
GPU as a streaming coprocessor. Kruger et al. [28] implemented
linear algebra operators for GPUs and demonstrated the feasibility
of offloading a number of matrix and vector operations to GPUs.
More related to our infrastructural focus, Govindaraju et al. [23]
have implemented a number of database operations for GPUs,
including conjecture selection, aggregation, and semi-linear queries
operations.
Our study is different from the above studies in three ways. First, we
employ the latest GPU generation and the CUDA programming

modes which are more suitable for general purpose programming.
Unlike most of the previous studies [37], this relieves us from
having to retrofit the problem that we solve into a graphics problem.
Second, unlike the previous studies, we focus on primitive storage
system operations and place them in a library, thus providing
infrastructure for a broad set of applications. Finally, we focus on
data-intensive processing applications with a ratio of computation to
input data of at least one order of magnitude lower than previous
studies.

6. DISCUSSION
This section focuses on a number of interrelated questions:
1.) Are StoreGPU hash function implementations strong? Is the
system backward compatible?
Most of today’s hash functions are designed using the Merkle-
Damgard construction [18]. Merkle and Damgard show that
collision-free hash functions can divide data into fixed-sized blocks
to be processed either sequentially, using the output of each stage as
the input to the next, or in parallel and then concatenating and
hashing the intermediate hash results to produce a single final hash
value. Most hash functions such as MD5 and SHA adopt the
iterative model because it does not require extra memory to store the
intermediate hash results.
Our approach for the direct-hashing module is based on the parallel
construction. This choice has two implications. First, as a direct
implication of the Merkle and Damgard argument, the resulting
hash function will still have the same strength as the original
sequential construction. Second, while our sliding-window module
is still backward-compatible, hashing only small data windows, our
direct-hashing technique produces different hash values compared
to the sequential MD5 or SHA versions. This does not have an
impact on the StoreGPU usability as long as all entities in the
storage system use the same library. While we are still investigating
alternatives to maintain backward-compatibility, one way to reduce
the migration burden is to provide CPU implementations of
StoreGPU that implement the same algorithm.
2.) What are the implications of newer GPU cards (e.g., NVIDIA
GeForce 9800 priced at $300) and of the new programming model
(CUDA 1.1)?
Two enhancements in the newer GPU cards have the potential to
increase GPU-supported application performance: First, high-end
cards are much more powerful. For example the GF9800 GTX has
four times as many processors (128 cores), two times higher
memory bandwidth (70.4 GB/s), and two times higher host-to-GPU
bandwidth (due to using PCIe 2 16x interface) [4] than the card we
use. This additional capacity should speed up the GPU-supported
execution. Second, our work is based on CUDA v1.0. NVIDIA has
recently released CUDA v1.1 which supports, among other features,
an API which allows asynchronous memory copies for pinned
memory and kernel launches [2]. This introduces the possibility to
overlap GPU kernel execution and memory transfers. We estimate
that by exploiting these features, we will be able to provide
additional speedups.
3.) Can other middleware benefit from this idea?
We believe that a host of other popular primitives used in
distributed systems can benefit from GPU support, such as erasure
coding, compressed set representation using Bloom filters, and data
compression among others. For example, different parallel
algorithms for Reed-Solomon coding exist [17] and can be deployed
on GPUs; on the other hand, Gilchrist [22] proposes a parallel
implementation of the bzip2 loss-less data compression algorithm

that may benefit from GPU support. Currently, we are
experimenting with a GPU-optimized Bloom filter implementation.
In general, we believe that GPUs can be used by any data-parallel
application to provide significant performance improvements,
provided that the number of operations performed per byte being
processed is sufficiently high to amortize the additional overheads
due to host-device memory transfers.
4) How does StoreGPU perform against the theoretical peak?
Since StoreGPU is a data-intensive application as opposed to a
compute-intensive one, we first consider memory access
throughput. While the memory bandwidth listed in NVIDIA’s
GeForce 8600 specification is as a high 32GB/s [3], the real
memory access bottleneck is the PCI-Express bus, listed at 4GB/s in
each direction. This is congruent to our experiments, which show
that pinned memory transfers achieve up to 2.48GB/s. Furthermore,
we estimate NVIDIA’s GeForce 8600 theoretical non floating point
instruction exaction peak rate at to 46.4 GIPS (Giga Instruction Per
Second). Our StoreGPU kernel performs at up to 19.54 GIPS, a
slowdown compared to the peak rate mainly due to internal memory
copy operations inside the GPU.
5) Is the comparison fair?
We have used two low-end devices, an Intel Core2 Duo 6600
processor and an NVIDIA GeForce 8600 GTS GPU, for our
comparison. In both cases, we used the unmodified hashing
functions (with best compiler options). On the CPU-side, two
additional optimizations may also be considered: first, using a multi-
threaded implementation to exploit all CPU cores, and second,
using Intel’s Streaming SIMD Extensions (SSE).
We believe that not exploring these optimizations does not impact
the validity of our argument that GPUs can effectively be used to
accelerate distributed system middleware for three reasons. First, in
most deployments, CPUs are shared by multiple applications. We
demonstrate that CPU-intensive middleware primitives can be
effectively offloaded to a GPU to reduce the load of the main
processor. Second, to use the SSE computational units the
application needs to be transformed into vector processing
operations, an operation that complicates the development if done
manually and for which compiler support has just begun to emerge.

7. CONCLUSIONS
This study demonstrates the feasibility of harvesting GPU
computational power to support distributed systems middleware.
We focus on accelerating compute- and data-intensive primitives of
distributed storage systems. We implemented StoreGPU, a library
which enables distributed storage system designers to offload
hashing-based operations to GPUs, demonstrating 8x speedup when
comparing StoreGPU performance to a standard CPU
implementation. Additionally, we show that applications that
depend on hashing computations to effectively identify similarity
among large volumes of data, such as comparing two checkpoint
images, benefit from the throughput boost enabled by StoreGPU.
Despite the positive outcome of our study, it is important to
highlight the challenges involved in the process. As pointed out by
our experiments and discussion section, careful optimization of
memory access patterns is paramount to achieving such levels of
performance. Nevertheless, we expect that, as offloading
computations to GPU becomes mainstream, hardware vendors will
offer better support for memory access optimizations in the form of
compilers, profilers, etc.
An immediate future exploration is a deeper performance analysis
with a broader set of techniques used in distributed storage systems,

such as erasure coding and Bloom filters. Furthermore, we plan to
fully integrate the library with a distributed storage system
prototype to evaluate its impact from an application perspective.
The efforts briefly described above and the further exploration of
the new features in CUDA1.1 will certainly occupy our minds with
exciting investigations in the near future.

8. ACKNOWLEDGMENTS
We thank Sathish Gopalakrishnan and the anonymous reviewers for
their insightful comments on earlier versions of this paper.

9. REFERENCES
1. ATI Close To Metal (CTM) Technical Reference, 2008.
2. CUDA 1.1 Beta. http://developer.nvidia.com, 2007.
3. Geforce 8 Series, http://www.nvidia.com/. 2008.
4. Geforce 9 Series, http://www.nvidia.com/. 2008..
5. Jon Peddie Research Report: Nvidia on a roll, grabs more

desktop graphics market share in 4Q,
http://www.jonpeddie.com/about/press/MarketWatch_Q405.sh
tml. 2006.

6. Jon Peddie Research Report: Overall GPU market was up an
astounding 20% – desktop displaced mobile
http://www.jonpeddie.com/about/press/2007/GPU_market_Q3
07.shtml. 2007.

7. NVIDIA CUDA Compute Unified Device Architecture:
Programming Guide v0.8. 2008.

8. Twisted Storage, http://twistedstorage.sourceforge.net/. 2008.
9. Al-Kiswany, S., et al. stdchk: A Checkpoint Storage System

for Desktop Grid Computing. in ICDCS ‘08. 2008. Beijing,
China.

10. Altschul, S.F., et al., Basic Local Alighnment Tool. Molecular
Biology, 1990. 215: p. 403–410.

11. Bloom, B., Space/Time Trade-offs in Hash Coding with
Allowable Errors. Communications of ACM, 1970. 13(7): p.
422-426.

12. Buck, I., et al., Brook for GPUs: stream computing on graphics
hardware. ACM Trans. Graph., 2004. 23(3): p. 777-786.

13. Byers, J.W., et al. A Digital Fountain Approach to Reliable
Distribution of Bulk Data. in SIGCOM. 1998.

14. Chun, B.-G., et al. Efficient Replica Maintenance for
Distributed Storage Systems. in 3rd USENIX Symposium on
Networked Systems Design & Implementation (NSDI). 2006.
San Jose, CA.

15. Cox, L.P. and B.D. Noble. Samsara: honor among thieves in
peer-to-peer storage. in ACM Symposium on Operating
Systems Principles. 2003.

16. Dabek, F., et al. Wide-area cooperative storage with CFS. in
18th ACM Symposium on Operating Systems Principles
(SOSP '01). 2001. Chateau Lake Louise, Banff, Canada.

17. Dabiri, D. and I.F. Blake, Fast parallel algorithms for decoding
Reed-Solomon codes based on remainder polynomials. IEEE
Transactions on Information Theory, 1995. 41(4): p. 873-885.

18. Damgard, I. A Design Principle for Hash Functions. in
Advances in Cryptology - CRYPTO. 1989: Lecture Notes in
Computer Science.

19. DeCandia, G., et al. Dynamo: Amazon's Highly Available
Key-value Store. in SOSP07. 2007.

20. Eshghi, K., et al. JumboStore: Providing Efficient Incremental
Upload and Versioning for a Utility Rendering Service. in
USENIX FAST 2007.

21. Fu, K., M.F. Kaashoek, and D. Mazières. Fast and secure
distributed read-only file system. in USENIX OSDI. 2000.

22. Gilchrist, J. Parallel Compression with BZIP2. in IASTED
PDCS, 2004.

23. Govindaraju, N.K., et al. Fast Computation of Database
Operations using Graphics Processors. in ACM SIGMOD
International Conference on Management of Data. 2004.

24. Hargrove, P.H. and J.C. Duell. Berkeley Lab
Checkpoint/Restart (BLCR) for Linux Clusters. in Scientific
Discovery through Advanced Computing Program. 2006.

25. Huffman, D., A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the IRE, 1952. 40(9).

26. Karger, D.R., et al. Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web. in STOC, 1997.

27. Kotla, R., L. Alvisi, and M. Dahlin. SafeStore: A Durable and
Practical Storage System. in USENIX Conference, 2007.

28. Kruger, J. and R. Westermann. Linear Algebra Operators for
GPU Implementation of Numerical Algorithms. in ACM
SIGGRAPH International Conference on Computer Graphics
and Interactive Techniques. 2003.

29. Liu, W., et al. Bio-sequence database scanning on a GPU. in
Parallel and Distributed Processing Symposium, IPDPS. 2006.

30. Merkle, R. A Certified Digital Signature. in Advances in
Cryptology - CRYPTO. 1989: Lecture Notes in Computer
Science.

31. Moya, V., et al. Shader performance analysis on a modern
GPU architecture. in IEEE/ACM International Symposium on
Microarchitecture, MICRO-38. 2005.

32. Muthitacharoen, A., B. Chen, and D. Mazieres. A Low-
bandwidth Network File System. in Symposium on Operating
Systems Principles (SOSP). 2001. Banff, Canada.

33. Owens, J.D., et al., A Survey of General-Purpose Computation
on Graphics Hardware. Computer Graphics Forum, 2007.
26(1): p. 80-113.

34. Quinlan, S. and S. Dorward. Venti: A New Approach to
Archival Data Storage. in USENIX FAST 2002.

35. Rowstron, A. and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. in Middleware'01.

36. Stoica, I., et al. Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications. in SIGCOMM 2001. 2001. San
Diego, USA.

37. Thompson, C.J., S. Hahn, and M. Oskin. Using Modern
Graphics Architectures for General-Purpose Computing: A
Framework and Analysis. in ACM/IEEE international
symposium on Microarchitecture. 2002.

38. Vilayannur, M., P. Nath, and A. Sivasubramaniam. Providing
Tunable Consistency for a Parallel File Store. in USENIX
Conference on File and Storage Technologies. 2005.

39. Weatherspoon, H. and J. Kubiatowicz. Erasure Coding vs.
Replication: A Quantitative Comparison. in International
Workshop on Peer-to-Peer Systems IPTPS. 2002.

40. Yumerefendi, A.R. and J.S. Chase. Strong Accountability for
Network Storage. in FAST'07. 2007.

