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Abstract

We present Soteria, a data processing pipeline for detecting multi-institution
attacks. Soteria uses a set of Machine Learning techniques to detect future
attacks, predict their future targets, and ranks attacks based on their predicted
severity. Our evaluation with real data from Canada wide academic institution
networks shows that Soteria can predict future attacks with 95% recall rate, pre-
dict the next targets of an attack with 97% recall rate, and detect attacks in the
first 20% of their life span. Soteria is deployed in production and is in use by tens
of Canadian academic institutions that are part of the CANARIE IDS project.

Keywords: Multi-institution Attacks, Cybersecurity, Threat intelligence, Intrusion
detection

1 Introduction

Multi-institution attacks look for vulnerabilities in large number of nodes located
in multiple institutions. These attacks cause significant financial loses and information
leaks. For instance, the loss caused by NotPetya attack exceeds $10 billion [1], and the
WannaCry ransomware attack affected more than 200,000 computers in 150 countries
[2] causing millions in damages.
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Defending against multi-institution attacks is complicated because the target nodes
are managed by tens of independent security teams. Detecting these attacks requires
timely information sharing between institutions and analysis of potential threats. This
is further complicated by the following.

First, the vulnerabilities an attacker can exploit change continuously making it
harder to automate the defence mechanisms. Worst yet, it may take months until
vulnerabilities are patched. For instance, the WannaCry ransomware attack targeted a
vulnerability in old Windows versions, for which a patch had been released more than
two months before the attack [2]. Second, the attacks often happen in a short period of
time. For instance, our data set (Section 4) shows that attacks can initiate millions of
connections in just 24 hours. This short duration leaves little time for the cybersecurity
personnel to detect, analyse, and deploy a defence mechanism. Third, large number
of attacks happen at the same time. As the current process for analysing the attacks
involves cybersecurity personnel, the number of attacks that can be inspected at the
same time is limited. This prolongs the attack detection time and increases the time
window in which an attack can cause severe damage.

For academic institutions, defending against multi-institution attacks is harder
because they operate large and constantly changing networks (e.g., research projects
or students spawning new nodes and services), and they have smaller budgets and
cybersecurity teams. This makes academic institutions a prime target for attacks.
For instance, in Canada, cybercrime caused an average of $9.25 million in losses per
academic institution in 2019 [3] and 46% of the Canadian institutions reported a cyber-
security incident in 2017, which was the second highest impacted sector in Canada
[4].

The current defence technique against these attacks is inadequate. The main
approach relies on sharing intelligence between cooperating institutions and using pub-
lic databases that list recent Indicators of Compromise (IoCs). This approach is slow
to detect an attack and the information shared is often limited due to regulatory and
privacy policies.

We present Soteria, a novel data processing pipeline for detecting multi-institution
attacks. Soteria overcomes the shortcomings of the current defence approaches. Soteria
collects minimal information from cooperating institutions, mainly information about
connections to an institution. It then uses a novel combination of machine learning
(ML) techniques to detect current attacks and predict future attacks. Soteria also
predicts the next targets of an attack and identifies the larger-scale attacks (i.e., the
more severe attacks). These findings help focus each institution’s limited resources on
the most severe attacks that are targeting them now or in the near future.

Soteria is carefully designed to be able to scale to hundreds of institutions and
detect attacks in a timely manner. Soteria uses graph analysis to extract features,
linear regression to detect future attacks, and time-series analysis to predict the next
targets of an attack. We use a bidirectional long short-term memory recurrent neural
network with attention mechanism (ABiLSTM) to predict the future targets of an
attack. Finally, to predict the severity of an attack, we capture static and dynamic
features of the generated graphs and use normalization and reduction techniques to
compute a severity indicator.
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Through our study of the dataset and the exploration of different techniques we
offer a number of insights. We found that to accurately predict the next target of an
attack, the used mechanism should capture: 1) The relationships between institutions,
as institutions with similar characteristics (e.g., institution size, services offered, and
security posture) are usually targeted together; 2) The sequence of the attack; 3) The
level of activity of an attacker. One would expect that ML techniques that predict
events that occur together, such as a co-occurrence matrix [5], to be efficient in detect-
ing Multi-institution Attackers (MIAs). Surprisingly, based on our experiments, these
techniques are not efficient; this is because a co-occurrence matrix does not capture
the sequence or the level of activity of an attack. Techniques, such as a unidirectional
LSTM which predict a sequence of events performed better, but did not achieve high
accuracy in predicting the next target because attacks do not follow the same sequence
in every attack incident.

It was interesting that a simple linear regression model over the right set of fea-
tures is highly effective in detecting an attack, and hosts that contact more than one
institution are, with high probability, initiating an attack. Surprisingly, using a short
history of recent connections detects an attack faster than when using the data from
the last 24 hours.

Soteria has been deployed in production for the last year as part of the Cana-
dian Network for the Advancement of Research, Industry and Education (CANARIE)
Intrusion Detection System (IDS) program. CANARIE [6] is a Canada-wide back-
bone network connecting academic institutions. The CANARIE IDS is serving over
100 institutions in Canada. Over the last year, Soteria has identified numerous severe
multi-institution attacks.

Our evaluation with real data from the CANARIE IDS participating institutions
shows that external IPs communicating with more than one institution are 95% likely
to be MIAs. Our evaluation also shows that Soteria detects future attacks with up
to 95% recall rate and within the first 20% of the attack’s lifetime. Finally, Soteria
detects and notifies 97% of institutions that will be targeted in the future before the
attacker initiates a connection to that institution.

This paper is an extension of our previous publication in [7]. In this paper we
detail the system design including a discussion on training and parameter tuning of the
future target predictor and the reporting and dashboard mechanisms implemented.
We present an evaluation of the Soteria runtime and showcase examples of common
large-scale multi-institution attacks. Finally, we extend our survey to discuss current
methods used by institutions to detect multi-institution attackers and discuss their
limitations.

The rest of this paper is organized as follows. In Section 2, we survey related work.
In Section 3, we detail the design of Soteria. In Section 4, we evaluate the accuracy
of predicting a future attack and the future targets of an attack. We present our
concluding remarks and plans for future work in Section 5.
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2 Related Work

Reconnaissance Detection. Reconnaissance attacks try to scan systems looking for
vulnerabilities. Previous efforts on reconnaissance detection are limited to detecting
port scans. For instance, Udhayan et al. [8] detect port scanning attempts by applying
a set of heuristics on the connection timing and TCP header fields. Allen et al. [9]
note that port scanning tools leave detectable features in the generated requests. For
instance, they may contain invalid data or header information. Given the short list
of scanning tools, they explore inspecting packets for special markers to identify port
scanning attempts.
Heavy Hitters Detection. Previous efforts attempted to detect large scale attacks
known as heavy-hitter attacks. Heavy-hitters communicate with an unusually large
number of hosts. The main challenge in detecting heavy hitters is handling large
amounts of data. Previous efforts [10, 11] resorted to filtering out low cardinality hosts
and sampling. Yang et al. [12] summarize traffic measurements by using mergeable
data structures and aggregating the summaries at the operator center. The merged
summary is then used to detect heavy hitters.
Intrusion Detection Systems. IDSs monitors network traffic to detect malicious
activities. Examples of IDSs are ZEEK [13], Snort [14], and Suricata [15]. IDS is
primarily used for detecting attacker in a single institution, mostly based on network
rules and policies. Soteria detects MIAs using ZEEK connection logs.
Current Approach for Detecting Multi-Institutional Attacks. The main
approach for handling multi-institution attacks currently is through sharing attack
intelligence [16]. Cyber threat intelligence takes on many forms [16].

• Strategic threat intelligence: The big picture of past, current and future trends in
the threat landscape.

• Tactical threat intelligence: Techniques, tools, and tactics of the threat actors.
• Operational threat. intelligence: Specifics about the nature and purpose of threats
and actors.

• Technical threat intelligence: Technical indicators about the campaigns.

The technical threat intelligence category is of concern to us as our goal is to
provide live threat details.

Shared intelligence can either come from peer institutions that cooperate on detect-
ing attacks or from public databases. A number of databases offer information about
known attacks and provide a list of malicious IPs, such as AbuseIPDB [17] and
VirusTotal [18]. Databases, such as CVE [19] and CWE [20], offer information about
vulnerabilities in software.

Databases that provide lists of malicious IPs and domains are manyfold. Some are
community shared information, such as AbuseIPDB[17]. AbuseIPDB is a cybersecurity
intelligence aggregation site that collects threat information from non-vetted sources
(i.e., reliability of their information, is not confirmed). Others provide vetted and
reliable information such as SolarWinds [21]. There are also sources that aggregate
information from multiple databases, such as Virus Total [18].
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Databases that list Vulnerabilities discovered and the effected software versions are
databases and sites that list known network software vulnerabilities, provide descrip-
tions, and possible steps for remediation. For example, CVE [19] is a program to
identify, define, and catalog publicly disclosed cybersecurity vulnerabilities. There are
also DBs and sites, such as the Common Weakness Enumeration (CWE) [20], which
offer a community-developed list of software and hardware weakness types.

Skopik et al. [22] surveyed technical, legal, regulatory and organizational dimen-
sions of threat intelligence sharing. They found that it is a crucial to facilitate the
dimensions for quick information distribution of threat information.

Threat intelligence sharing can be utilized in three ways:

• Manually: Cybersecurity specialists will receive alerts in an email or any other form
of messaging. Then they will decide to react to this information based on their
knowledge of their network.

• Automated: In a completely automated fashion, Security information and event
management (SIEM), IDS, Intrusion Prevention system (IPS), or automated fire-
walls, will receive threat feeds from reliable source and will immediately act on that
information without user input. For example, malicious IPs will be blocked.

• Hybrid: Threat feeds will be fed to a SIEM, IDS, IPS, and other customized sys-
tems. These systems will use the fed data to search, correlate, and analyse, to
provide alerting, visualization and threat hunting capabilities, but action will be
the responsibility of the cybersecurity personnel. For example, [23] proposes ECOS-
SIAN, a complex system that aggregates threat information from multiple National
Security Operation Center (NSOC), which also aggregate threat information from
Organization Security Opertation center (OSOC).

Unfortunately, while helpful, these approaches do not adequately protect against
multi-institution attacks. That is because the cycle starting from detection to informa-
tion sharing is often slow, leading to delayed reaction to active attacks. Their networks
are large, continuously changing, and there are a large number of attack attempts
which overwhelms institution staff. They are also hesitant to share information [16]
due to:

• Privacy and liability concerns: Needing to share information that could be private.
• Nothing valuable to contribute: Organizations are missing a lot of the threats that
may not be important to them but are important to others.

• Too much noise: There are so many malicious activities happening, it is not easy to
report them all.

• Been hacked: The fear of sharing breach details more broadly than necessary.

Soteria aims to overcome the shortcomings of the previous techniques. It relies on
minimal information shared by institutions to automatically detect multi-institution
attacks. It also prioritizes information provided to security officers, by identifying the
most severe attacks. Further, it identifies the next potential targets for the attack. This
information is used to notify the targeted institution before the attack reaches that
institution. Finally, Soteria is privacy conscious, and does not share institution-specific
information.
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3 System Design

Soteria data processing pipeline is organized into five stages: (i) feature extraction, (ii)
attack detection, (iii) severity estimation, (iv) next target detection, and (v) report
generation. Figure 1 shows the Soteria system architecture.

Fig. 1: Soteria Pipeline.

Institutions periodically submit logs of the recent communication activities on their
networks. The feature extraction step (Figure 1) analyzes the data to extract a vector
of features. The extracted features are leveraged by the attack detection step that
uses an ML model to predict potential attacks. The ML model also outputs additional
metrics to help with the next two steps. The severity estimation step uses the metrics
calculated in the previous steps to estimate the severity of the predicted attacks. This
step helps identify severe attacks. The next target prediction step uses deep learning
to identify the next targets of the predicted attacks. Finally, Soteria combines the
results of the attack detection, severity estimation, and next target prediction steps
into user reports. The rest of this section details the design of each step.

3.1 Institutional Data

Sharing connection and infrastructure information between institutions is complicated
due to regulatory restrictions and privacy-related concerns. This is the case for the
academic institutions participating in the CANARIE IDS program. The institutions
periodically share connections logs collected by ZEEK. In addition to ZEEK connec-
tion logs, each institution identifies the IP addresses it owns. We present the details
of the data set we use in Section 4.

Each row in a ZEEK connection log lists information about a connection. In our
work, we use three fields for each connection:

• id.orig h: IP address of the host starting the connection.
• id.resp h: IP address of the host responding to the connection.
• ts: the time stamp when the connection occurred.
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3.2 Feature Extraction

To identify attacks on multiple institutions, we build a directed and weighted graph
representing all the connections in the ZEEK connection logs. Each IP address rep-
resents a vertex. We add a directed edge from a source to a destination between two
vertices that had one or more connections. Each edge has a weight. The weight is
equal to the number of connections with the same direction between the two vertices.
Vertices are labeled as internal vertex if they belong to an institution, or external ver-
tex otherwise. Unfortunately, this approach for generating a graph creates enormous
graphs that are challenging to analyse in a timely manner. For instance, for our data
set this approach resulted in an enormous graph with over 26.5 million vertices and
1.4 billion edges.

To reduce the graph size without losing information relevant to the attack we do
the following. First, we remove all edges representing a connection that is initiated by
an internal vertex because these vertices are trusted. Second, we represent each insti-
tution by a single aggregate vertex and remove all its internal vertices. The aggregate
vertex represents all the IP addresses belonging to an institution. We add a directed
edge from an external vertex to an aggregate vertex if the external vertex has con-
tacted any of the internal addresses of that institution. Each edge has two weights: the
number of connections the external vertex initiated to any of the internal vertices, i.e.,
conn count, and the count of unique internal vertices the external vertex is connected
to, i.e., vert count. These steps significantly reduce the graph size.

In the feature extraction step (Figure 1) we compute the following for every
external vertex:

• Outdegree (OD): The number of edges that begin from this specific vertex. For an
external vertex, this equals the number of institutions it communicated with.

• Outdegree weighted by number of connections (ODW (connection)): The summa-
tion of all the conn count weights of all the outgoing connections of an external
vertex.

• Outdegree weighted by number of vertices (ODW (ip)): The summation of all the
vert count weights of all the connections of an external vertex.

• Adjacency list (V (adj)): The adjacency list associates each external vertex with the
collection of its neighboring institution vertices.

3.3 Tracking External IPs Over Time

Institutions periodically share their connection logs. To analyse the activities of exter-
nal vertices over time we discretize the logs. We divide the time into windows. Each
window is l hours long. We analyse the connections of each window separately. For
each window W (t) at time t we create a graph G(t) and extract the four features as
described in the previous section.

In Soteria, we track the features of each external vertex of the latest N windows.
N and l are configurable and we evaluate the efficiency of our approach while varying
these two parameters in Section 4. Figure 2 shows an example of collecting logs from
three institutions and dividing the time into three windows. A graph is built for each
window.
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Fig. 2: Three graphs created over 3 consecutive time windows. Grey: Benign External
IP; Orange: Early detection of MIA; Red: MIA.

We track the adjacency list (V (adj)) of an external IP starting from the window
it becomes active even if this extends to more than the N latest windows. To avoid
analysing a previous time window graph, we compute the cumulative adjacency list
V (cumltv) at t for external vertex Vx as follows:

Vxt(cumltv) =

{
Vxt(adj) if t = 0
Vx(t−1)(cumltv) ∪ Vxt(adj) if t > 0,

(1)

where t = 0 is the first window Vx becomes active. Vxt(adj) is the adjacency list of Vx

at time t. |Vxt(cumltv)| is the count of all institutions contacted by Vx since it began.
For each external IP, we track OD, ODW (connection), ODW (ip), and |Vxt(cumltv)|
of the latest N windows in a N × 4 matrix.

3.4 Detecting Multi-Institution Attacks

We found that linear regression is effective in identifying vertices that will launch a
multi-institution attack. Linear regression fits the data to a straight line that relates
one independent variable t to a dependent variable Y .

F (t) = Y = B + tS, (2)

where t is the time window and Y is the feature of interest. F (t) is the linear regression
function that approximates Y . B is the value of F (t) at t = 0 and S is the slope. S
approximates the growth rate of a feature.

For each Vx, we keep track of OD, ODW (connection), ODW (ip), and
|Vxt(cumltv)| over N windows. For each Vx we fit each feature to a linear regression
line. In doing so, we can predict the future outcome of each feature. To fit the lin-
ear regression line we minimize the Residual Sum of Squares (RSS); a measure of the
discrepancy between the data and the linear regression function.

RSS =

N∑
t=1

(Y (t)− F (t))2 (3)
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We identify an IP as a MIA if it contacts p(inst) institution or more. We set p(inst)
to 3 in our study. To predict if an IP Vx will become an MIA we predict if Vx will
contact more than p(inst) of institutions in the current or a future time window. To
identify a current or future MIA we use:

Vx is

{
MIA if |Vxt(cumltv)| ≥ p(inst) or

F|Vx(cumltv)|(t+ n) + k ≥ p(inst)
not MIA otherwise,

(4)

where F|Vx(cumltv)|(t + n) is the predicted number of institutions Vx will contact by
the time window t+ n. k is a constant that is used to tune the prediction.

In addition to predicting which node will become an MIA, we use linear regression
to compute the slopes or the growth of the features for each external vertex. The
growth of these features is used for the following steps in the Soteria pipeline.

• Vxt(cumltv): The cumulative set of institutions Vx contacted throughout its lifetime
till time t.

• S|Vxt(cumltv)|: Growth of the cumulative number of institutions Vx connects to
throughout its lifetime till time t.

• SODx : Growth of the number of institutions connected to Vx per time window.
• SODW (connection)x : Growth of the number of outgoing connections of Vx per time
window.

• SODW (ip)x : Growth of the number of internal IPs communicated with per time
window.

3.5 Severity Estimation

The attack detection step may identify hundreds of potential MIAs. Tasking security
analyst to analyse these potential attacks in a timely manner is a daunting task. The
severity estimation step computes a severity indicator for each potential MIA and uses
it to identify the most severe MIAs. This step helps the security analyst to prioritize
analysing attacks with high severity indicators.

The severity indicator uses all the static and growth features computed in the
previous two steps of the pipeline. The severity estimation technique should have three
properties. First, given the large number of external IPs, the severity indicator should
be efficient to compute. Second, it should maintain the linearity of each feature, i.e.,
if feature X for IP1 is larger than X for IP2, this relation should be represented in the
severity estimation mechanism. Third, it should tolerate highly skewed data.

We first considered normalizing each one of the seven features (three static and
four growth) to the range [0, 1]. Adjacency list V (adj) and cumulative adjacency list
Vxt(cumltv) are not included in the calculation but the size of these lists are included.
The classical normalization approach of a feature X is:

Xnorm V = XV −X.min
X.max−X.min , (5)

Where XV is the value of a feature X for IP V and Xnorm V is the normalized value
of XV . X.min is the smallest value for the feature among all IPs in the data set.
X.max is the largest value for X in the data set. While this approach is simple, it is
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not effective. This is because this approach does not handle highly skewed data well.
For instance, the majority of attackers would create hundreds of connections, while an
aggressive attacker may create hundreds of thousands of attacks which significantly
skews X.max and stretches the bounds of normalization. This causes the majority of
values to be placed on the lower end of the normalized range and makes it hard to
differentiate between attacks since the normalized values are very close.

To overcome this shortcoming, we use a robust scaler, as shown below:

Xnorm V =

{ 0 XV < X.Q1

1 XV > X.Q3
XV −X.Q1

X.Q3−X.Q1
otherwise,

(6)

where XV is the value of a feature X for IP V and Xnorm V is the normalized value of
XV . The robust scaler finds the quartile for each feature X. X.Q1 and X.Q3 are the
values of the first and third quartiles. The employeed Robust Scaler normalizes the
skewed values less than the first and greater than the third quartiles to the values 0
and 1, respectively, then it normalizes the values between the first and third quartiles
to the range [0, 1]. This approach effectively handles highly skewed data.

The normalized values of all features per external IP are added. To give an indi-
cator with values in the range of [0, 1], the aggregated value is then normalized. This
approach effectively computes the severity indicator, preserves the linearity of the
features, and handles skewed values.

3.6 Predicting Future Targets

In the next step we try to predict, for each MIA, which institution will be targeted
next. Our first attempt to predict the future targets of each attack explored techniques
to predict which institutions are often targeted together. We experiment with the co-
occurrence matrix model which is successfully used in recommendation systems to
predict the items that occur together [5]. Our results show (Section 4) this approach
is not effective in predicting future targets. This is because co-occurrence matrix can
only capture the relationship between institutions and does not capture the sequence
of the attack, neither does it capture the future possible growth of the attack.

We then explored using the Long Short Time Memory (LSTM) model [24]. LSTM
is effective in predicting sequences of events. This approach captures the growth of an
attack and uses it to predict the next targets. The LSTM approach achieved better
results than the co-occurrence matrix model but did not achieve high accuracy. This
is because attackers do not always attack institutions in the same order and we need
it to learn slight variations in these sequences. To overcome this challenge, we resorted
to using bidirectional LSTM with an attention mechanism (ABiLSTM). ABiLSTM
learns a sequence of events in both directions, forward and backward, to better predict
targets despite variations in the order in which institutions are attacked. It also better
captures the relationships between institutions in a specific window and across time
windows.
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3.6.1 Model Design

Figure 3 shows the structure of the ABiLSTM model we use. The model has the fol-
lowing stages: input encoding, BiLSTM network, attention mechanism, and an output
layer. The rest of this subsection details the design of each of these stages.

Fig. 3: Design of the model for next target prediction.

Input Encoding. We first encode V (cumltv) for each external IP using multi-hot
encoding. For each time window, we create a bit map of size M , which is the total
number of institutions. An index in the bitmap corresponds to an institution. A bit
is set if the institution has ever been contacted by this IP address. Since we look into
the last N time windows, the input to the model is an M × N array representing
V (cumltv) in the last N time windows.
BiLSTM Model. The BiLSTM model uses anM×2 array of LSTM cells organized in
M pairs. One LSTM in a pair learns the forward direction of a sequence while the other
learns the backward direction. The output of the two LSTM blocks is concatenated.
The pairs are organized in a stack.

Each LSTM cell has three gates: input gate (it), output gate (ot), and forget gate
(ft), where t is the window timestamp.

Equation 7 shows the input gate of a cell while Equation 8 generates a candi-
date vector. The combination of the input gate and the candidate vector controls the
information stored in a cell at the current time window t.

it = σ(Zi[ht−1, xt] + bi), (7)

Čt = tanh(Zc[ht−1, ht, xt] + bc), (8)

where xt represents the input of that cell at time t, ht represents the output of the
cell at time t and position m in the LSTM stack, ht−1 represents the outputs value
one time step before the current time and ht(m−1) with the output value of the cell
underneath it. Similarly, ct and ct−1 represent the memory unit at time t and t− 1. σ
represents the sigmoid activation function, and tanh represents the tangent function.
Zi and Zc represent the weight matrices, and bi and bc are the bias values.
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To decide whether to discard information from the previous time step and from
the lower LSTM block a forget gate is used as shown below:

ft = σ(Zf [ht−1, ht, xt] + bf ). (9)

The memory value for this time step is calculated using Equation 10. Note that
we use the memory value ct−1 from the previous time step.

ct = ft⊗ct−1 + it⊗Čt (10)

The output gate determines the value of the next hidden state. This state contains
information on previous inputs. First, the output gate uses a sigmoid function to
decide which portion of a cell state to return (Equation 10). We take the output of
the output gate and perform the hadamard product (⊗) with the output of the tanh
function of the memory value.

ot = σ(Zo[ht−1, ht, xt] + bo), (11)

ht = ot⊗ tanh(ct), (12)

where ht is the hidden state of the cell which is shared with the next layer of the model
and the next LSTM cell. The output of the BiLSTM model will be a concatenation
of the outputs of both direction models, which will hence forth be denoted as ht.
Attention Layer. The BiLSTM hidden layer outputs ht through the activation
function to obtain the correlation coefficient ut using Equation 13.

ut = tanh(Zaht + ba) (13)

Za represents the weight matrix, and ba represents the bias values. First, we assign
weights that demonstrate the importance of each output of the hidden layer by
obtaining the weight coefficient at:

at =
exp(ut)∑N
j=1 exp(uj)

(14)

.
Then we calculate the product of the weight coefficient and the output of the hidden
layer to obtain the output vector v of the attention layer, as shown in Equation 15.

v =
∑
N

atht (15)

Dense and Output Layer. Finally, the prediction result is obtained through the
output layer using a sigmoid function. The output layer contains as many neurons
as there are institutions, each will produce an output for an institution. The model
outputs the probability that each institution will be targeted. Because this is a classi-
fication problem we need to convert probabilities into binary values. Therefore, we can
simply round the probabilities into integers using a threshold. This threshold is tuned
to provide better predictions. This gives us a multi-hot encoding vector, similar to the
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input matrix. We reverse the encoding on the input to get us a list of institutions that
are most likely to be targeted next.

3.6.2 Prediction Model training and parameter tuning

We implemented the model on Keras with a Tensorflow backend [25]. For experiments,
we use the dataset indicated in Section 4.1 which is split into three groups: 65% as the
training set, 15% for validation, and 20% for testing. We use the training set to train
the model, then use the validation set to tune the hyper parameters. We also attempted
to use dropout layer with rates varying from 0.05 to 0.2 but we found that it degrades
the models performance. We also used, the binary crossentropy based loss function
and the gradient descent algorithm with Adaptive Moment Estimation [26] are used to
learn the model parameters. The default parameters of Adaptive Moment Estimation
is learning rate=0.001, beta 1=0.9, beta 2=0.999, epsilon=1e-08. We perform a full
cycle of training, validating and provide prediction in each pipeline run and store the
weights for the next cycle.

3.7 Dashboards and Reporting

The last step of the pipeline creates a dashboard and reports to present the findings to
the security analysts. All the static and growth features as well as the severity metric
are presented to the institutions.

The severity metric is used to order the external IPs. The display of the list of
MIAs is customised for each institution. The list of MIAs is split into two categories:
a list of MIAs already targeting an institution and a list of predicted MIAs that will
potentially attack an institution in the near future. In order for the institutions to
comprehend the meaning of the severity score we classify different ranges into labels.
Table 1 demonstrates the different classifications and their ranges.

Severity Score Severity Label

< 0.25 very low severity
≤ 0.25 and < 0.5 low severity
≥ 0.5 and < 0.75 medium severity

≥ 0.75 high severity

Table 1: Table of Severity Score
classification.

Also in the dashboard we provide a possible target rate for each external threat that
has not reached the corresponding institution. This value is produced using the raw
numerical outputs of the model. These raw numbers are normalized using the simple
normalization equation 5. In order for the institutions to comprehend the meaning
of the target rates we classify different ranges into labels. Table 2 demonstrates the
different classifications and their ranges.

Figure 4 demonstrates the dashboard as seen by the participting institutions. This
is the main dashboard for Soteria, which contains analysis extracted from our pipeline
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Possible Target Rate Label

< 0.25 very low possibility
≤ 0.25 and < 0.5 low possibility
≥ 0.5 and < 0.75 possible

≥ 0.75 high possibility

Table 2: Table of Target Rate classifica-
tion.

and others. We will only explain the analysis that pertain to Soteria’s pipeline. As per
the numbered labels on the figure:

1. As we indicated earlier ZEEK logs are supplied by the tens of participants, however,
some institutions are not supplying their logs in time. This affects model prediction.
Therefore, we decided to provide an indicator that describes how available and
timely is their data to the Soteria pipeline. In this case, this sample institution has
been providing their logs in a timely manner.

2. Pie chart of threats that have been detected by Soteria. This is used to gauge what
are the portions of MIAs in each category.

3. Pie chart of how possible threats that have been detected by Soteria, will reach this
institution.

4. List of MIAs detected by Soteria that have reached this institution. They are sorted
based on the severity score. Each IP is clickable to another dashboard that details
information on that IP.

5. Pie chart of the severity of threats detected by Soteria that have reached this
institution.

6. List of MIA detected by Soteria that have not reached this institution. They are
sorted based on the severity score and possibility of reaching the institution. Each
IP is clickable to another dashboard that details information on that IP.

4 Evaluation

We evaluate the accuracy of Soteria in detecting future attacks, its accuracy in iden-
tifying the next targets, and the impact different configurations have on the detection
performance.

4.1 Setup

Dataset Details. Our dataset includes the ZEEK connection logs from 52 Canadian
institutions participating in the CANARIE IDS program. We use the data collected
over six days between the 25th and 30th of January 2022.The dataset consists of over
15.5 billion connections. There were over 12 million unique external IP addresses
initiating a connection to any of the institutions during the six days. Out of the 12
million, 2.7 million of them initiated connections to multiple institutions. The number
of connections from external IP addresses per day fluctuates across the six days with
noticeable drops during the weekends. The drop could be interpreted as a result of
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the institutions being less active during the weekends. Figure 5a shows the number of
connections per hour.

(a) Number of connections per hour dur-
ing the six days.

(b) CDF of the lifespan of an External IP and
the attack progress.

Fig. 5: Life span of external IPs.

Each external IP is tracked from the moment it starts the first connection to an
institution until it stops communicating with any institution. For external IPs that
communicate with multiple institutions, Figure 5b shows the life span and attack
progress of external IPs. Life span is the total time the external IP was active. It is
the time period between its first connection and last connection that IP made in the
data set. The life span of 70% of the external IPs is less than 3 days. Fifty percent of
the external IPs had a life span of less than one day. For each external IP we extract
the full list of institutions it contacts. The attack progress line in Figure 5b shows the
progress an external IP makes in contacting institutions in this list. The figure shows
that an attacker contacts 70% of its target list within the first 24 hours.
Data Preprocessing. To simulate a stream of updates from institutions we split
the connections into time windows. Given that a large percentage of attacks complete
within 24 hours, we vary the window size l from 1, 3, 6, and 12 hours. Each window
contains all the connections for that given time period. To simulate a real workload
we split the data and then feed the data to the pipeline for analysis. When we train
the model we use multiple windows as input. Unless otherwise specified, we use the
current windows and 2 previous windows as input.

4.2 Labeling Multi-Institution Attackers

Unfortunately, the attackers in our dataset are not labeled. We attempted to utilize
public databases to label our data but we found them unreliable as there is a high
degree of false positives (i.e., an IP is recycled and is no longer malicious such as the
case with malicious actors using cloud services) and false negatives (i.e., threat has
not been reported by anyone). To overcome this shortcoming in our dataset we select
387 random samples of external IP addresses that contacted 3 or more institutions.
We manually inspect the logs and interactions with each one of the IP addresses and
identify MIAs.

16



Fig. 6: Recall and false alarm of detecting
MIA.

Fig. 7: Recall and false alarm of detecting
next targets.

We found 369 real multi-institution attacks and 18 benign IP addresses. This indi-
cates that 95% of external IP addresses that contact multiple institutions are malicious
actors with a 95% confidence interval and a margin of error of 5%. In this paper, if an
external IP address contacts more than 3 institutions we label it as a MIA.
Metrics. We use the following two metrics in our evaluation: recall, which gauges how
many of the true positive we have detected, and false alarm, which gauges how many
of the true negatives we have misclassified as positives.

Recall =
TruePositives

TruePositives+ FalseNegatives
(16)

FalseAlarm =
FalsePositives

TrueNegatives+ FalsePositives
(17)

Testbed. We conduct our experiments using a 17-node cluster. Sixteen nodes are
used to run an Open Distro Elastic Search cluster for data ingestion and static feature
extraction. These nodes have an Intel(R) Xeon(R) Silver 4208 CPU with 32 cores,
188GB of RAM, and 48TB of storage space. One node is used to run the rest of Soteria
pipeline. The node has an Intel(R) Xeon(R) Gold 5120 CPU with 56 cores, 376 GB
of RAM, and a NVIDIA Tesla P40 GPU.

4.3 Detection of Future Multi-Institution Attacker

Using our dataset we measure the accuracy of our MIA detection step. For this evalu-
ation, we use a window size l of 3 hours and we use a history N of 3 previous windows,
and try to predict if an IP address will become a MIA in the next 24 hours.

Figure 6 shows the recall and false alarm of our attack detection step. The figure
shows that our linear-regression-based technique detected more than 95% of attacks
with lower than 15% false alarms. All false alarms have a severity level of less than
25%, which are presented last in the list of threats to search.

4.4 Predicting the Next Target

We use our dataset to measure the accuracy of predicting the next target. We use a
window size l of 3 hours and use a sequence N of 3 windows. Figure 7 shows the recall
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Fig. 8: Performance using three look back windows.

and false alarm of the next target prediction step. We compare the performance of
using ABiLSTM and co-occurrence matrix.

Figure 7 shows that our approach with ABiLSTM achieves 4.7 times higher recall
rate. ABiLSTM achieves 95% recall rate with 20% false alarm rate, while the co-
occurrence matrix achieves only 20% recall rate with 15% false alarm rate. This asserts
our previous discussion that BiLSTM’s supersedes co-occurence matrix due to its
ability to learn data sequences and future growth of attacker.

4.5 Effect of Window Size

In this section, we evaluate the effect of window size l on the accuracy and speed of
detection. We fix the number of windows N to 3 and vary the window size l between 1,
3, 6, and 12 hours. Figure 8a shows the recall and false alarm rate for identifying future
attacks. The results show a slight variation in the recall rate with smaller window
sizes having better recall rates. Due to the shorter lifetime of the attackers and their
rapid attacking rates, smaller windows are able to capture this type of behaviour.
For instance, window size of 1 achieves 97% recall rate compared to 92% recall rate
for window size of 12. There is no significant change in the false alarm rate. Figures
8b and 8c evaluates the effect of window size on the accuracy of predicting the next
target. We evaluate both ABiLSTM and co-occurrence matrix. The figures show that
changing the windows size does not significantly change the recall or the false alarm
rate of ABiLSTM. For co-occurrence matrix, changing the window size changes the
recall rate with the best being with a window size of 1, achieving 26% and the worst
being 20% with a window size of 3. The results show under all window sizes ABiLSTM
achieves 3.5 to 7 times higher recall rate without a significant increase in false alarm
rate.

4.6 Effect of the Number of Windows

In the previous section, we kept the number of windows N fixed but varied the window
size l. This results in each configuration processing a variable size of history. The
number of connections in 3 windows of a 1 hour window size is much smaller than 3
windows of 12 hours windows size. In this section, we set the look back time to 24
hours, regardless of the window size. We use 24 windows with 1-hour long windows,
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Fig. 9: Performance while looking back for 24 hours.

8 windows with a 3-hours window size, 4 windows with a 6-hours window size, and 2
windows with a 12-hour window size.

Figure 9a shows the recall and false alarm rate for identifying future attacks. The
results do not show a noticeable change in the recall or the false alarm rate with
different window sizes.

Figures 9b and 9c evaluates the effect of window size on the accuracy of predicting
the next target using both ABiLSTM and co-occurrence matrix. Similar to the pre-
vious results the figures show that changing the window size while using the history
size does not bring significant change to the recall or false alarm of these techniques.
Interestingly, there is no noticeable change in results for both MIA detection and path
prediction between fixing the number N to 3 or fixing the look-back time to 24 hours.

In general, we see slight improvement in recall with smaller number of windows
and with smaller window sizes, which we attribute to the quick nature of these attacks.
The performance gap between the smaller and larger windows is not large and that
is because our comparison so far compares performance of predicting future attacks.
This comparison does not highlight that larger windows are unable to capture attack
progress as well as smaller windows. We evaluate the utility of different configurations
in the following subsections.

4.7 Speed of Attack Detection

We evaluate how early our technique can detect an attack. We analyse the dataset
and identify for each MIA the complete list of institutions it will attack. Figure 10
shows a box plot of the percentage of the MIA life at which Soteria detects the attack.
We compare two configurations: window size of 3 with a fixed number of 3 windows,
and a windows size of 3 with a total look-back period of 24 hours. Figure 10 shows that
using smaller window sizes allows for predicting the attack earlier, with a window size
of 1 hour detecting the attacks before 20-40% of its life span compared to 75-85% with
a window size of 12. Surprisingly, using a fixed number of windows achieves better
results. With a window size of 1, using 3 windows the attack is detected at around
20% of its life span, while when using 24 hours the attack is detected when it is around
40% of its life span on average. This is because smaller windows help to detect an

19



Fig. 10: The attack detection speed. The box plot shows when an attack is detected
during its life span.

attack earlier, and a smaller number of windows speeds up the detection step. Under
all window sizes using a fixed number of windows performs better on average.

4.8 Soteria Execution Time

We evaluated the execution time of Soteria to consider the difference in run time
between the different window size and number of windows combinations. For each
combination we captured the time to run each component in seconds. In Figure 11
the solid bar is the fixed H and the stripped bar is the fixed look back time. Fetching,
aggregation, and static feature extraction takes 95% of running time. Both window
size and number of windows positively correlate to running time, but H is a much
bigger factor. The amount of resources dedicated to run the pipeline is an important
factor and due to the congestion on the production Elastic Search cluster, the h = 1
and h = 3 could not be produced in time before the start of the next window.

We investigated the source of the low performance in the fetch and feature extrac-
tion phases. Our investigation shows that the Elastic Search cluster is congested with
the sheer amount of high priority jobs that search through terabytes of data daily. To
mitigate this issue we are currently expanding our Elastic Search cluster by adding
new nodes, swapping hard drives with solid state drives, and switching files systems
from zettabyte file system (ZFS), which is not optimal for Elastic Search deployment,
to a fourth extended file system (EXT4).

4.9 Example MIAs

In this section, we demonstrate two examples of the most common types of large scale
MIAs. Figures 12 and 13 are stacked area figures counting the number of connections
each MIA has initiated and to which institution. Each color represents an different
institution. The connections are counted utilizing an hourly windowing. Figure 12
shows the most dominant type of large scale MIA. It started communications quickly
and grow rapidly. It reached the peak of its activity in approximately 6 hours, in
which it has most connections, and targeted all the institutions at that point. It has
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Fig. 11: Soteria Run time for each of the multiple window size and number combina-
tions.

a relatively short life span of 14 hours. Upon further investigation, on the type of
vulnerability it was searching, we have found that it targeted multiple application
types, including webapps, ssh, and others if possible.

Figure 12 shows the second most dominant type of large scale MIA. This type is
constantly, actively monitoring for vulnerabilities. It has an almost cyclical pattern,
initiating connections quickly then dying off. It continually targets the same set of
institutions on a consistent basis. This MIA seems to be dedicated to its task. Upon
further investigation, on the type of vulnerability it was searching, we found that it
targets a large range of ports.

5 Conclusion

We present Soteria a data processing pipeline for detecting multi-institution attacks.
Soteria can detect current and future multi-institution attacks, rate the severity of
the attacks, and predicts its future targets. Our evaluation shows that Soteria is able
to identify future attacks and identify their targets with high accuracy. Soteria is
currently deployed in production as part of the CANARIE IDS program.

In our future work we plan to explore three main directions. We filter out two
types of external IPs and we do not detect threats coming from them, due to the large
number of false positives they generate. The first are external IPs that are shared with
large number of users, such as a Tor node. It is difficult to differentiate between the
different users using the same exit node and it would be incorrect to monitor the node
like any other external IP. We need to differentiate users of shared IPs; one way is by
clustering connections. The second are IPs that are filtered as they are registered DNS
servers that only initiate DNS connections. These are not guaranteed to be safe and
could be MIAs, therefore, we need to find a proper detection mechanism in this regard.

The second issue is that some threat actors distribute their attacks by using multi-
ple IPs to launch their attack. Although we can monitor the attackers individual IPs,
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Fig. 12: Activity of a high scale external short lived MIA. This stacked area graph
represents the number of connections targeting each institution in a 24 hour time
frame.

Fig. 13: Activity of a high scale external long lived MIA. This stacked area graph
represents the number of connections targeting each institution in a 48 hour time
frame.

we can not learn the whole picture of the attacker. A research direction is to cluster
IPs together to identify the attacker. These clustered IPs can be identified as a single
attacker and feed to Soteria as we did with a single IP giving the full scope of the
attacker for a more accurate analysis.
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A third direction would be to work on correlating Soteria with the results of other
threat analysis tools and threat feeds. Soteria analysis does a good job at detecting
MIAs, but does not provide information on the attack type. Therefore, correlating
results with other tools can provide additional information into the kind of threat.
Furthermore, this correlation can provide additional information to improve severity
ratings of these threats.
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