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ABSTRACT
Scientific workflows are typically data- and compute-intensive.
They consist of many stages, each of which may contain hundreds
to even thousands of tasks. Traditionally, scientific workflows have
been executed using the serverful computing model. Serverless
computing presents an attractive alternative to the serverful com-
putingmodel as it frees developers frommanaging and provisioning
resources and offers a fine-grained pay-as-you-go pricing model. In
this paper, we investigate the viability of using serverless computing
to execute scientific workflows. Specifically, we discuss, implement,
and evaluate three orchestration approaches for executing scien-
tific workflows: serverful-centralized, serverless-centralized, and
serverless-decentralized. This work is the first to implement and
evaluate a purely serverless orchestration approach that does not
require deploying a dedicated workflow manager. Our evaluation
shows that serverless orchestration approaches cause a noticeable
performance overhead for some workflow patterns (e.g., reduce
stages) due to accessing a large amount of remote data. We propose
two optimizations (i.e., prefetching file privileges and container
placement) that exploit data locality to mitigate that impact. Our
evaluation with the Montage application shows that a fully decen-
tralized approach achieves a comparable performance to a serverful
approach. Also, our results show that prefetching file privileges and
container placement optimizations improve the performance by
26% and 44% respectively when compared to an unoptimized ver-
sion.
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1 INTRODUCTION
Scientific workflows [1, 2, 3, 4, 5, 6] have seen an increase in popular-
ity in many scientific fields (e.g., astronomy and bioinformatics) as
they are being used to represent the compositions of computational
tasks that form complex analysis pipelines. Complex workflows
usually are composed of several stages, each of which may consist
of hundreds to even thousands of computational tasks. Typically,
scientific workflows are expressed as a directed acyclic graph (DAG),
in which nodes correspond to tasks and edges represent data depen-
dencies. Traditionally, scientific workflows have been executed in
a serverful environment (e.g., on-premises cluster or infrastructure
as a service) [7, 8, 9], in which computing and storage resources
are managed and provisioned by users.

Recently, the serverless computing model has emerged as an al-
ternative to the traditional infrastructure-as-a-service (IaaS) model.
Serverless computing supports highly scalable, event-driven appli-
cations. In serverless computing, developers focus on implementing
the functionality of their applications as stateless functions or con-
tainers that are triggered by events, while the cloud provider is
responsible for managing and provisioning the resources. In ad-
dition, serverless adopts a pay-as-you-go billing model, in which
users are only charged when their applications are invoked and
run time is measured at a fine granularity (e.g., 1 ms).

Scientific workflows are typically more data- and compute-inten-
sive than other serverless workflows. Recent characterization stud-
ies [6, 10] show that scientific workflows exhibit a significantly
higher degree of parallelism compared to other serverless work-
flows. Furthermore, the execution time of scientific workflows is
considerably longer. Lastly, the intermediate data transferred be-
tween stages is typically much larger in scientific workflows.

In this work, we focus on studying the viability of using server-
less environments to execute scientific workflows. In addition, we
evaluate different orchestration approaches for executing scien-
tific workflows: serverful-centralized, serverless-centralized, and
serverless-decentralized approaches (Section 3). Furthermore, our
work answers the following questions: What are the challenges,
advantages, and disadvantages of each approach? How the end-to-
end performance of a scientific workflow is affected by the selected
orchestration approach? How do other factors including file sys-
tem optimizations and task-to-container mapping affect workflow
performance?

To answer these questions, we perform a thorough evaluation
of these orchestration approaches using the Montage [1] appli-
cation, a complex astronomical workflow. Our results (Section 4)
show that serverless orchestration approaches have some perfor-
mance overhead for some workflow patterns, such as reduce stages.
Our analysis identified that this overhead is due to accessing a
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large amount of remote data. Following our analysis, we propose
two locality optimizations to mitigate this performance overhead:
prefetching file privileges and container placement. Prefetching file
privileges is a novel optimization that overlaps the execution of a
reduce stage with the parallel stage preceding it in order to acquire
the privileges required to access the files needed by the reduce
stage as soon as they are written. Furthermore, this optimization
can be applied to both centralized and decentralized orchestration
approaches. Container placement optimization targets placing tasks
that share a large amount of data on the same node. Our results
show that prefetching file privileges and container placement opti-
mizations improve the performance of the unoptimized serverless
version by 26% and 44%, respectively.

2 BACKGROUND AND RELATEDWORK
In this section, we provide an overview of scientific workflows and
highlight recent projects that focus on the execution of scientific
workflows in a serverless environment.
Scientific workflows. Scientific workflows allow scientists to eas-
ily model complex scientific applications and experiments by ex-
pressing the entire data processing steps and the dependencies
between these steps. Scientific workflows usually consist of multi-
ple steps, each of which may contain a large number of independent
tasks. Typically, a scientific workflow is expressed as a directed
acyclic graph (DAG), in which nodes correspond to tasks and edges
represent data dependencies. Different tasks typically communicate
through files stored on a shared file system (e.g., CephFS [11]). A
task is only executed when all its dependencies become available.
Data access patterns define how the output of a task is being used
by other tasks. A scientific workflow can consist of different access
patterns including pipeline, broadcast, reduce, scatter, gather, and
distribute patterns. Al-Kiswany et al. [12] discuss these patterns in
detail.

Scientific workflows are typically more data- and compute-inten-
sive than other serverless workflows. To demonstrate this, we con-
trast the characteristics of serverless workflows in a subset of Azure
Durable Functions [13] production workloads [10] with the char-
acteristics of popular scientific workflows from different fields [6].
Firstly, the number of tasks in parallel stages is much larger in
scientific workflows. For instance, while the maximum number of
tasks in a parallel stage in 90% of production serverless workflows
is less than 5, this number is typically in the hundreds and can
even reach hundreds of thousands for scientific workflows. Sec-
ondly, the execution time of scientific workflows is much longer
than that of production serverless workflows. For instance, the
median execution time of production serverless workflows is 5.6
sec, while the execution time of scientific workflows is typically
in hours and can even reach hundreds of hours. Finally, the size
of transferred intermediate data is much larger in scientific work-
flows. While 85% of the transferred intermediate data in production
serverless workflows are of sizes ≥ 1 KB and the median is 8 KB,
the size of transferred intermediate data in scientific workflows is
typically in the hundreds of gigabytes and can even reach hundreds
of terabytes.

A workflow management system (WMS) is a tool that is respon-
sible for executing a workflow in different execution environments

(e.g., a cluster, a grid, or cloud computing). WMSs are typically de-
signed to exploit a large amount of computing and storage resources
to execute the target workflow in parallel in order to reduce the total
execution time. A WMS receives a workflow directed acyclic graph
(DAG) as an input and then it generates an execution plan based on
the workflow DAG. The generated execution plan of the tasks must
adhere to the data dependencies specified by the workflow DAG.
Moreover, a WMS acts as a scheduler that maps tasks to computing
resources. Typically, a WMS maintains all tasks in a queue. The
WMS keeps tracking of the dependencies of each task. Once the
dependencies of a task are met, the WMS schedules the task on
one of the available nodes. Also, a WMS is typically responsible
for keep tracking of the status of all running tasks and handling
failures during tasks execution. Several WMSs [14, 15, 16, 17] have
been introduced to enable executing scientific workflows in various
computing environments, including IaaS, FaaS, and CaaS.
Scientific workflows execution in serverless environments.
Several recent efforts have looked into executing scientific work-
flows in serverless platforms. Malawski et al. [16] have built a WMS
to execute scientific workflows using AWS Lambda and Google
Cloud Functions. Their proposed approach is centralized and based
on the HyperFlow engine. Similarly, SWEEP [15] is a centralized,
cloud-provider agnostic WMS that supports executing a work-
flow using serverless functions and serverless containers. Burkat
et al. [17] propose a HyperFlow-based WMS that supports AWS
Lambda, AWS Fargate, and Cloud Run. The proposed WMS adopts
a centralized orchestration approach with a one-to-one task to con-
tainer mapping. These efforts focused only on evaluating different
aspects of various serverless platforms when executing real-world
scientific workflows, and do not compare the proposed solutions
with other alternatives (e.g., a decentralized WMS).

These efforts focus on developing fully-fledged centralizedWMSs
that support various serverless providers. On the other hand, we
focus on evaluating the viability of executing scientific workflows
in a serverless environment. Also, we study and compare different
orchestration approaches to execute scientific workflows. In addi-
tion, we discuss several optimizations that can reduce the execution
time of scientific workflows in serverless environments.
Accelerating workflows in a serverless environment. Several
techniques have been proposed recently to accelerate the execution
of general workflows in serverless functions. Palette [18] proposes a
simple technique to express locality hints to the serverless platform.
Mahgoub et al. [19] propose three optimizations for workflow exe-
cution. The first optimization tries to allocate the right amount of
resources for each function invocation. The second one co-locates
multiple parallel instances of a function on the same virtual ma-
chine (VM). The last technique is the pre-warming of VMs with the
right look-ahead time. SONIC [20] tries to optimize a workflow by
dynamically selecting the best approach to pass data between differ-
ent serverless functions. SONIC design considers three techniques
for passing data: VM-Storage, Direct-Passing, and Remote storage.
The effectiveness of these techniques was not evaluated on scien-
tific workflows. Scientific workflows differ from general-purpose
workflows; They are more complex and consist of long-running
data-intensive tasks. In our work, we propose data locality opti-
mizations that exploit distributed file systems to improve scientific
workflows performance (Section 4).



A Study of Orchestration Approaches for Scientific Workflows in Serverless Computing SESAME ’23, May 8, 2023, Rome, Italy

3 WORKFLOW ORCHESTRATION
APPROACHES

In this section, we discuss different computing models for executing
scientific workflows and the orchestration approaches used in each
model. First, we discuss the serverful model (e.g., IaaS) which is the
traditional model used to execute scientific workflows. Then, we
discuss the serverless model and illustrate two different approaches
for orchestrating workflows. We compare the performance of these
approaches in Section 4.

3.1 Serverful Model
Serverful Model (e.g., IaaS), represents the traditional execution
model in which a set of computing nodes (i.e., workers) are re-
sponsible for executing the tasks of a workflow. In this model, the
orchestration approach is centralized, in which a workflow man-
ager is deployed on one node and responsible for orchestrating the
execution of workflow tasks as shown in Figure 1. The workflow
manager is aware of all computing nodes and can directly commu-
nicate with them. The workflow manager receives a workflow DAG
as an input and is responsible for executing the tasks of the DAG on
the worker nodes while respecting the data dependencies between
tasks. Typically, a storage service is used to share data between
all computing nodes, including input data, results, and temporary
data. There are multiple options to realize the storage service, but
the most popular one is deploying a distributed file system on the
computing nodes.

The main advantage of this approach is that the workflow man-
ager in a serverful model has full knowledge of the status of each
worker node (e.g., its hardware resources and the number of as-
signed tasks). Hence, the workflow manager can assign tasks to
nodes in an efficient manner to improve resource utilization and
reduce end-to-end execution time. On the other hand, in this ap-
proach, developers are responsible for the management and provi-
sioning of the computing and storage resources, which complicates
auto-scaling resources with workflows with dynamic resources
demand.

3.2 Serverless Model
The serverless model differs from the serverful model in many ways.
First, computing resources are not fixed as the serverless platform
can dynamically scale up and down computing resources based on
demand. Second, a workflow manager is not aware of the location
of each running task. Finally, mapping tasks to workers is more
complex. The simplest approach is to assign one task per container.
However, this approach can consumemore resources and take more
time in parallel stages. If the tasks of the parallel stages are short,
then creating a new container for each task can take more time than
reusing containers for multiple requests. Hence, executing data-
intensive, scientific workflows in a serverless platform efficiently
is more challenging.

In order to execute a workflow in a serverless environment, each
task has to be implemented as a serverless execution unit (i.e., a
function in the case of FaaS and a container in the case of CaaS).
In this work, we focus on serverless containers as they offer more
control over the execution environment making themmore suitable
for scientific applications. Typically, a storage service is employed to

Manager
Manager

Serverful
Architecture

Serverless Architecture:
Centralized Orchestration

Serverless Architecture:
Decentralized Orchestration

Figure 1: Different orchestration approaches for scientific
workflows

share data between different containers. This storage service can be
implemented as a distributed file system or any other cloud storage
(e.g., Amazon S3 [21]). A container reads input data, executes the
task, and then writes output data to the storage service.

In the following, we discuss two approaches for orchestrating
tasks of a workflow in serverless environments:
Centralized orchestration approach. As shown in Figure 1, the
workflow tasks are orchestrated by a centralized workflowmanager.
The workflow manager is responsible for sending requests to exe-
cute the workflow tasks, checking the responses of these requests,
and triggering subsequent stages based on those responses while
respecting the data dependencies between different tasks. The main
issue with this approach is that the workflow manager has to be
deployed on dedicated resources as it is a stateful, long-running
process that has to be running till the workflow execution is over.
Hence, the workflow manager cannot be deployed as a serverless
container.
Decentralized orchestration approach. In this approach, the
logic of the workflow manager is embedded into the workflow
stages. This makes every stage responsible for triggering the next
stage as shown in Figure 1. Hence, this approach is considered a
purely serverless approach as it does not require the deployment of
a workflow manager on a dedicated computing node. However, it
requires considerable development effort in order to implement the
functionality of the workflow manager inside containers. Also, this
approach complicates handling some workflow patterns. For ex-
ample, implementing reduce stages is challenging in this approach.
A reduce stage should start after all parallel tasks in the previous
stage finish. However, it is hard to know when the last parallel task
finishes without using a dedicated workflow manager. Moreover,
the only way to infer that parallel tasks are done is by checking
their output files. If all expected output files exist, then all parallel
tasks are done. Otherwise, some tasks are still running.

We explore two approaches to implement the reduce stage. The
first one uses a special container that is responsible for triggering
the reduce stage. This container is triggered when the first parallel
task completes. When the container is triggered, it checks if the
output files of all tasks of the parallel stage exist. If all files exist,
it triggers the reduce stage. Else, it sends a request to itself to
keep spinning. Although this approach is simple, it has two main
problems. First, due to performance variation in parallel tasks, this
container might get triggered early, and if other parallel tasks take a
long time, the container will keep performing file system operations
to check the output files of the parallel tasks, which might stress
the distributed file system and cause its performance to deteriorate
affecting the execution time of the whole workflow. Second, if one
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of the parallel tasks fails permanently, the container will not be
aware of this failure and it will keep spinning forever.

The second approach to implement the reduce stage is to modify
the parallel tasks in the stage before the reduce stage such that
every parallel task checks if all output files exist. If so, the task will
trigger the reduce stage. However, in order to guarantee that the
reduce stage will be triggered only once, the task uses an atomic file
system operation (e.g., renaming a file), and that task will trigger
the reduce stage. The main advantages of this approach are that
the number of trials to trigger the reduce stage is limited by the
number of parallel tasks, the number of file system operations is
bounded, and the reduce stage is not affected by failures of parallel
tasks. However, this approach requires the use of a distributed file
system that supports atomic operations. We use this approach in
our evaluation as the number of checks that we make is limited
by the number of parallel tasks which gives a more deterministic
performance.

4 EVALUATION
We evaluate different orchestration approaches by comparing the
end-to-end and per-stage execution time of Montage, a real-world
scientific workflow (Section 4.1). We identify optimization oppor-
tunities and evaluate their benefits in Section 4.2. In Section 4.3,
we show how the decision of assigning tasks to containers can
significantly impact performance. Finally, we show the effect of
cold starts in Section 4.4.
Testbed. We conducted our experiments using 11 CloudLab [22]
nodes at the Wisconsin data center. Each node has two Intel Xeon
Silver 10-core CPUs and 196 GB of RAM. We use Knative [23] to
implement a serverless environment. Knative is a platform-agnostic
solution for running serverless containers in a Kubernetes envi-
ronment. We deploy Knative v1.8.0 on a Kubernetes environment
v1.24.6. We do not limit the CPU and RAM a container can use in
our experiments.
Distributed File system.We use a distributed file system as a stor-
age service to share files between worker nodes. We choose to use a
distributed file system for two reasons. First, it is the most popular
method used in HPC applications. Second, it is the simplest method
to integrate with all different approaches, which ensures that any
performance difference is mainly due to the used approach. The file
system we use is CephFS [11], the Pacific release (version 16.2.1).
CephFS is a highly available and performant POSIX-compliant file
system. We use CephFS as it is the de facto choice for HPC scratch
spaces and distributed workflows shared storage. We configure
CephFS to use RAM disks to ensure that the results we obtain are
not affected by the performance of persistent disks. Each worker
node has a 50 GB RAM disk.
Workflow.We use the Montage application [1] in our experiments.
Montage is an open-source astronomy workflow. The structure of
this workflow is shown in Figure 2. We can see that Montage is a
complex workflow with different types of stages, such as sequen-
tial stages, parallel stages, and reduce stages. We use the "2MASS
J" dataset with the following parameters: size 4 and location "M
101". This creates a workflow with 4034 tasks, which include 713
mProjectPP parallel tasks, 2602 mDiffFit parallel tasks, and 713
mBackground parallel tasks. We report the average of 15 trials for

mProjectPP

mOverlaps

mDiffFit

mConcatFit

mBgModel

mImgtbl

mBackground

mAdd

mViewer

Figure 2: The structure of Montage workflow.

each experiment. The standard deviation of the end-to-end execu-
tion time is less than 9% for most of the experiments and 15% for
the cold start experiments.
Alternatives.We compare the following orchestration approaches:

• Sequential: This alternative implements the workflow as
sequential steps without any parallelism. In this alternative,
the workflow is executed on one node. Also, it does not
use a distributed file system rather it only uses the local
RAM disk.This alternative represents a baseline for the other
alternatives.

• Serverful-Centralized: This alternative represents the exe-
cution of the workflow in a serverful environment using
a centralized workflow manager. We use PyFlow [12] to
implement the workflow manager. PyFlow is a workflow
management system that supports the parallel execution
of workflow tasks on worker nodes while respecting the
dependencies between different tasks as specified by the
workflow DAG. PyFlow offers a simple representation of
how workflow DAGs are currently executed in a serverful
environment. PyFlow runs on one node and utilizes other
nodes to execute the tasks.

• Serverless-Centralized: This alternative uses a centralized
workflow manager to orchestrate the execution of workflow
tasks in the serverless environment. One node runs the work-
flow manager, while the rest of the nodes are used to run
containers that execute the tasks. We implemented a simple
workflow manager using Python.

• Serverless-Decentralized: In this approach, we modify the
workflow tasks to integrate the functionality of the workflow
manager within the tasks themselves. That is, a task will
trigger the next tasks in a workflow. Only 10 worker nodes
are used in this alternative to ensure that all alternatives use
the same amount of computing resources.

4.1 Comparing Different Orchestration
Approaches

We start by comparing the performance of the Montage workflow
using different orchestration approaches. Figure 3 shows the av-
erage execution time of each stage and the end-to-end execution
time of different alternatives. Results show that parallel alternatives
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Figure 3: Average execution time of each stage using different
orchestration approaches.

(i.e., serverful-centralized, serverless-centralized, and serverless-
decentralized) improve the performance by at least 58% compared
to the sequential alternative. Also, results show that serverless-
centralized and serverless-decentralized alternatives achieve a com-
parable performance to the serverful-centralized alternative. In the
following, we detail these results and discuss our observations.
Overhead of the orchestration approach. We notice that in the
serverless-centralized alternative, the execution time of parallel
stages is lower than that of the serverful-centralized alternative.
For instance, the execution time of the mPorjectPP stage using
the serverless-centralized and the serverful-centralized alternatives
is 3.48 seconds and 4.89 seconds, respectively. This performance
difference is justified by the difference in the behaviour of the
workflowmanager in these alternatives. In the serverful-centralized
alternative, the workflow manager is responsible for monitoring
the worker nodes to keep track of the number of tasks that each
worker node is handling in order to efficiently distribute the tasks
among worker nodes, which causes some performance overhead
for parallel stages. While in the serverless-centralized alternative,
the workflow manager is only responsible for communicating with
the serverless platform by sending requests to execute tasks and
receiving responses from these tasks.

We notice a significant slowdown in the parallel stages for the
serverless-decentralized alternative compared to the serverless-
centralized alternative. For instance, for mProjectPP, mDiffFit,
and mBackground stages, the serverless-decentralized alternative
execution time is higher by 1.9, 3.9, and 5.7 times, respectively,
when compared to the serverless-centralized alternative. This slow-
down is due to the overhead resulting from integrating theworkflow
manager within the functionality of the parallel tasks. Each parallel
task, after finishing its original functionality, communicates with
CephFS to check the existence of the output files of all parallel tasks.
This mechanism results in flooding CephFS with many requests
which causes a noticeable performance overhead. We note that this
overhead increases the end-to-end execution time by only 6.48% as
the workflow is dominated by long sequential stages. However, for
workflows that are dominated by parallel stages, the impact on the
end-to-end execution time is expected to be more noticeable.

Effect of distributed file systems. Figure 3 shows that serverful
and serverless alternatives suffer from large execution time in the
reduce stages and stages that process large files when compared
to the sequential alternative. For instance, for mAdd, and mImgtbl
stages, the serverless-decentralized alternative execution time is
higher by 4.7 and 15.5 times, respectively, when compared to the
sequential alternative. This performance degradation is due to opti-
mizations that are typically implemented in distributed file systems;
CephFS utilizes file system capabilities (i.e., privileges) to optimize
write and read operations. If a file is being written by only one
node, CephFS grants write and buffer capabilities exclusively to
this writer node. These capabilities allow the writer node to write
data to its local buffer, which is cached and used to serve reads com-
ing from the same node. However, if another node tries to access
(e.g., read or write) the same file, CephFS revokes the granted capa-
bilities from the writer node to force it to flush its buffer to storage
nodes. After that, CephFS grants capabilities to the other node to
allow it to access the file. CephFS uses this approach to guarantee
data consistency between different nodes. Stages that read many
input files (e.g., reduce stages) have to wait till the data written by
all parallel tasks of the previous stage is flushed to storage nodes.
Also, stages that read large files (e.g., mViewer) suffer from the same
issue as large files are typically partitioned into chunks that are
stored on different storage nodes.

4.2 Locality Optimizations
In this section, we present and evaluate two optimizations that
can mitigate the effects of using a distributed file system in both
serverless-centralized and serverless-decentralized alternatives:
Prefetching file privileges. This optimization prefetches file priv-
ileges at the reduce task. To achieve this, we added a new task that
only opens a given file. Opening a file forces the previous node that
holds the privileges of the file to flush its buffer and for the new
node to acquire file privileges. We schedule the new task on the
container that will run the reduce task. This approach forces the
nodes that run the parallel tasks to flush their buffers and results in
acquiring the needed privileges for the output files at the reducer.
Note that this optimization overlaps the process of acquiring file
privileges by the reducer with parallel tasks that are still running.
Container placement. In this optimization, containers of tasks
that share a large amount of data are placed on the same node
(e.g., a parallel stage and the following reduce stage). This opti-
mization improves the performance significantly as it reduces the
amount of data that is accessed remotely by tasks; Tasks write out-
put data to local buffers and subsequent tasks read input data from
these buffers. Although this optimization improves performance
significantly (Figure 4), there are multiple problems with using it to
optimize reduce patterns. First, placing all parallel tasks of a stage
on the same node may reduce resource utilization and increase
the execution time of that stage as all tasks are competing over
the same computing resources. Second, this optimization has to be
implemented by the serverless platform as applications do not have
direct access to the underlying infrastructure.

We study the effect of each of these optimizations on perfor-
mance. Figure 4 shows the end-to-end execution time and the exe-
cution time of each stage of the Montage workflow using the two
optimizations. Results show that these optimizations reduce the
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Figure 6: The effect of containers cold starts
on the workflow execution time.

end-to-end execution time. Specifically, compared to the unopti-
mized serverless alternative, prefetching file privileges and con-
tainer placement optimizations reduce the end-to-end execution
time of the unoptimized version by 26% and 44%, respectively. The
optimizations also reduce the variation in the end-to-end execu-
tion time with a standard deviation of less than 2%. Furthermore,
container placement optimization reduces the execution time of
reduce stages significantly when compared to the unoptimized ver-
sion (e.g., mImgtbl by 95.6%, mConcatFit by 59.95%, and mAdd by
76.88%). However, it increases the execution time of parallel stages
mProjectPP, mDiffFit, and mBackground by 2.5, 1.92, and 3.15
times, respectively. This performance reduction is due to resource
contention as all parallel tasks are executed on one node.

4.3 Task to Container Mapping
In this experiment, we study the effect of task-to-container map-
ping on the performance of the parallel stages. Knative supports
configuring the number of concurrent requests a container can
handle. If all running containers have reached their concurrency
limit, Knative spins a new container to serve any future requests.
Figure 5 shows the execution time of each parallel stage for different
numbers of concurrent requests. Results show that a simple one-to-
one task to container mapping (i.e., one request for each container
which results in spinning up 143 containers in Figure 5) increases
the execution time of the parallel stages mProjectPP, mDiffFit,
and mBackground by 40.4%, 21.89%, and 50.75%, respectively when
compared to the best configuration (i.e., 13 concurrent requests
which results in spinning up 11 containers). This performance de-
terioration is due to spinning a large number of cold containers
as we hit a cold start with every new container created. Also, re-
sults show that increasing the container concurrency to a large
value (100 concurrent requests which results in spinning up two
containers) results in provisioning few containers and does not
utilize the elasticity offered by the serverless platform resulting in a
longer execution time for parallel stages. Since parallel tasks in the
Montage workflow are short, allowing a container to handle multi-
ple concurrent tasks takes less time than creating new containers.
Hence, results suggest that there is a sweet configuration spot that

results in lower execution time and better resource utilization. We
did a similar experiment for determining the best number of warm
containers. In all other experiments, we use the best configurations
we acquired empirically from those experiments which are seven
warm containers for each parallel stage in the case of a warm start
and 13 concurrent requests per container in the case of a cold start.

4.4 Effect of Cold Starts
This section evaluates the effect of cold starts of containers on
the performance. Cold starts is a known issue and its impact on
serverless functions has been evaluated by previous efforts [24].
However, the tasks of scientific workflows differ from general-
purpose serverless functions as they are long-running tasks that
consume and produce a large amount of data. Figure 6 shows the
average end-to-end execution time and the execution time of each
stage of the Montage workflow using the cold start and warm start
versions. We use the best configuration for both versions. For the
warm start version, we configure the number of possible concurrent
requests to a high value in order to prevent the creation of any new
containers and avoid any cold starts. For the cold start version, we
store the containers’ images on the nodes. However, the cache and
the swap area are cleared before each experiment to ensure that we
always hit a cold start. Figure 6 shows that the cold starts increased
the total end-to-end execution time by 14.89%. We notice that the
effect of cold starts on some of the sequential and reduce stages
is non-noticeable (e.g., mAdd and mViewer). This is because these
stages run for a long time which diminishes the effect of cold starts.
However, for the parallel stages, we notice a significant slowdown
(e.g., 2.82 times higher for the mProjectPP stage). This is due to
cascaded cold starts as we hit a cold start with every new container
being created.

5 DISCUSSION
Viability of using serverless computing to execute scientific
workflows. Our evaluation shows that serverless computing is a
viable approach for executing scientific workflows as it offers com-
parable performance to the traditional serverful approach. We plan
to extend our study with similar evaluations for resource utilization
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and cost. Also, the design of the proposed locality optimizations
suggests that it is critical to coordinate the scheduling decisions
and the file system optimizations.
Impact of the optimizations. The optimizations introduced in
this study can have a negative impact on the end-to-end execution
time or resource utilization under some workflows. The ”container
placement” optimization may result in increasing the end-to-end
execution time if the increase in the time of the parallel stages is
higher than the time reduction for reduce stages. Furthermore, if
the majority of running containers are of a few parallel stages, these
containers will be placed on a few nodes resulting in low resource
utilization. For the ”prefetching file privileges ” optimization, we
might face some issues if the duration of the parallel tasks has a
large variance. In this case, the reducer might be provisioned early,
wait for a while without anything to do as the other parallel tasks
are still running, then exits without executing the reducer task. For
this scenario, it might be better to just open all the files in parallel
before the parallel stage finishes.
Implementing the decentralized orchestration approach. Due
to its distributed nature, implementing, modifying, and debugging
the decentralized orchestration approach requires a considerable
amount of effort. This is calling for the need for further tools and
libraries that offer standard components for implementing common
patterns in workflows while transparently handling common issues
such as logging and failures. Regarding the implementation of
parallel tasks, the used method to check the existence of all output
files of parallel tasks can significantly affect the execution time. In
our implementation, we check only the number of the output files.
However, if a more sophisticated method is used (e.g., checking
the name of the files), the performance deterioration will be much
worse as it will generate a higher load on the distributed file system.

6 CONCLUSION AND FUTUREWORK
Our study investigates the viability of using serverless computing
in executing scientific workflows. We implement and evaluate three
different orchestration approaches using the Montage application.
The results show that serverless computing offers a comparable
performance compared to the serverful approach. The results also
show that all approaches suffer from performance overhead in
certain stages. We investigate the causes of that overhead, and we
then propose two optimizations (i.e., prefetching file privileges and
container placement) to mitigate that overhead. For future work, we
intend to extend our study with other workflows that have different
patterns and create a framework that leverages the insights we find
in our study.
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