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ABSTRACT
Data deduplication is critical to cloud storage providers and is
widely employed to conserve server-side storage space. Data chunk-
ing is an important aspect of deduplication, being directly respon-
sible for storage space savings and end-to-end system throughput.
While deduplication systems deployed in production favor larger
chunk sizes, existing data chunking algorithms are slow and offer
minimal throughput increases with increasing chunk size.

We present SeqCDC, a chunking algorithm that leverages content-
based data skipping and lightweight boundary judgement to im-
prove chunking throughputs. SeqCDC’s chunking throughput is
higher at larger chunk sizes. Our evaluation shows that SeqCDC
can improve chunking throughput by 1.5× – 3.1× over the state-
of-the-art while achieving similar space savings benefits, across a
variety of datasets.
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1 INTRODUCTION
Data generation rates have skyrocketed in recent years, leading to
the explosion of the amount of data stored on the cloud [1]. Cloud
storage providers employ numerous mechanisms to deal with this
data influx, such as distributed file systems [2, 3], novel storage
architectures [4, 5], data compression [6, 7] and data deduplica-
tion [8, 9].

Data deduplication has been widely employed in production
by cloud storage providers such as Microsoft [10], EMC [11] and
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IBM [12]. A large percentage of the data stored by these providers
is redundant [10]. Data deduplication helps identify and eliminate
these redundant portions, reducing storage costs by up to 80% [11,
13]. Deduplication can be performed at the file-level, i.e. on entire
files, or the block-level, after dividing files into blocks [14].

Block-level deduplication achieves far superior space savings
when compared to file-level deduplication [15]. The division of
files into these blocks (or chunks) is achieved using data chunking
algorithms [15], which dictate the space savings achieved by the
deduplication system as a whole. Data chunking algorithms fall into
two categories: fixed-size and content-defined chunking (CDC).

Fixed-size chunking divides files into chunks of an equal pre-
specified size. While this approach offers extremely high chunking
throughput, it achieves poor space savings as it is vulnerable to byte
shifts [15]. Content-defined chunking (CDC) algorithms [15–17]
instead use the file’s contents to define chunk boundaries, effec-
tively handling the byte-shifting problem. Numerous data chunking
algorithms are in use today and can be broadly divided into hash-
based [15, 17–19] and hashless algorithms [16, 20, 21]. Hash-based
algorithms use hash functions to derive chunk boundaries while
hashless algorithms treat each byte as a value and define chunk
boundaries using conditions such as local minima or maxima. Note
that in both cases, a collision-resistant hash algorithm [22] is later
used to hash each chunk for fingerprinting.

The chunking throughput of CDC algorithms is limited by their
need to scan each file entirely to determine chunk boundaries. They
are also designed to target datasets that benefit from smaller chunks
of size 512 B – 4KB. However, such small chunks increase metadata
overhead [8] and impact system throughput due to the random
access and frequent transfer of small chunks. Consequently, pro-
duction systems favor storing fewer and larger chunks for datasets
such as VM backups, pitting them at odds against CDC algorithms.

We present SeqCDC, a CDC algorithm geared towards larger
chunk sizes. SeqCDC uses two optimizations to improve throughput
for large chunks: lightweight boundary judgment and content-based
data skipping. Lightweight boundary judgment reduces the over-
head involved in determining the location of chunk boundaries
within the file. Content-based data skipping selectively skips scan-
ning regions of the file. Our evaluation compares SeqCDC to five
state-of-the-art chunking algorithms using a variety of datasets
(§6). We show that SeqCDC improves chunking throughput by
1.5×–3.1× compared to the state-of-the-art CDC algorithms while
achieving comparable space savings. We have made our code public
by integrating it with DedupBench1 [23].

1https://github.com/UWASL/dedup-bench
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2 BACKGROUND AND MOTIVATION
Data deduplication [10, 15] is used by cloud-storage providers to
detect duplicate data, allowing them to eliminate the costs associ-
ated with its storage and transmission. Data deduplication consists
of the following steps [8]:

• File Chunking: Splitting a file into chunks using a data chunk-
ing algorithm is one of the primary steps in data dedupli-
cation. Deduplicating these chunks provides higher space
savings benefits than file-level deduplication [15].

• Chunk Hashing: Each data chunk is hashed using a collision-
resistant hashing algorithm [22, 24] to obtain a fingerprint.

• Fingerprint Comparison: The fingerprint is compared against
a database of previously observed fingerprints. A duplicate
fingerprint, i.e. one that has been observed before, indicates
an underlying duplicate chunk, which can be eliminated.

• Data Storage: Non-duplicate data chunks are saved on the
storage medium and their fingerprints are added to the fin-
gerprint database.

Chunking is the most critical part of this pipeline, it occurs
on the critical path during data uploads and directly impacts the
overall space savings and throughput associated with deduplication
systems. Space savings represent the total space conserved by using
deduplication.

𝑆𝑝𝑎𝑐𝑒 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑖𝑧𝑒 − 𝐷𝑒𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 𝑆𝑖𝑧𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑖𝑧𝑒
× 100 (1)

The size of the fingerprint database is tied to the average chunk
size. Smaller average sizes lead to more chunks and more finger-
prints, thus increasing the size of the database and associated fin-
gerprint comparison overheads. To minimize this overhead, dedu-
plication systems in production tend to favor larger chunk sizes.

2.1 Content-Defined Chunking (CDC)
Algorithms

Numerous data chunking algorithms [15–18, 20, 21] have been
proposed for data deduplication. Content Defined Chunking (CDC)
algorithms slide a fixed-size window over the data within the source
file. When the window’s data meets pre-specified conditions, they
insert a chunk boundary at the end of the window. By repeating
this across the entire file, they divide it into data chunks. Each
CDC algorithm has parameters which can be tuned to change the
average size of generated chunks.

CDC algorithms are classified into hash-based and hashless al-
gorithms. Hash-based chunking algorithms, such as Rabin’s chunk-
ing [15] insert chunk boundaries only when the hash value of the
window’s data matches a pre-specified mask. The hashing algo-
rithms used here are typically not collision resistant. For instance,
within Rabin’s Chunking (RC) [15], chunk boundaries are inserted
when the lower order 13 bits of the hash value are zero. While
Rabin’s chunking achieves high deduplication ratios, it is very slow.
TTTD [18] uses Rabin’s hashing but achieves improved space sav-
ings by simultaneously checking for two hash value conditions.
The secondary condition is always computed but only used if a
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Figure 1: Chunking throughput (MB/s) on randomized data

boundary is not found beyond a pre-specified size with the primary
condition.

The Gear hashing function [19] has a lower overhead than Ra-
bin’s hashing. FastCDC (FCDC) [17] uses Gear hashing and imple-
ments two optimizations to improve chunking throughput: skipping
the scanning of data up to the minimum chunk size at the begin-
ning of each chunk, and normalizing chunk sizes i.e. dynamically
relaxing the boundary condition to ensure that generated chunks
are close to the expected average chunk size.

On the other hand, hashless algorithms such as Asymmetric
Extremum (AE) [16] and Rapid Asymmetric Maximum (RAM) [20]
also slide fixed-size windows over the source data. AE attempts
to identify a window such that the starting byte’s value is greater
than all the bytes before it and not less than the other bytes within
the window. When such a window is found, AE inserts a chunk
boundary at the end of the window. AE is 4−5× faster than Rabin’s
chunking. Rapid Asymmetric Maximum [20] inserts chunk bound-
aries when the byte immediately outside the window has a value
greater than the maximum valued byte within the window. These
algorithms avoid hashing when determining chunk boundaries,
reducing the computational overhead and achieving high chunking
throughput [23, 25].

2.2 Chunking Throughput Analysis
We compare the chunking throughput of the state-of-the-art CDC
algorithms with three average chunk sizes: 4 KB, 8 KB, and 16KB.
Figure 1 shows the throughput achieved by AE [16], FastCDC [17],
RAM [20], Rabin’s Chunking [15] and TTTD [18] when chunking
a 1GB file containing random data. The details of our testbed are in
Section 6.

We note that the throughputs of all these algorithms do not scale
with chunk size, as they are primarily designed to target smaller
chunk sizes. However, deduplication systems in production favor
larger chunk sizes on datasets such as VM backups, to minimize
fingerprint comparison overheads (§2). As a result of these CDC al-
gorithms, deduplication systems suffer from poor chunking speeds.

3 SEQCDC’S DESIGN
SeqCDC is designed to insert chunk boundaries when fixed-length
sequences of monotonically increasing/decreasing bytes are de-
tected. SeqCDC can operate in either Increasing mode i.e. tar-
geting increasing order sequences or Decreasing mode. Note that
these two modes are exclusive of each other. Figure 2 shows an ex-
ample of SeqCDC’s operation. §4 discusses how SeqCDC is resistant
to byte shifting.
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Figure 2: An example of a chunk generated by SeqCDC

SeqCDC utilizes three parameters: SeqLength, SkipTrigger and
SkipSize, each described in detail in the following subsections. Se-
qCDC includes three optimizations we discuss in detail: lightweight
boundary detection, ignoring data at the beginning of a chunk, and
content-based data skipping within each chunk.

3.1 Lightweight Boundary Detection
To avoid complex hashing operations, SeqCDC treats each byte
within the data stream as an independent value similar to existing
hashless CDC algorithms. However, to improve chunking through-
put even further, SeqCDC reduces the overheads associated with
boundary detection by avoiding minima/maxima searches.

Instead, SeqCDC looks for fixed-length monotonically increas-
ing/decreasing sequences of bytes and inserts chunk boundaries
whenever such a sequence is detected. The sequence must have a
length of SeqLength to be considered a boundary candidate. Once
such a sequence is found, a boundary is inserted at its end.

Modes of operation. SeqCDC can be used in Increasing or
Decreasing mode. Both these modes are exclusive of each other.
While in Increasing mode, SeqCDC targets monotonically in-
creasing sequences. On the other hand, it targets monotonically de-
creasing sequences in Decreasing mode. Depending upon dataset
characteristics, one mode may be more effective than the other.

Figure 2 shows an example of SeqCDC operating in Increasing
mode with a SeqLength of 3. A chunk boundary is inserted after
the byte with value 98, as it forms an increasing sequence with the
bytes preceding it.

3.2 Ignoring Sub-minimum Regions
SeqCDC utilizes the concept of ignoring data at the beginning
of each chunk introduced within previous literature [17, 26] to
increase chunking throughput. SeqCDC skips scanning data equal
to the (minimum_chunk_size - SeqLength) at the beginning of each
chunk ("Sub Minimum Region" in Figure 2).

Increasing the minimum chunk size allows SeqCDC to skip over
larger amounts of data at the beginning of each chunk, increasing
chunking throughput. However, when performed excessively, this
may negatively impact space savings on some datasets. The min-
imum chunk size for SeqCDC is 25-50% the average chunk size,
similar to existing CDC algorithms [17, 26].

3.3 Content-based Data Skipping
SeqCDC additionally improves chunking throughput by skipping
scanning certain data regions when looking for chunk boundaries
("Skipped Region" in Figure 2). Randomly skipping data regions
can negatively affect space savings. To avoid this, SeqCDC adopts

a novel content-based data skipping mechanism i.e. data regions
are skipped over only when skip conditions are met.

SeqCDC skips scanning data within volatile regions i.e. data re-
gions with byte sequences in an order opposing the target sequence.
For instance, when in Increasing mode, regions with decreasing
order sequences are considered volatile. When SkipTrigger pairs
of bytes in opposing order are detected, SeqCDC decides that the
current region is volatile and skips scanning the next few bytes
in the hope of landing in a favorable region. For instance, in Fig-
ure 2, the skip condition is triggered after the byte with a value of 5,
causing the next SkipSize bytes to be ignored. The SkipSize is kept
small (256-512 bytes), in order to avoid skipping over large sections
of data. After a skip is triggered, SeqCDC resets its counters and
resumes scanning for boundaries.

Larger SkipSizes improve chunking throughput. While larger
SkipSizes are feasible for larger chunks, they may result in a dispro-
portionately high amount of data skipped within smaller chunks,
negatively affecting space savings. SeqCDC overcomes this by ad-
justing the SkipSize from 256−512 bytes, depending on the expected
average chunk size.

Data skipping can potentially impact byte shifting resistance.
SeqCDC therefore trades off a small amount of byte-shifting resis-
tance to achieve superior chunking throughput. §4 discusses this
trade off in greater detail. Additionally, in our evaluation (§6.1), we
show that this minimally impacts deduplication space savings in
real datasets.

4 HANDLING BYTE SHIFTING
Byte shifting can occur within any region of the input data stream,
causing certain chunk boundaries to change. Byte shifting can span
one or more bytes and take the form of insertions or deletions. In
general, sub-minimum and content-defined skipped regions affect
SeqCDC’s byte-shifting resistance. Figure 3 shows three chunks
with four boundaries 𝐵1 - 𝐵4. Each chunk has a corresponding
sub-minimum region (𝑀1 -𝑀3) at the beginning of the chunk. The
figure also shows two regions 𝑉1 and 𝑉2 skipped via SeqCDC’s
content-defined skipping i.e., using SkipTrigger.

Skipped region impact:When byte-shifts occur, boundaries
may be moved in and out of skipped regions (both sub-minimum
and content-defined). For instance, consider 𝑆1 in Figure 3 which
occurs in the sub-minimum region 𝑀1. If byte-shift 𝑆1 causes a
boundary previously hidden within𝑀1 to be pushed outside, a new
chunk may be created, thus splitting Chunk 1. This may in turn
lead 𝐵2 to be pushed into𝑀2, affecting subsequent chunks as well.
Similarly, a deletion may cause 𝐵2 to be hidden within𝑀1, leading
to chunk mergers. Additionally, boundaries may be moved in and
out of regions previously skipped with SkipTrigger and SkipSize by
shifts such as 𝑆2, causing chunk splits and mergers.

While this behavior can theoretically impact a large number of
chunks, it only impacts a limited number of chunks within real
datasets. This is why many CDC algorithms such as FastCDC [17]
and TTTD [26] use sub-minimum skips in production. SeqCDC
also minimizes the impact caused by content-defined skipping by
keeping the SkipSize between 256-512 bytes. Thus, despite data
skipping, SeqCDC achieves space savings values competitive with
those of other CDC algorithms as shown in §6.1. Finally, we note
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Figure 3: Handling byte-shifts with SeqCDC

SeqLength SkipTrigger SkipSize

4KB 5 55 256
8KB 5 50 256
16KB 5 50 512

Table 1: SeqCDC parameter values

that all CDC algorithms have pathological data patterns i.e. data
which can be engineered to ensure that they are ineffective.

In the rest of this section, we focus on the more common kind of
byte-shifting i.e. those that do not result in new boundaries being
uncovered or hidden, drastically affecting chunks.

Within the boundary sequence. The probability of such byte
shifting occurring is rare in real datasets, as SeqLength typically
ranges from 3 to 7 bytes. If byte shifting occurs within a sequence,
the boundary may no longer exist. Thus, scanning will continue
until the next sequence is detected. In the figure, 𝑆3 may cause
𝐵2 to no longer exist. Thus, the next boundary will be after 𝐵3,
causing Chunks 1 and 2 to be merged while subsequent chunks are
unaffected.

Between sequences and outside skipped regions. Byte-shifts
such as 𝑆4 are the ones most commonly seen in real datasets. They
occur outside of skipped regions and do not drastically change the
chunk structure. If 𝑆4 does not create a new boundary sequence, the
existing boundary sequence 𝐵3 shifts. Thus, Chunk 2 changes while
subsequent chunks are unaffected. On the other hand, if 𝑆4 does
create a new boundary sequence, a boundary is inserted after it,
changing Chunk 2. This may result in 𝐵3 being moved into the sub-
minimum region of the next chunk and being skipped. Thus, the
next boundary will be inserted after 𝐵4, causing Chunk 3 to change.
Thus, Chunks 2 and 3 are affected while others are unaffected.

Maximum chunk size. If a shift 𝑆5 causes the maximum chunk
size to be reached, a boundary is inserted at the maximum chunk
size. This will cause the chunk to split into multiple chunks. For
instance, if a boundary is inserted after 𝑆5 in Figure 3, Chunk 3 will
be split into two if no subsequent boundary sequences are hidden.

5 IMPLEMENTATION
We implement SeqCDC using ~250 lines of C++ code. We inte-
grated SeqCDC with our previous work DedupBench [23]. We
optimized the computation of SeqLength and SkipTrigger using the
std::signbit function to reduce the number of branch conditions.
SeqCDC is compatible with all file and data formats.

Dataset Size Information XC

DEB 40GB 65 Debian VM Images obtained
from the VMware Marketplace [29] 28.1%

DEV 230GB 100 backups of a Rust [30] nightly
build server 90.9%

LNX 65GB 160 Linux kernel distributions in
TAR format [31] 34.8%

RDS 122GB 100 Redis [32] snapshots with
redis-benchmark runs 33.7%

TPCC 106GB 25 snapshots of a MySQL [33]
VM running TPC-C [34]. 54.6%

Table 2: Dataset information. Note that XC is fixed-size
chunking at 4 KB.

Obtaining parameter values. SeqCDC has three configurable
parameters apart from its mode: SeqLength, SkipTrigger and Skip-
Size. To obtain the parameter value combination needed to generate
a given average chunk size, we first used Monte-Carlo simula-
tions [27] on randomized data streams. For example, to identify the
parameter values for an average of 4 KB, we conducted simulations
on randomized data to identify candidate combinations resulting
in an average chunk size of 4 KB. Following this, we experimented
on one of our datasets (DEB from §6) to pick the best performing
combination, which we use across all the datasets in our evaluation.
The final parameter values used within our evaluation (§6) to obtain
average chunk sizes of 4-16 KB are shown in Table 1.

The results outlined in §6 show that SeqCDC outperforms other
CDC algorithms on all datasets with these chosen parameters. Thus,
it is not necessary to run an extensive parameter search per dataset,
instead obtaining suitable parameters using the method described
above. However, to tune SeqCDC to a specific dataset, better pa-
rameter combinations may be obtained using such a search.

6 EVALUATION
In this section, we evaluate SeqCDC’s space savings and chunking
throughput and compare it to the state-of-the-art CDC algorithms.

Testbed. We use an AMD EPYC Rome machine from Cloud-
Lab [28] for our evaluation. The machine consists of a 16-core
AMD 7302P CPU with hyperthreading, 128 GB RAM and a 25 GBps
Mellanox NIC. All our results are the average of 5 runs with a
standard deviation of less than 5%.

Alternatives. We compare the following CDC algorithms:
• AE: The Asymmetric Extremum [16] algorithm.
• FCDC: FastCDC [17] with a normalization level of 2.
• RC: Rabin’s chunking algorithm [15].
• RAM: Rapid Asymmetric Maximum [20].
• SeqCDC: We only report the results for SeqCDC in Increas-
ing mode. The results for Decreasing mode are similar.

• TTTD: Two-Threshold Two-Divisor Algorithm [18].
We use minimum and maximum chunk sizes of 1

2× and 2× the
expected average chunk size, in line with previous studies [17, 26].
The only exception is that for a small average chunk size of 4 KB,
we use a minimum size of 1 KB.

Datasets. Table 2 shows the datasets used within our evaluation
as well as the space savings achieved by using fixed-size chunking
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(XC) on them with an average size of 4KB. By comparing the space
savings achieved by XC on these datasets to those achieved by
the CDC algorithms (Table 3), we note that the datasets possess
varying degrees of byte-shifting. For instance, XC achieves a space
savings of only 54.6% on TPCC while CDC algorithms achieve 86-
87%. Finally, we note that the datasets represent diverse workloads
such as database backups, VMs, and Linux kernel code.

6.1 Space Savings
Table 3 shows the space savings achieved by all the alternatives
across datasets. We note that all CDC algorithms achieve superior
space savings when compared to fixed-size chunking (XC from
Table 2), showing that they effectively handle byte-shifting.

The space savings achieved by all algorithms decreases with
increasing chunk size. The space savings degradation between
4KB and 16KB average chunk sizes on the DEV, RDS, and TPCC
datasets is ~6% across all CDC algorithms. However, as the total
number of chunks at 16 KB is far lower than that at 4 KB, the size
of the fingerprint database and fingerprinting overheads are signif-
icantly smaller with 16KB chunks. Similarly, the best chunk size
configuration for the DEB dataset is 8 KB. This demonstrates why
deduplication systems favor larger chunk sizes on some datasets.

SeqCDC achieves similar space savings to all the other CDC
algorithms on these datasets across chunk sizes. The best algorithm
for space savings varies depending on the combination of dataset
and target chunk size. For instance, at 4 KB, TTTD and RAM achieve
the best space savings on DEV and RDS respectively. Similarly, at
8 KB, SeqCDC and TTTD achieve the best space savings on DEB
and TPCC respectively. On all datasets except LNX, SeqCDC either is
the best or achieves space savings within 4% of the best performer.

On the other hand, the LNX dataset presents a case favoring
smaller chunk sizes. The space savings degradation caused by mov-
ing from average chunk sizes of 4 KB to 16 KB is ~30% across algo-
rithms, which far outweighs any gains within fingerprint indexing.
Nevertheless, SeqCDC achieves space savings within 6% of the best
performer on this dataset.

Chunk size distribution. Figure 4 shows a CDF of chunk sizes
from all algorithms on the TPCC dataset at average sizes of 8 KB
and 16 KB. Rabin’s Chunking (RC) and TTTD exhibit similar distri-
butions since TTTD only differs from RC by the use of a backup
divisor. AE and RAM exhibit different distributions when compared

(a) 8KB (b) 16KB

Figure 4: CDF of chunk sizes on TPCC

Dataset CDC 4KB 8KB 16KB

AE 41.99% 33.23% 21.47%
FCDC 43.83% 36.97% 27.77%

DEB RC 44.38% 36.16% 27.22%
RAM 42.98% 34.63% 22.61%
TTTD 45.06% 37.13% 27.94%
SeqCDC 42.77% 37.76% 27.62%

AE 98.00% 97.72% 97.21%
FCDC 98.17% 98.06% 97.90%

DEV RC 98.21% 98.09% 97.97%
RAM 98.05% 97.79% 97.31%
TTTD 98.22% 98.10% 97.98%
SeqCDC 98.13% 98.03% 97.82%

AE 59.41% 45.33% 31.67%
FCDC 59.16% 44.35% 33.64%

LNX RC 67.02% 49.28% 35.40%
RAM 57.94% 42.90% 29.12%
TTTD 68.46% 51.06% 36.92%
SeqCDC 63.13% 49.46% 33.26%

AE 94.66% 92.86% 91.04%
FCDC 93.82% 92.04% 90.15%

RDS RC 94.31% 92.32% 90.57%
RAM 95.67% 94.09% 92.03%
TTTD 95.2% 93.30% 91.55%
SeqCDC 94.86% 92.54% 88.78%

AE 86.58% 84.96% 81.58%
FCDC 87.18% 86.74% 86.17%

TPCC RC 87.24% 86.80% 86.37%
RAM 86.71% 85.21% 81.67%
TTTD 87.29% 86.84% 86.40%
SeqCDC 87.04% 86.68% 85.83%

Table 3: Space savings of CDC techniques

to hash-based algorithms. SeqCDC exhibits a chunk size distribu-
tion similar to TTTD and RC. We observed similar results across
all our datasets and chunk sizes.

6.2 Chunking Throughput
Figure 5 shows the chunking throughput of all the alternatives
on all datasets. The chunking throughput for each algorithm only
marginally varies between datasets. When examining chunking
throughputs across average chunk sizes instead, we note that the
throughput only minimally scales with size for all algorithms other
than SeqCDC, similar to our analysis in §2.2.

Among the hash-based algorithms, Rabin’s chunking [15] and
TTTD [18] are the slowest, only achieving 200−220 MB/s. TTTD is
slightly slower than Rabin’s chunking due to its extra comparison
condition (§2.1). The poor chunking throughput of both algorithms
is due to the high computational cost of Rabin’s hashing, as pointed
out in previous literature [17]. FastCDC fares significantly better
and achieves 2000 − 2700 MB/s. FastCDC’s throughput increase
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Figure 5: Chunking throughput (MB/s) comparison across datasets. Note that SEQ is SeqCDC.

from 4KB to 8 KB is due to the increased ratio of minimum chunk
size to average chunk size (25% to 50%).

Hashless algorithms such as AE [16] and RAM [20] achieve
higher chunking throughput than Rabin’s chunking and TTTD.
They both achieve throughputs of 1450 − 1500MB/s across all
datasets. RAM is computationally less expensive than AE [20],
leading it to perform better in certain cases (such as LNX at 4 KB).

SeqCDC consistently achieves higher chunking throughput than
all other CDC algorithms at average chunk sizes of 8 KB and 16 KB.
At a chunk size of 8 KB, it achieves 4000−4250 MB/s, 1.5× and 2.8×
better than FastCDC and AE/RAM respectively. At a chunk size of
16 KB, it achieves a chunking throughput of ~8000-8800MB/s, 3.1×
and 5.8× better than FastCDC and AE/RAM respectively. SeqCDC’s
increase in throughput from 8KB to 16 KB is primarily due to the
increasing SkipSize from 256 bytes to 512 bytes.

At a chunk size of 4 KB, SeqCDC’s SkipTrigger is increased by
10% to constrain the amount of data skipped. SeqCDC still achieves
2400MB/s, 0.2× and 0.6× faster than FastCDC and AE/RAM re-
spectively. Thus, SeqCDC is faster than all other CDC algorithms by
1.5 × −3.1× at larger chunk sizes and 0.2× at smaller chunk sizes.

Throughput breakdown. Figure 6 shows the impact of each
optimization (§3) on SeqCDC’s throughput. Lightweight boundary
judgement (BDRY) results in a throughput of ~2300MB/s. When
sub-minimum ignore is enabled (MIN), this throughput increases
by 1.55×–2×. Finally, adding content-based skipping (ALL) allows
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Figure 6: SeqCDC throughput breakdown - 16KB

SeqCDC to achieve its peak throughput of 8000–8500MB/s seen
previously in Figure 5.

7 RELATEDWORK
Accelerating Deduplication. Numerous efforts have been made
to accelerate the other phases involved in data deduplication. Store-
GPU [35] accelerates hashing operations using GPUs to speed up
fingerprint comparison. Silo uses locality-based optimizations to
improve fingerprint comparison [36]. These efforts are orthogonal
to ours as we focus on the file chunking phase within deduplication.
Other Chunking Optimizations. RapidCDC [37] and Quick-
CDC [38] use locality-based optimizations to speed up chunking
for duplicate chunks. MUCH [39] parallelizes chunking using mul-
tiple threads. SeqCDC is compatible with any of these techniques
as they all rely on implementing optimizations on top of existing
CDC techniques. MII [40] uses a sequence-based approach to chunk
data but their approach results in inflexible chunk sizes and low
throughput.

8 CONCLUSION
Deduplication systems in production employ larger chunk sizes
due to reduced fingerprinting overheads. However, state-of-the-art
CDC algorithms are designed to target smaller average chunk sizes,
suffering from poor chunking throughput at larger sizes.

We present SeqCDC, a CDC algorithm that achieves higher
chunking speeds than the state-of-the-art. SeqCDC leverages cont-
ent-based data skipping and hashless lightweight boundary judge-
ment to improve chunking throughput by 1.5×−3.1× while achiev-
ing similar deduplication space savings.
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