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Abstract—Serverless computing is rapidly growing area of
research. No standardized benchmark currently exists for eval-
uating orchestration level decisions or executing large server-
less workloads because of the limited data provided by cloud
providers. Current benchmarks focus on other aspects, such as
the cost of running general types of functions and their runtimes.

We introduce OrcBench, the first orchestration benchmark
based on the recently published Microsoft Azure serverless
data set. OrcBench categorizes 8622 serverless functions into 17
distinct models, which represent 5.6 million invocations from the
original trace.

OrcBench also incorporates a time-series analysis to identify
function chains within the dataset. OrcBench can use these to
create workloads that mimic complete serverless applications,
which includes simulating CPU and memory usage. The modeling
allows these workloads to be scaled according to the target
hardware configuration.

Index Terms—benchmark, serverless, cloud, modeling

I. INTRODUCTION

The serverless paradigm has seen a growth in popularity
over the last few years [1, 10] with AWS seeing a 209% in-
crease in functions executed in 2020 [11]. Serverless simplifies
service deployment by shifting much of the infrastructure re-
sponsibility from developers to the cloud provider. Developers
focus on the functionality of their applications while the cloud
takes care of most of the deployment challenges.

Building a cost efficient serverless platform is challeng-
ing because developers are only charged for the resources
used during a function’s execution. Offloading the application
deployment and management from developers to providers
introduces complex research challenges including resource
management, auto-scaling, workload consolidation, storage
systems, billing, and orchestration. A benchmarking tool that
simulates real workload characteristics is essential to explore
these frontiers.

There are currently no benchmarking tools that capture the
characteristics of real serverless workloads. Previous efforts
resorted to building tools that were limited by the lack of
publicly available data from serverless providers. These tools
provide performance and cost estimates for running a server-
less application on a given cloud platform [2, 7], or provide
a synthetic set of functions that represent applications within
the serverless paradigm [4].

We present OrcBench, a serverless workload generator
that generates data center workloads that model the recently
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released Microsoft Azure dataset [14]. OrcBench generates
workloads which mimic the interarrival time, resource usage,
and execution times of the real world Azure traces. OrcBench
supports varying cluster sizes and workload intensity, and can
be used to generate complete serverless applications that chain
multiple functions.

The modeling of Azure traces is challenging because of two
reasons. First, the traces do not include the exact invocation
time, instead, batching all invocations at minute level gran-
ularity. Second, the dataset contains 52 thousand functions
and a total of 8.8 billion function invocations over a two
week period. Third, there are many applications with different
interarrival patterns and resource usage.

To accurately model these functions, we group them based
on their interarrival times using EP-Means clustering [3]. EP-
Means clustering groups the empirical cumulative distribution
functions (ECDF) of each function’s interarrival times. Clus-
tering this way allows us to group similarly behaving functions
together. We use the centroid of each cluster as a representative
function for its group.

These representative functions are used in place of the
hundreds to thousands of functions in a cluster. Each group
also has a probability distribution for both CPU and memory
constraints. When a user requests a simulated function this
underlying distribution is sampled to give each function how
much memory and CPU to consume.

Clustering treats each function independently without con-
sidering the relationships between functions. An application
may consist of multiple functions that form a chain that is
executed in series. We use time-series analysis to discover the
relationships between functions within each application and
allow us to model these chains.

OrcBench grouped 8622 functions into 17 distinct groups,
and the models produced from these groups were used to
generate an equivalent number of synthetic functions and
traces. These 8622 simulated functions invoked 5.6 million
times over 30 minutes with an average error rate of 15%. A
major source of error comes from extrapolating sub-minute
behavior from the one minute resolution timestamps in the
Azure data set. Our two highest invoked models (representing
113 functions) accounted for 2.8 million invocations while
having only an average error rate of 4.7%. The remaining
functions were rarely invoked or timer based functions that
were excluded from our modeling.



II. OVERVIEW OF THE MICROSOFT AZURE TRACES

The Microsoft Azure dataset [8] is a collection of 52
thousand functions which were invoked 8.8 billions times
over a 14 day period. The three main objects in the data
are functions, applications and owners which are identified
through anonymous hash IDs. Owners can own multiple appli-
cations, and applications can be composed of many functions
potentially invoking each other to form function chains. This
captured data is broken up into three major parts: a time-series
of invocations, execution time, and memory usage.

Invocations: The invocation time-series contains the
number of invocations of a function at each minute of the
14 day trace.

Execution Time: The dataset contains the average exe-
cution time and a fixed set of percentiles for each function.
The execution time percentiles for the 0th, 1st, 25th, 50th,
75th, 99th, and 100th are included. The execution times do
not include the cold start of the function runtime.

Memory Usage: The data set includes the average mem-
ory usage for each application and is also broken into a
fixed set of percentiles. Unlike the other data that is recorded
per function, memory usage is recorded for the entire ap-
plication because Azure packages resource allocation bounds
for functions belonging to the same application together for
pricing [9].

III. METHODOLOGY

Modeling the Microsoft Azure dataset requires overcoming
three challenges: First, the dataset is temporal (See Figure 1).
Each function fluctuates throughout the day, often seeing a
steady rise over working hours (i.e., 9am to 5pm) and declining
when the workday is over.

Second, the anonymization of the data reduces assumptions
we can make based off additional information such as function
naming. This particularly affects our ability to determine
where functions exist within a chain.

Lastly, the traces of each function have low resolution
timestamps of minute granularity. The execution times of
most functions is far smaller (i.e., 90% of functions have an
execution time of less than 10 seconds [14]) than the one
minute resolution requiring us to extrapolate a model for the
execution behavior for timescales less than one minute.

It is important to translate the dataset from an invoca-
tion time series to interarrival time as this decouples time
from our model. However, the low resolution of the data
makes this difficult. For example, functions commonly have
large contiguous sections of non-zero entries in their traces,
which when naively averaged to calculate the interarrival time
leads to a single highly frequent data point. In a real world
application we would expect a far more continuous set of
data points in regards to interarrival time. Averaging would
also completely flatten our invocation rate, causing us to lose
important patterns that can occur during the trace.
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Fig. 1: Invocation counts of functions broken up by execution
time in milliseconds over the course of a day

A. Modeling Functions

The modeling of the function invocation rates can be broken
into three stages: trimming, data expansion and grouping.

a) Trimming: To reduce temporalness (Figure 1), we first
isolate the invocation data to a single, 30 minute window of
time between 12:00 PM and 12:30 PM. By sampling a smaller
window of time we reduce temporal behavior within our model
at the cost of accuracy. An incredibly short window would be
unaffected by temporal behavior but the model could miss
interesting patterns that may be expressed in the data. As this
window grows, the model captures more interesting patterns.

However, if its grows too large these patterns can be difficult
to detect because of temporal behavior. An outcome of choos-
ing this time window is that our models are a representation
of the workload at that specific time. For example, models
created around peak hours invoke functions more frequently
than models created from an earlier or later time window.

We then trimmed the data to contain only functions that
were invoked at least 10 times during the selected 30 minute
time period and also excluded functions triggered by timers.
Timer functions can be trivially modeled and rarely invoked
functions lack data for proper modeling.

After trimming we split the data into the top 1% of highly
invoked functions and the remaining functions. We model
these two groups using the same techniques but separately.
Clustering highly invoked functions with lesser ones mask the
interesting behavior of these infrequently invoked functions.

The data was further split between weeks, with the first
week being used for modeling while the second was used
for evaluation. We excluded weekends as outliers as functions
exhibited very different behavior.

b) Data Expansion: The next step is to translate our
invocation traces to interarrival time. Translating from in-
vocations per minute to interarrival time makes our models
independent of each minute. This translates our model from



a function telling us the number of invocations to expect at
a given minute to how long we should expect until the next
invocation.

As previously stated, if we naı̈vely average our traces to
calculate our interarrival times, we are left with very few
data points for modeling. This also has the disadvantage of
flattening each function that causes the loss of interesting
patterns in the data. We can extract more data points if we
make an assumption that for any given function, the amount
of invocations at any given minute is independent to any other
minute within the same function.

The assumption of minute to minute independence allows
us to instead view each minute in the invocation data as a
Poisson process. We then can generate as many data points as
invocations by using each minute as a hyper parameter to the
Poisson distribution. The sampling of this distribution allows
us to transform a discrete dataset into a continuous one, which
better represents a realistic invocation pattern.

We believe this assumption to be sound as this stage of
the modeling only focuses on each individual function rather
than relationships between functions. We could not make this
assumption between two minutes of two separate functions as
they may belong to the same application and one function may
trigger another during its execution.

c) Grouping: We then create empirical cumulative dis-
tribution functions (ECDF) for each function with this newly
expanded interarrival data. The ECDF is a model of a function
which is then grouped to form clusters with other similarly
shaped functions. A cluster centroid is chosen that is the model
which replaces all functions of the cluster.

We cluster the functions using EP-Means that clusters
similar ECDFs together. However, a challenge occurs when
clustering on the interarrival times. Specifically, distances
between interarrival times is not representative of the behavior.
For example, two functions that have a constant interarrival
times of 0.01 s and 0.1 s seem close, but have a 10× difference
in invocation frequency.

To remedy this we use EP-Means clustering on the inverse
of the interarrival times. We create ECDFs of this frequency
data and use EP-Means to retrieve each grouping. From here
we translate back to interarrival time and re-calculate the
centroids of each group.

d) Sampling: Once models are created, we now face the
challenge of properly sampling a function that represents many
functions. If we were to sample our created model once for
each of its represented functions, then at any given minute we
would likely just see the average of the model. To overcome
this, OrcBench allows for a hyper-parameter (N ) which sets
how many functions a model is used for, which we call the
sampling group.

We then randomly spread invocations for each function
being represented within the sampling group throughout the
range of the sampled interarrival time (See Figure 2). Although
we are modifying the interarrival time for that set of invoca-
tions, if we sample the interarrival time and randomly place
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Fig. 2: An example of sampling from an ECDF of a model
with a hyper-parameter of N = 3, and how we spread
invocations within a sampled interarrival time. Each vertical
line on the timeline from 0s to 0.5s represents a separate
function.

these invocations, then the average interarrival time would
trend towards the initial sampled time.

B. Function Chaining

A distinguishing characteristic of serverless computing
workloads is the invocation dependency between serverless
functions within the same application. An application often
includes multiple functions that invoke each other creating
a call graph. Our goal is to generate workloads that mimic
complete serverless applications and their call graphs.

The Azure traces identify functions that are part of the same
application, however, they do not provide information about
the application call graph. Ideally, one can infer the call graph
through the ordering of invocation timestamps. Unfortunately,
this approach is not possible using the Azure traces because
of the low resolution of the trace.

Our insight is that a function that experiences a change
in the invocation count from one minute to the next should
result in an proportional change in the invocation counts of any
function it calls. This does not hold all the time, e.g., a function
that conditionally calls one of two functions. However, in
this case, the callee should see an increase in invocations
proportional to the conditional branch.

We apply the Spearman correlation coefficient to each
function’s trace, which is a time-series of invocations. The
coefficient determines how strongly two functions within an
application are tied to each other.

a) Function Fan-out Ratio: A single function may call
other functions many times. For example, a MapReduce style
data analytics application may call multiple map functions. To
identify such application structures, we examine function call
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(b) Example of an execution graph (application id:
88946) with three functions.

Fig. 3: Examples of function graphs. Circles represent func-
tions and the number in the circle are the function ids in the
Azure trace. The circle colors indicate the trigger type.

ratios. Function call ratios is the amount a caller function calls
a callee.

The observed call ratio may vary over time. We start
by recording the ratio of invocations between all pairs of
correlated functions at each minute, then use the most common
ratio for each function pair across the dataset. Figure 3 shows
two example graphs found using this technique. Figure 3a
shows an application with a fan out of three. Figure 3b shows
an application that is composed of three functions where
function 88946 is correlated to functions 2fd10 and be9af.

b) Pruning the Call Graph: Finding the calling order is
difficult because of the minute granularity. We can view our
application as firstly starting as fully connected graph and we
use several heuristics to eliminate edges from this graph. These
heuristics makes the assumption that applications will consist
of a single root function and the call graph contains no cycles.
We use three heuristics to remove edges until a root function
is identified:

First, we identify if one of the functions is a possible root
through its trigger type. For instance, a function could be the
only function triggered by an HTTP event while the rest are
triggered by orchestrator events. Orchestrator events can only
occur through other functions.

Second, we analyze the time series to find instances where
an application execution is split over two minutes. The func-
tion called in the first minute is identified as the caller function,
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Fig. 4: Example CPU and memory histograms which back
each model for generating function stubs.

allowing us to remove the backwards edge between the two
nodes in the graph.

Third, we start at edges in the graph that have an identified
direction and propagate the direction outwards to identify
candidate roots. We continue doing this with other identified
edges to eliminate possible candidates. Once all edges are
exhausted, the root node or the list of candidates is returned.

c) Application Workload Generation: We now have a
groups of applications and their root functions. A user can
choose one of these applications to use for their workload. If
more then one candidate root is attached to the application
the user must select one. We associate these root functions to
their model from §III-A to generate function invocations. On
each invocation, OrcBench simulates the execution of the call
graph of the application and records the trace.

Users can further get OrcBench to generate function stubs
for their application. OrcBench does this by sampling the
underlying histogram of CPU and memory data of the root
model (See Figure 4 as an example). We found no strong
correlation between CPU time and memory when looking at
each of our models, so we can sample these histograms to help
generate our synthetic functions. These samples are then input
into a template function, which when invoked, will allocate
memory and execute for the specified amounts.

IV. EVALUATION

Our evaluation examines the following questions:
• RQ1: How accurate is the individual function traces

created by OrcBench?
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Fig. 5: Error Rates within the OrcBench Models

• RQ2: How accurate are the function chains discovered
by OrcBench?

In §IV-A we evaluate how close our models are to each
of the functions we are modeling and how much each model
contributes to the total error. Lastly, in §IV-B we evaluate an
inferred application chain.

A. Models

a) Generated Model Traces: Figure 6 shows example
traces generated by OrcBench which compares the invocation
data to that of its model. We compare the model to the
second week of the dataset. As previously stated, we use a
hyper-parameter for the number of functions each model will
represent during the trace. All evaluations were done with
N = 10.

b) Model Error Rate: Our clustering found 17 distinct
models which represent a total of 8622 functions, with a
workload being scaled to one that matches the Azure dataset
executing 5.6 million invocations over a 30 minute period.

We examined our results to determine the following:
• How much error does each model have relative to the

group of original functions the model is representing?
• How much error do models have relative to each other?
We simulated a trace using each model and calculated the

mean squared error (MSE) between the simulated trace and
each original function trace within its group. We added this
error to a sum then normalized it with every other model.

We then normalized the total invocations the model con-
tributes to the error. This is the ratio of the normalized error
to the normalized model invocations, i.e., how much error a
model contributes per percentage of the total workload. Fig-
ure 5b shows this value for every model. Note that many higher
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Fig. 6: Example traces of our models which have been scaled
to the number of functions to the functions they originally
represent. We compared these modeled functions to the sum
of the traces of the original functions.

error models represent less than 1% of the total workload.
Figure 5a shows how much total error accumulated during
the course of a 30 minute run. We aggregate the total MSE
between the model trace and each function trace.

We see a trend with the error that shows models which
represent a a larger weight of the overall workload have lower
error. This occurs as these models have far more data points
to create a better fitting function leading to a more refined
centroid being created during clustering. Further, as more
function invocations occur within an individual minute the
extrapolated Poisson model used for each minute becomes
more accurate. The average absolute error for all of our models
is 15%.

B. Function Chaining

We evaluated a discovered application call graph using a
simulated call chain. We first selected an application with an
identified root and attach its model. We provide the structure of
the call chain and execution times for each function within the
application. The simulator works by executing callee functions
after the caller function completes. We consider the fan-out
ratios when invoking the following functions.

The trace is recorded and then compared to the original
function invocation traces of functions within the application.



Our discovered application was found to have a 6% average
error rate when compared to the original application trace.

V. RELATED WORK

Work within serverless computing that focuses on orches-
tration infrastructure [5, 6, 12, 13] often uses open source ap-
plications to evaluate and compare their designs. The solutions
focus on individual applications and their latency/throughput.
Due to the lack of any global workload benchmark, readers
are left to assume how these design decisions affect the
infrastructure as a whole.

Benchmarks like FaaSdom [7] and SeBs [2] focus on bench-
marking cloud providers themselves to give insights into each
cloud provider’s expected function runtime and cost. These
benchmarks provide a strong basis for micro benchmarks over
a larger workload based one like OrcBench.

VI. CONCLUSION

In this paper we introduce OrcBench, a serverless workload
and synthetic function generator. We provided the first orches-
tration level benchmark, which allows researchers to better
study serverless environments.

OrcBench’s modeling approach allows for workloads to be
scaled as needed to meet hardware goals. When compared
to the original Microsoft Azure data, OrcBench was able to
produce models which represent 8622 functions and invoke
5.6 million times over a 30 minute period with an average
error of 15%. OrcBench uses various techniques to infer sub-
minute behavior of its functions to overcome the original
data sets low resolution traces. OrcBench can be found at
https://github.com/rcslab/orcbench.
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