
Understanding Partial Network Partitioning
Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, Samer Al-Kiswany

University of Waterloo, Canada

Abstract

We present an extensive study focused on partial network
partitioning. Partial network partitions disrupt the communi-
cation between some but not all nodes in a cluster.

First, we conduct a comprehensive study of system fail-
ures caused by this fault in 12 popular systems. Our study
reveals that the studied failures are catastrophic (e.g., lead
to data loss), easily manifest, and can manifest by partially
partitioning a single node.

Second, we dissect the design of eight popular systems and
identify four principled approaches for tolerating partial par-
titions. Unfortunately, our analysis shows that implemented
fault tolerance techniques are inadequate for modern systems;
they either patch a particular mechanism or lead to a complete
cluster shutdown, even when alternative network paths exist.

Finally, our findings motivate us to build Nifty, a trans-
parent communication layer that masks partial network parti-
tions. Nifty builds an overlay between nodes to detour packets
around partial partitions. Our prototype evaluation with six
popular systems shows that Nifty overcomes the shortcomings
of current fault tolerance approaches and effectively masks
partial partitions while imposing negligible overhead.

1 Introduction

Modern networks are complex. They use heterogeneous hard-
ware and software [1], deploy diverse middleboxes (e.g., NAT,
load balancers, and firewalls) [2, 3, 4], and span multiple data
centers [2, 4]. Despite the high redundancy built into modern
networks, catastrophic failures are common [1, 3, 5, 6]. Nev-
ertheless, modern cloud systems are expected to be highly
available [7, 8] and to preserve stored data despite failures of
nodes, networks, or even entire data centers [9, 10, 11].

We focus our investigation on a peculiar type of network
fault: partial network partitions1, which disrupts the commu-
nication between some, but not all, nodes in a cluster. Figure 1
illustrates how a partial network partition divides a cluster
into three groups of nodes, such that two groups (Group 1 and
Group 2) are disconnected, but Group 3 can communicate
with Groups 1 and 2.

In our previous work [12] we identified this fault and pre-
sented examples of how it leads to system failures. Other than
our previous preliminary effort, we did not find any in-depth
analysis of partial network partition failures and of their fault
tolerance techniques. Nevertheless, we found 51 reports of

1This is the commonly used name in failure reports and discussion forums.

Group 1 Group 2

Group 3

Partial
Partition

Figure 1: Partial partition. Groups 1 and 2 are disconnected,
while Group 3 can reach both sides of the partition.

failures caused by partial network partitioning faults2 in the
publicly accessible issue tracking systems of 12 production-
quality systems (Section 4), numerous blog posts and discus-
sions of this fault on developers’ forums (Section 3), and eight
popular systems with fault tolerance techniques specifically
designed to tolerate this type of fault (Section 5).

Our goal in this work is threefold. First, we aim to study fail-
ures caused by partial network partitioning to understand their
impact and failure characteristics and, foremost, to identify
opportunities to improve systems’ resiliency to this type of
fault. Second, we aim to dissect the fault tolerance techniques
implemented in popular production systems and identify their
shortcomings. Third, we aim to design a generic fault toler-
ance technique for partial network partitioning. This is the
first work to characterize these failures and explore fault tol-
erance techniques for partial partitioning faults.

It is important to understand that partial partitions are
fundamentally different from complete partitions [12]. Com-
plete partitions split a cluster into two completely discon-
nected sides and are well studied with known theoretical
bounds (CAP theorem [13]) and numerous practical solu-
tions [14, 15, 16, 17]. On the contrary, a cluster experiencing
a partial partition is still connected but not all-to-all connected.
Consequently, the theoretical bounds of complete partitions
do not apply to partial partitions, and fault tolerance tech-
niques for complete partitions are not effective in handling
partial partitions (Section 8).
An analysis of partial network partitioning failures. We
conduct an in-depth study of 51 partial network partitioning
failures from 12 cloud systems (Section 4). We select a diverse
set of systems, including database systems (MongoDB and
HBase), file systems (HDFS and MooseFS), an object storage
system (Ceph), messaging systems (RabbitMQ, Kafka, and
ActiveMQ), a data-processing system (MapReduce), a search
engine (Elasticsearch), and resource managers (Mesos and
DKron). For each considered failure, we carefully study the

2A fault is the initial root cause. If not properly handled, it may lead to a
user-visible system failure.

failure report, logs, discussions between users and developers,
source code, and code patches.

Failure Impact. Overall, we find that partial network par-
titioning faults cause silent failures with catastrophic effects
(e.g., data loss and corruption) that affect core system mecha-
nisms (e.g., leader election and replication).

Ease of manifestation. Unfortunately, these failures can
easily occur. The majority of the failures are deterministic
and require less than four events (e.g., read or write request)
for the failure to occur. Even worse, all the studied failures
can be triggered by partially partitioning a single node. The
majority of failures do not require client access or can be
triggered by clients only accessing one side of the partition.

Insights. We identify three approaches to improve system
resilience: better testing, focused design reviews, and building
a generic fault tolerance communication layer. Our analysis
of each failure’s manifestation sequence, access patterns, and
timing constraints shows that almost all the failures could
have been revealed through simple tests and by only using five
nodes. Second, the majority of failures are due to design flaws.
We posit that design reviews focused on network partitioning
could identify these vulnerabilities. Third, building a generic
communication layer to mask partial partitions is feasible,
simplifies system design, and improves system resiliency.

Finally, we identify that a common deployment approach
of Zookeeper introduces a failure vulnerability (Section 5).
Our analysis shows that system designers need to design ad-
ditional mechanisms to handle partial partitions when using
Zookeeper or other external coordination services.
Dissecting modern fault tolerance techniques. We dissect
the implementation of eight popular systems (VoltDB, MapRe-
duce, HBase, MongoDB, Elasticsearch, Mesos, LogCabin,
and RabbitMQ) and study the fault tolerance techniques they
employ specifically to tolerate partial partitions (Section 5).
For each system, we study the source code, analyze the fault
tolerance technique’s design, extract the design principles, and
identify the technique’s shortcomings. We identify four prin-
cipled approaches for tolerating partial partitions: identifying
the surviving clique, checking neighbors’ views, verifying
failures announced by other nodes, and neutralizing partially
partitioned nodes.

Our analysis reveals that the studied fault tolerance tech-
niques are inadequate. They either patch a specific system
mechanism, which leaves the rest of the system vulnerable
to failures, or unnecessarily shut down the entire cluster or
pause up to half of the cluster nodes (Section 5).
Designing a generic fault tolerance technique. Our find-
ings motivate us to build the network partitioning fault-
tolerance layer (Nifty), a simple, generic, and transparent
communication layer that can mask partial network parti-
tions (Section 6). Nifty’s approach is simple; it monitors the
connectivity in a cluster through all-to-all heart beating, and
when it detects a partial partition, it detours the traffic around
the partition through intermediate nodes. Nifty overcomes

all the shortcomings present in the studied fault tolerance
techniques.

The main insight of Nifty is that tolerating partial parti-
tioning does not require elaborate techniques such as the
ones adopted by current systems (Section 5). Many mod-
ern systems already incorporate membership and connec-
tivity monitoring mechanisms based on all-to-all heart beat-
ing [18, 19, 20]. Nifty shows that extending these mechanisms
with a simple rerouting capability can effectively mask partial
partitions.

To demonstrate Nifty’s effectiveness, we deploy it with six
systems: HDFS, Kafka, RabbitMQ, ActiveMQ, MongoDB,
and VoltDB. We choose these systems because they are data
intensive and popular systems. Furthermore, RabbitMQ and
VoltDB implement generic techniques to tolerate partial parti-
tions. Our prototype evaluation with synthetic and real-world
benchmarks shows that Nifty effectively masks partial parti-
tions while adding negligible overhead.

2 Definitions

A partial network partition is a network fault that prevents
at least one node (e.g., a node in Group 1 in Figure 1) from
communicating with another node (Group 2) in the system,
while a third node (Group 3) can communicate with both
affected nodes. Nodes in a partially partitioned cluster are
still connected but are not all-to-all connected (i.e., they do
not form a complete graph [21]). A partial partition divides a
cluster into three groups: two sides and one bridge group. We
identify a node as a bridge node if it can reach at least one
node on each side of a partition. A partial partition has two
sides, all the nodes on one side of the partition cannot reach
all the nodes on the other side of the partition. We note that a
cluster may suffer from multiple concurrent partial partitions.

We define a single-node partial partition as a partial parti-
tion that has a single node on one side of the partition, while
the rest of the cluster nodes are bridge nodes or are on the
other side of the partition. For instance, a single-node partial
partition can be caused by a firewall misconfiguration that
prevents a node from communicating with some other nodes.

3 Causes of Partial Network Partitioning

Recent reports indicate that network partitioning faults are
common and happen at various scales. Connectivity loss be-
tween data centers [1] leads to network partitions in geo-
replicated systems. Wide area network partitions happen as
frequently as once every four days [6]. Switch failures can
cause a network partition in a data center [5]. Switch fail-
ures caused 40 network partitions in two years at Google [3]
and 70% of the downtime at Microsoft [5]. On a single node,
NIC [22] or software failures can partition a node that may
host multiple VMs. Finally, network partitions caused by cor-

Table 1: List of studied systems and the number of studied
failures. The shaded rows are systems that implemented a
fault tolerance technique for partial network partitioning.

System Category Failures
Total Catastrophic

Elasticsearch [32] Search engine 17 17
MongoDB [33] Database 9 5
RabbitMQ [18] Messaging 5 3
MapReduce [34] Data processing 4 2
HBase [35] Database 3 2
Mesos [36] Resource mngr. 2 1
HDFS [34] File system 3 1
Ceph [20] Storage system 2 2
MooseFS [37] File system 2 2
Kafka [38] Messaging 2 2
ActiveMQ [39] Messaging 1 1
DKron [40] Resource mngr. 1 1
Total - 51 39

related failures are common [4, 5, 6] and often caused by
system-wide maintenance tasks [3, 5].

We found 51 failure reports detailing system failures due
to partial network partitions, and numerous articles and on-
line discussions discussing the fault [23, 24, 25, 26]. Some
of these reports and discussions mention the root cause of
the partial partition. Partial partitions are caused by a con-
nectivity loss between two data centers [1] while both are
reachable by a third center, the failure of additional links be-
tween racks [27, 28], network misconfiguration [29], firewall
misconfiguration [29], network upgrades [30], and flaky links
between switches [31]. Unfortunately, we did not find fail-
ure reports that detail partial partitioning faults in production
networks.

4 Analysis of Partial Network-Partitioning
Failures

We conduct an in-depth study of partial network partitioning
failures reported in 12 popular systems (Table 1). We aim to
understand the impact and characteristics of these failures and
to identify opportunities for improving system resilience.

4.1 Methodology
We choose 12 diverse and widely used systems (Table 1),
including two databases, a data analysis framework, two file
systems, three messaging systems, a storage system, a search
engine, and two distributed resource managers.

We selected the 51 failures in our study from publicly ac-
cessible issue-tracking systems. First, we used the search
tools in the issue-tracking systems to find tickets related to
partial network partitioning. Users did not classify network
partitioning failures based on the partition type, so we had
to search for all network partitioning failures and manually

identified partial partitioning failures. We used the following
keywords: “network partition,” “partial network partition,”
“partial partition,” “network failure,” “switch failure,” “isola-
tion,” “split-brain,” and “asymmetric partition.” Second, we
considered tickets that were dated 2011 or later. Third, we
excluded tickets marked as “Minor.” For each ticket, we stud-
ied the failure description, system logs, developers’ and users’
comments, and code patches. For tickets that lacked enough
details (e.g., missing output logs or did not have details about
the affected mechanism), we manually reproduced them us-
ing NEAT [12]. Finally, during our evaluation, we found and
reported bugs in Kafka and Elasticsearch. We included these
failures in our study.

We differentiate failures by their manifestation sequences.
In a few cases, the same faulty mechanism leads to two dif-
ferent failure paths. We count these as separate failures, even
if they are reported in a single ticket. Similarly, although the
exact failure is sometimes reported in multiple tickets, we
count it once in our study.

4.2 Limitations

As with any characterization study, our findings may not be
generalizable. Here, we list four potential sources of bias and
describe our best efforts to address them.

1. Representativeness of the studied systems. Although we
study 12 diverse systems (Table 1), our results may not be
generalizable to systems we did not study. The selected
systems follow diverse designs from strongly consistent
(MongoDB, HBase, and Ceph) to eventually consistent
(Elasticsearch) designs and from systems persisting data
on disks and replicating data in-memory across nodes
to caching systems. They follow a primary-backup or
peer-to-peer architecture and use synchronous or asyn-
chronous replication. The selected systems are widely
used: Kafka, ActiveMQ, and RabbitMQ are the most
popular open-source messaging systems; MapReduce,
HDFS, and HBase are the core of the Hadoop platform;
Elasticsearch is a popular search system; and MongoDB
is a popular database.

2. Limited number of tickets. We study all 51 tickets that we
found following our methodology. Statistical inference
indicates that 30 samples can sufficiently represent the
entire population [41]. More rigorously, if we assume the
tickets we found represent a random sample of partial
network partition failures in the wild, the central limit
theorem predicts that our analysis of 51 tickets has a 13%
margin of error at a 95% confidence level. To increase
confidence in our findings, we only report findings that
apply to at least two-thirds of the studied failures. A third
of our findings apply to all failures.

Table 2: Failure impact and percentages of how many failures
caused the corresponding impact.

Impact %
Data loss 23.5%
System unavailability 21.6%
Stale read 15.7%
Data corruption 5.9%
Dirty read 3.9%
Data unavailability 3.9%

Catastrophic (74.5%)

Reduced availability 23.5 %
Other 2%

3. Priority bias. We include only high-impact tickets and
avoid tickets marked by the developers as low-priority.
This sampling methodology may bias the results.

4. Observer error. To reduce the chance for observer errors,
two team members study every failure report using the
same classification methodology. Then, we discuss the
failure in a group meeting before reaching a verdict.

4.3 Findings
This subsection presents nine general findings. Our study in-
dicates that partial network partitioning leads to catastrophic,
silent failures. Surprisingly, these failures are easy to manifest.
The majority of failures are deterministic, require a single-
node partial partition, and require a few events to manifest.
However, our study also identifies failure characteristics that
can inform system designs and improve testing. Finally, we
find that the majority of the studied failures are due to design
flaws, indicating that developers do not expect networks to
fail in this way.

Finding 1: A significant percentage (74.5%) of the studied
failures have a catastrophic impact.
A failure is said to be catastrophic if it leads to a system crash
or violates the system’s guarantees (Table 2). Failures that
reduce availability (e.g., crash of a single replica) or degrade
performance are not considered catastrophic.

Data loss is the most common impact of partial network
failures. For instance, in HBase, region servers store their
logs on HDFS. When a log reaches a certain size, the region
server creates a new log and informs the master of the new
log location. If a partial partition isolates a region server from
the master while both can reach HDFS, the master assumes
that the region server has failed and assigns its logs to a new
region server. If the old region server creates a new log, the
master will not know about it, and the entries in the new log
will be lost [42].

The second most common catastrophic impact of partial
partitions is complete cluster unavailability, from which the
majority of the studied systems suffer. A glaring example of
this failure is the common deployment approach of Zookeeper.
For instance, in ActiveMQ, a ZooKeeper service [43] moni-

tors the cluster master and selects a new master if the current
one fails. If a partial partition isolates the master from all Ac-
tiveMQ nodes while all nodes are reachable from ZooKeeper,
the nodes will pause their operations because they cannot
reach the master. Because ZooKeeper can reach the current
master, it neither detects the problem nor selects a new mas-
ter. The cluster remains unavailable until the partial partition
heals [44]. Kafka and Mesos use Zookeeper in a similar fash-
ion and suffer from a similar failure. The rest of the catas-
trophic failures lead to stale reads, data corruption, loss of
data availability, and dirty reads.

In 23.5% of the failures, a partial partition unnecessarily
reduces system availability. For example, leader election in
MongoDB is based on a majority vote, with an arbiter node
included to break ties. Unfortunately, this design leads to
cluster unavailability under partial network partitions. For
instance, consider a shard that has two replicas (A and B),
with A being the leader. If a partial partition disrupts the
communication between A and B while both can reach an
arbiter, B will detect that A is unreachable and calls for a
leader election. Because there is only one candidate in the
system, the arbiter votes for it, and B becomes the leader. The
arbiter will inform A of the new leader, and A steps down.
A will detect that the leader (B) is unreachable, call for a
leader election, become a leader, and then B steps down. This
leader-election thrashing continues until the network partition
heals [45]. The system is unavailable during leader election,
so this failure significantly reduces system availability. We
discuss the resolution of this failure in Section 5.

Finding 2: Most of the studied failures (84.3%) are silent —
the user is not informed about their occurrence.
Despite the dangerous impact of partial partitioning faults,
most systems do not report to the user that a failure has oc-
curred. This is unsettling because a lack of error or warning
notification delays failure detection. Some systems return a
warning to the user when an operation fails due to partial
network partitioning, but these warnings are ambiguous with
no clear mechanisms for resolution. For example, in Elastic-
search, if a client sends a request to a replica that is partially
isolated from the other replicas, the replica will return “a
rejected execution” exception [46]. This confusing warning
does not inform the user of the problem’s actual cause nor the
steps needed to resolve it.

Finding 3: Leader election, configuration change, and repli-
cation protocol are the mechanisms most vulnerable to partial
network partitioning.
Leader election is the mechanism most vulnerable to partial
network partitions (Table 3). In most cases, these failures
lead to electing two leaders, one at each side of the parti-
tion [47, 48].

Configuration change is the second-most affected mech-
anism. For instance, each node in RabbitMQ maintains a
membership log that lists the current nodes in the cluster. If

Table 3: Failure percentages per affected mechanism.
Mechanism %
Leader election 37.3%
Configuration change 19.6%
Replication protocol 17.6%
Request routing 11.8%
Scheduling 5.9%
Data migration 5.9%
Data consolidation 2%

nodes have conflicting views on which nodes are part of the
cluster, the RabbitMQ cluster crashes. For instance, in a clus-
ter with three nodes (A, B, and C), when a partial partition
disconnects B and C, B assumes that C crashed and removes it
from the membership log, and C assumes that B crashed and
removes it from the membership log. This inconsistency in
the cluster membership leads to a complete cluster crash [49].

The replication mechanism is the third-most affected mech-
anism. For instance, if a partial partition in Elasticsearch iso-
lates a shard’s leader from the majority of that shard’s replicas,
the leader will wait for a period of time before stepping down.
In this period, the leader continues to accept client write oper-
ations and acknowledges them before successfully replicating
them [50]. If a client writes to the leader and later reads from
one of the other replicas, it may read stale data.

Finding 4: Most failures (60.8%) do not require client access
or require only that clients access one side of the partition.
To reduce the network partition’s impact, some systems limit
client access to one side of the partition [51, 52, 53]. How-
ever, our analysis shows that 60.8% of failures require no
client access at all or only client access to one side of the
partition. As an example of a failure that does not require
client access, in MongoDB, balancer servers monitor the clus-
ter load and migrate data chunks between nodes to rebalance
the load across nodes. After rebalancing the data, a balancer
updates Mongo’s metadata server with the new data location.
If during a re-balance operation of a particular shard a partial
partition isolates the balancer from the metadata service, the
cluster metadata will be in an inconsistent state, leading to
the unavailability of that shard [54].

This finding highlights that system designers should con-
sider the impacts of partial partitioning faults on all operations,
including background operations.

Finding 5: The majority of failures (68.6%) require three or
fewer events (other than the partial partition) to manifest.
Only a few events need to occur for a failure to happen. An
event is a user request, a hardware or software fault, or a start
of a background operation (e.g., leader election and data re-
balancing). This is alarming because a small number of events
can lead to catastrophic failures. Especially that in real de-
ployments, many users interact with the system, increasing
the probability of failure. Table 4 shows that, in 13.7% of fail-

Table 4: Number of events required for a partial network
partitioning failure to manifest.

Number of events %
1 (Just a partial partition) 13.7%
2 9.8%
3 31.4%
4 13.7%
>4 31.4%

Table 5: System connectivity during a partial partition.
Network Partition Characteristic %
Partition any node 33.3%
Partition a specific node 66.6%
• Leader 45.1%
• Nodes with a special role 9.8%
• A central service 7.8%
• New nodes 2%

ures, a partial partition, without any additional events, leads
to a failure.

Finding 6: All the studied failures can be triggered by a
single-node partial partition, with 33.3% of them happen by
partitioning any node.
Arguably, single-node partial partitions (Section 2) are gener-
ally more likely than partitioning more than one node. These
partitions could happen due to a single ToR switch malfunc-
tion or by misconfiguring a single machine’s firewall.

We further study which nodes need to be isolated for a
failure to manifest (Table 5). Of the failures, 33.3% manifest
by partitioning any node in the system—regardless of its
role. Among the failures that require partitioning a specific
node, partitioning the leader replica is most common (45.1%).
In real deployments, partitioning a leader is likely because
almost every node in the cluster is a leader for some shard.
Partitioning a node with a special role (such as an arbiter in
MongoDB) causes 9.8% of the failures.

Finding 7: All the studied failures, except one, are determin-
istic or have known time constraints.
Table 6 shows the timing constraints of the studied failures.
Almost all the failures are either deterministic with no tim-
ing constraints (i.e., whenever the event sequence happens,
a failure happens) or have known timing constraints, such
as the period before considering a node to have failed. Only
one failure is nondeterministic, as an interleaving of multiple
threads causes it.

Table 6: Failures’ timing constraints.
Timing constraint %
No timing constraints 64.7%
Known timing constraints 33.3%
Nondeterministic 2%

Table 7: Percentage of design and implementation flaws.
Flaw type % Average Time to Resolution
Design 41.2% 260 days
Implementation 31.4% 98 days
Unresolved 27.5% -

Table 8: Number of nodes needed to reproduce a failure.
Number of nodes %
3 nodes 76.5%
4 nodes 21.6%
5 nodes 2%

Finding 8: The resolution of 56.8% of the fixed failures
required changing the design of a protocol or a mechanism.
We consider a code patch to be fixing a design flaw if it
significantly changes the implemented protocol or logic, such
as changing the mechanism to select a master in Elasticsearch.

Most of the fixed failures are caused by a design flaw
(Table 7). This indicates that system designers overlook par-
tial network partitioning failures in the design phase. We
argue that a design review focused on partial partitions would
detect a system’s vulnerability to these failures.

Finding 9: All failures can be reproduced with five nodes,
and all but one can be reproduced using a fault injection tool.
These failures can be easily reproduced with small clusters
of five or fewer nodes (Table 8), and 76.5% require only
three nodes. Furthermore, all the failures except one can be
reproduced using a fault-injection framework that can inject
partial partitioning faults such as NEAT [12].

4.4 Insights
Our analysis shows that partial partitions lead to catastrophic
silent failures that are easy to manifest, are deterministic,
and can be triggered by a single-node partial partition and a
sequence of a few events.

Fortunately, we identify three approaches for improving
system resilience to partial partitions. First, because these
faults are deterministic and can be reproduced on a small clus-
ter, improved testing can reveal the majority of the studied
failures. Our analysis finds timing, client access, and partition
characteristics that significantly reduce the number of suffi-
cient test cases. Second, our study of the code patches reveals
that focused design reviews can identify system vulnerabili-
ties early in the design process.

Third, partial network partitions have two characteristics
that imply that a generic fault tolerance technique is possible.
These faults can be detected by exchanging information be-
tween the nodes, and by definition, there are alternative paths
in the network to reconnect the system. We leverage these
two characteristics in building Nifty (Section 6).

Most of the studied failures are caused by the underlying
assumption that, if a node can reach a service, all nodes can

reach that service, and if a node cannot reach a service then
the service is down. Our analysis shows the danger of such
assumptions; this leads to a confusing state, wherein some of
the system’s parts start executing a fault tolerance mechanism,
while others presume the whole system is healthy and carry
on normal operations. The mix of these two operation modes
is poorly understood and tested.

Finally, we identify that a common usage of external coor-
dination services (e.g., Zookeeper) introduces a vulnerability
to partial network partitioning fault. System designers need
to build additional techniques to detect and handle partial
partitions when using external coordination services.

5 Dissecting Modern Fault Tolerance Tech-
niques

We studied the code patches related to the tickets included in
our study. Six of the systems in Table 1 (MongoDB, Elastic-
search, RabbitMQ, HBase, MapReduce, and Mesos) changed
the system design to incorporate a fault tolerance technique
specific to partial network partitioning faults. The rest of
the systems either patched the code with an implementation-
specific workaround or did not fix the reported bugs yet.

Furthermore, we found that two additional systems,
VoltDB [19, 55] and LogCabin [56] (the original implementa-
tion of the Raft [14] consensus protocol), implement fault tol-
erance techniques for partial partitions. For these two systems,
we did not find failure reports related to partial partitioning
faults in their issue tracking systems, but VoltDB announced
that their recent version tolerates partial partitions [57]. We
experimented with LogCabin to understand the impact par-
tial partitions have on strongly consistent systems and found
that LogCabin incorporates a technique to tolerate partial
partitions. We included VoltDB and LogCabin in our study.

For each of the eight systems, we study the source code,
and extract and analyze the design principles of their fault
tolerance technique. We identify four approaches for tolerat-
ing partial partitions: detecting a surviving clique of nodes,
checking neighbors’ views, verifying failure reports received
from other nodes, and neutralizing one side of the partial
partition. Unfortunately, these techniques have severe short-
comings that may lead to a complete system shutdown or to
the unavailability of a major part of the system. In this section,
we detail these techniques and discuss their shortcomings.

5.1 Identifying the Surviving Clique
Main idea. Upon a partial network partition, the system iden-
tifies the maximum clique of nodes [58], which is the largest
subset of nodes that are completely connected. All nodes that
are not part of the maximum clique are shut down. VoltDB
follows this approach.
VoltDB Implementation. VoltDB [19, 55] is a popular
ACID, sharded, and replicated relational database. VoltDB

2

1

6

5

3

4

Surviving

Clique

Par al

Par on

Figure 2: VoltDB’s surviving
clique. Gray nodes shut down
as they are not in the clique.

0

0.2

0.4

0.6

0.8

1

2 6 10 14 18
Pr
ob

ab
ili
ty
 o
f s
hu

td
ow

n

10
30
50
100

of shut down nodes

Figure 3: The probability of a
VoltDB cluster shutdown. Dif-
ferent lines represent differ-
ent cluster sizes. The x-axis
shows the number of nodes
that are not in the clique.

follows a peer-to-peer approach to implement this technique.
Every node in the system periodically sends a heartbeat to all
nodes. If a node loses connectivity to any node, it suspects
that a partial network partition occurred and starts the recov-
ery procedure. The recovery procedure has two phases. In
the first phase, the node that detects the failure broadcasts a
list of nodes it can reach. When a node in the cluster receives
this message, it broadcasts its list of reachable nodes to all
nodes in the cluster. In phase two, every node independently
combines the information from the other nodes into a graph
representing the cluster connectivity. Each node analyzes this
graph to detect the maximum completely connected clique of
nodes. Every node that finds that it is not part of this “surviv-
ing” clique shuts itself down. Figure 2 shows an example in
which a partial partition disrupts the communication between
nodes 2, 3, and 4 on one side and nodes 5 and 6 on another.
Nodes 5 and 6 are not part of the clique and will shut down.

After identifying the surviving clique, the system verifies
that it did not lose any data by verifying that the surviving
clique has at least one replica of every data shard. If the clique
is missing one shard, such as when all the replicas of a shard
are shut down, the entire system shuts down.
Shortcomings. This fault tolerance approach has two severe
shortcomings. First, it unnecessarily shuts down up to half of
the cluster nodes, reducing the system’s performance and fault
tolerance. Second, this approach causes a complete cluster
shutdown if the surviving clique is missing a single data shard.
To understand how likely a cluster is to shut down, we conduct
a probabilistic analysis (detailed in Appendix A). Figure 3
shows the probability of a complete cluster shutdown while
varying the cluster size and the number of nodes that shut
down (i.e., nodes that are not part of the surviving clique – the
x-axis in Figure 3). Each shard has three replicas. Our analysis
shows that isolating only 10% of the nodes leads to more than
a 50% probability of shutting down the entire cluster, and
isolating only 20% of the nodes leads to a staggering 90%
chance of a complete cluster shutdown.

5.2 Checking Neighbors’ Views
Main idea. When one node (e.g., node S) loses its connection
to another node D, it verifies whether the connection is lost
due to a partial partition. To this end, S asks all nodes in the
cluster whether they can reach D. If a node reports that it can
reach D, this indicates that the cluster is suffering a partial
network partition.

If S detects a partial network partition, S either disconnects
from all nodes that can reach D, which effectively makes
the partition a complete partition, or pauses its operation.
RabbitMQ and Elasticsearch follow this approach.

5.2.1 RabbitMQ

RabbitMQ [18] is a popular messaging system that replicates
message queues for reliability. In RabbitMQ, if a node detects
that its communication with another node (e.g., node D) is
affected by a partial partition, it applies one of the following
policies depending on its configuration.

1. Escalate to a complete partition. The node will drop its
connection with any node that can reach node D. The
goal of this policy is to create a complete partition in
which both sides work independently. This configuration
leads to data inconsistency and requires running a data
consolidation mechanism after the partition heals.

2. Pause: To avoid data inconsistency, once a node discov-
ers the partial partition, it pauses its activities. It resumes
its activities only when the partition heals. The result
of this policy is that a subset of nodes will continue to
operate. This subset will be completely connected and
will run without sacrificing data consistency.

3. Pause if anchor nodes are unreachable: RabbitMQ’s con-
figuration can specify a subset of nodes to act as anchor
nodes. If a node cannot reach any of the anchor nodes, it
pauses. This may lead to creating multiple complete par-
titions if the anchor nodes become partially partitioned.
This may lead to pausing all nodes if all the anchor nodes
are isolated.

After a partition heals, RabbitMQ employs two data con-
solidation techniques: administrator intervention, in which
the administrator decides which side of the partition should
become the authoritative version of the data, and auto-heal,
in which the system makes this determination based on the
number of clients connected to each side. Both techniques
may lead to data loss or inconsistency [12].
Shortcomings. RabbitMQ’s policies have serious shortcom-
ings. Changing a partial partition to a complete partition (poli-
cies 1 and 3) may lead to multiple inconsistent copies of the
data, whereas the pause policy (policy 2) may pause the entire
system or the majority of the nodes. For instance, in Figure 4,
if every node except node 1 detects that it cannot reach a

2 4

53
Par�al

Par��on

1I see

node 4

I see

node 2

Figure 4: A scenario for Rab-
bitMQ’s pause policy. Every
non-bridge node pauses (gray
nodes) as it detects that it can-
not reach one node on the
other side.

0

5

10

15

(1,13) (3,11) (5,9) (7,7)

#
 o

f
P

a
u

se
d

 N
o

d
e

s

Configuration

Figure 5: The median number
of paused nodes in a cluster of
15 nodes. In all runs, one node
is unaffected by the partition.
The notation (i, j) shows the
number of nodes on each side
of the partition.

node on the other side of the partition, it pauses, leading to a
complete cluster pause.

In the case of the pause policy (policy 2), to determine how
many nodes pause under different partial partition scenarios,
we conduct an experiment in which we deploy a 15-node Rab-
bitMQ cluster, introduce a partial partition, and observe how
many nodes pause. In all experiments, we inject a partition
such that one node remains unaffected and able to reach all
nodes. Figure 5 shows the median number of paused nodes
under various partition configurations. We run each configura-
tion 30 times. Surprisingly, in all configurations almost all the
cluster nodes pause because each node detects that it cannot
reach at least one node on the other side of the partition. Even
isolating a single node (configuration (1,13) in Figure 5) leads
to pausing 12 nodes. Our investigation reveals that nodes de-
clare another node unreachable after missing its heartbeats
for a timeout period. In RabbitMQ, the default timeout period
is 1 minute, which gives enough time for many nodes to de-
tect the partition and pause. Using a shorter timeout periods
causes some nodes to declare prematurely that other nodes
have failed, even without a partial partition.

5.2.2 Elasticsearch

Elasticsearch [32] is a popular search engine. Its master elec-
tion protocol uses a fault tolerance technique based on check-
ing neighbors’ views. In Elasticsearch, the node with the
lowest ID is the master. If a node (e.g., S) cannot reach the
master, it contacts all nodes to check whether they can reach
the master. If any node reports that it can reach the master,
S pauses its operations. If none of the nodes can reach the
master, the node with the lowest ID becomes the new master.
Shortcomings. First, this approach can affect cluster avail-
ability quite severely, as all nodes that cannot reach the master
pause. In the worst case, it can cause a complete cluster un-
availability. For instance, in Figure 6, none of the nodes can
reach the master except node 2, which refuses to become the
new master because it can reach a node with a lower ID (node
1). Consequently, all the nodes in the cluster pause. Further-

3

4

5

1

2

Partial
Partition

I can
see the
master

I can't
reach

majority

Master

Figure 6: Elasticsearch un-
availability scenario. The mas-
ter pauses because it cannot
reach majority of nodes, and
all nodes pause because they
cannot reach the master.

Workers

ZooKeeper

Masters

Partial
Partition

5

1

2

4

3
6

Figure 7: A Mesos cluster be-
comes unavailable when a par-
tial partition isolates the mas-
ter node and its backups.

more, because the master cannot reach a majority of nodes, it
also pauses, which leads to system unavailability [59]. Sec-
ond, Elasticsearch uses this approach only to fortify the master
election protocol, which leaves the rest of the system vulnera-
ble to partial partitions.

5.3 Failure Verification
Main idea. If a node (e.g., S) receives a notification from
another node that a third node (D) has failed, node S first
verifies that it cannot reach D before taking any fault tolerance
steps. This approach is used in the leader election protocols
of MongoDB [33] and LogCabin [56]. It was also used in an
earlier version of Elasticsearch.

In MongoDB and LogCabin, if a leader is on one side of
a partial partition but can still reach the majority of nodes,
the nodes on the other side of the partition unnecessarily
call for leader election. Finding 1 in Section 4 discusses a
scenario in which a partial partition leads to continuous leader
election thrashing and to system unavailability [45]. To avoid
unnecessary elections, when a node receives a call for election,
it first verifies that the current leader is unreachable. A node
participates in an election only if it cannot reach the current
leader, else it will ignore the failure report.
Shortcomings. This approach has two major shortcomings.
First, it leads to the unavailability of a large number of nodes.
Second, it is mechanism specific. Designing a system-wide
fault tolerance mechanism using this approach is tricky be-
cause one cannot ignore every failure notification. For in-
stance, using this approach in an earlier version of Elastic-
search backfired [60]. During data migration from a primary
replica of a shard to a secondary replica, if a partial partition
isolates the primary replica from the secondary replica while
both are reachable from the master node, the primary requests
a new secondary replica. Because the master can reach the
secondary replica, it ignores the failure report. This leads to
the unavailability of the affected shard [60]. Broadly applying

Table 9: Summary of shortcomings. (D) indicates that the nodes shut down. (P) indicates that the nodes pause until the partition
heals. In the worst case, RabbitMQ pauses all nodes except one. We consider this a complete cluster loss (1). Under different
RabbitMQ policies, (2) and (3) can occur. (S) indicates a system-wide technique, whereas (M) is a mechanism-specific technique.

Surviving Clique Checking w/ Neighbors Failure Verification Neutralizing Nodes NiftyVoltDB Elasticsearch RabbitMQ MongoDB/LogCabin MapReduce/HBase Mesos
Reduced Availability ×D ×P ×P ×P ×D ×P

Complete Unavailability × × ×1

Complete Partition ×2

Double Execution ×
Data Unavailability ×3

Scope (System/Mechanism) S M S M M M S

this fault tolerance technique is not feasible because design-
ers have to revisit the design of every system mechanism,
consider the consequences of ignoring failure reports, and
examine the interaction of various mechanisms under partial
partitions.

5.4 Neutralizing Partitioned Nodes

Main idea. One challenge related to handling partial network
partitions is that nodes may update a shared state that is reach-
able from both sides of the partition, leading to data loss and
inconsistency. To avoid this problem, this approach attempts
to neutralize one side of the partition. However, the neutraliza-
tion method is implementation-specific. HBase, MapReduce,
and Mesos use this approach.
HBase Implementation. In HBase, data shards are managed
by an HBase node but are stored on HDFS. If the HBase
leader cannot reach one of the HBase nodes, it neutralizes that
node by renaming the shard’s directory in HDFS. Renaming
a shard’s directory effectively prohibits the old HBase node
from making further changes to the shard [42]. The leader
then assigns the shards of that node to a new HBase node.
MapReduce Implementation. In MapReduce, a manager
node assigns tasks to AppMaster nodes. If the manager can-
not reach an AppMaster, it reschedules the tasks assigned to
that AppMaster to a new AppMaster. With partial network
partitions, this approach may result in two AppMasters work-
ing on the same task, which leads to data corruption [61].
To fix this problem, when an AppMaster completes a task, it
writes a completion record in a shared log on HDFS. Before
an AppMaster executes a new task, it checks the shared log
for a completion record. If it finds one, it does not re-execute
the task.
Mesos Implementation. In Mesos, a master node assigns
tasks to worker nodes. A Zookeeper instance selects the mas-
ter node. The master sends periodic heartbeats to workers.
If a partial partition isolates a worker node from the master,
it pauses its operations. Figure 7 shows a worst-case sce-
nario in which the partial partition isolates the master and its
backup from all workers, which leads to a complete cluster
unavailability. Finally, if a master detects that one of the work-
ers is unavailable, it marks the tasks that were running on

the unreachable worker as lost and reschedules them on new
workers. This may lead to the double execution of a task [62].

Shortcomings. First, it is not practical to use this approach
for system-wide fault tolerance, as this approach is specific to
a certain protocol and implementation. The presented three
systems use this approach for different mechanisms. To use
this approach broadly, designers must go through the daunting
task of independently designing a fault tolerance technique for
every mechanism in the system and understanding the interac-
tion between these mechanisms. Second, this approach leaves
the nodes on one side of the partition idle, which reduces
system performance and availability.

5.5 Summary

Table 9 summarizes the shortcomings of the current fault tol-
erance techniques, none of which are adequate for modern
cloud systems. All current techniques severely affect system
availability, as they unnecessarily lose a significant number of
nodes. Failure verification and neutralizing partitioned nodes
are used to fortify specific mechanisms, rather than providing
system-wide fault tolerance. Using mechanism-specific fault
tolerance techniques requires the independent fortification of
all system mechanisms and the analysis of the interactions
between various mechanisms. This approach complicates sys-
tem design, fault analysis, and debugging. An example of a
system that uses multiple mechanism-specific techniques to
tolerate partial partitions is Elasticsearch, which uses check-
ing neighbors’ view, failure verification [60], and neutralizing
partitioned nodes [63] in different mechanisms. However,
Elasticsearch has the highest number of reported failures due
to partial partitions (Table 1).

Detecting the surviving clique and checking neighbors’
views can be used to build a system-wide fault tolerance tech-
nique. However, as Table 9 shows, these techniques lead to a
complete system shutdown or significant loss of system ca-
pacity. This realization motivated us to build Nifty (Section 6),
a system-wide fault tolerance technique that overcomes the
aforementioned shortcomings.

Partial
Partitions

32

1

Dst IP # Hops Out MAC
IP4 2 MAC 3
...

4

Dst IP # Hops Out MAC
IP4 1 MAC 4
...

Dst IP # Hops Out MAC
IP4 3 MAC 2
...

Figure 8: A Nifty routing example. A partial network parti-
tion isolates node 1 from nodes 3 and 4, and another partial
partition isolates node 4 from nodes 1 and 2. Communication
between 1 and 4 is routed through nodes 2 and 3.

6 Nifty Design
To overcome the limitations of current fault tolerance tech-
niques, we design a simple, transparent network-partitioning
fault-tolerant communication layer (Nifty).

Nifty follows a peer-to-peer design in which every node
in the cluster runs a Nifty process. These processes collabo-
rate in monitoring cluster connectivity. When Nifty detects
a partial partition, it rerouts the traffic around the partition
through intermediate nodes (i.e., bridge nodes). For instance,
in Figure 8, if two partial partitions isolate node 1 from node
4, Nifty reroutes packets exchanged between nodes 1 and 4
through nodes 2 and 3.

Although Nifty keeps the cluster connected, it may increase
the load on the bridge nodes, leading to a lower system per-
formance. System designers who use Nifty may optimize the
data or process placement or employ a flow-control mecha-
nism to reduce the load on bridge nodes. To facilitate system-
specific optimization, Nifty provides an API to identify bridge
nodes.
Connectivity monitoring. Each Nifty process uses heart
beating to monitor its connectivity with all other Nifty pro-
cesses. Each Nifty process maintains a distance vector that
includes the distance, in number of hops, to every node in the
cluster. If a Nifty process misses three heartbeats from an-
other Nifty process, it assumes that the communication with
that process is broken and updates its distance vector. To de-
tect when the communication between nodes recovers, Nifty
processes continue to send heartbeats to disconnected nodes.
Recovery. Each Nifty process sends its distance vector (pig-
gybacked on heartbeat messages) to all other nodes. Every
Nifty process then uses these vectors to build and maintain a
routing table.

When a Nifty process detects a change in the cluster (e.g.,
a node becomes unreachable or reachable), it initiates the
route discovery procedure to find new routes. In our proto-
type, we use the classical Bellman–Ford distance-vector pro-
tocol [64, 65]. We use hop count as the link weight. By hop,
we mean a hop between end nodes. Using hop count natu-
rally favors direct connections, when they exist, over rerouting
through intermediate nodes.

An entry in the routing table has a destination IP address,
hop count, and output MAC address. If a packet is received
with a destination IP address that matches an entry in the
routing table, Nifty will change the destination MAC address
of the packet to equal the output MAC address found in the
routing table, then send the packet out.
Route deployment. Nifty uses OpenFlow [66] and Open
vSwitch [67] to deploy the new routes. For instance, to reroute
packets sent from node 1 to node 4 through nodes 2 and 3
in Figure 8, the Nifty process on node 1 installs rules on its
local Open vSwitch to change the destination MAC address
of any packet destined to node 4 to the MAC address of node
2. Whenever node 2 receives a packet with node 4 IP address
as its destination, it changes the destination MAC address to
node 3 MAC address and sends the packet out. Finally, when
node 3 receives a packet with node 4 IP address, it changes
the MAC address to node 4 MAC and sends the packet out.
Node classification. A system using Nifty can be optimized
to reduce the amount of data forwarded through bridge nodes.
The approach to do so is system-specific and may entail re-
locating processes in a cluster, dropping client requests, or
reducing query result quality [7].

To facilitate the implementation of these mechanisms, Nifty
identifies which nodes are on the same side of the network
partition and which nodes serve as bridge nodes. It then pro-
vides this node classification to the system running atop of it.
Section 7.3 demonstrates how this information can facilitate
optimizing process placement in a VoltDB cluster.

7 Evaluation
Our evaluation answers three questions. How much overhead
does Nifty impose when there are no network partitions?
What is a system’s performance with Nifty under a network
partition? What is the utility of Nifty’s classification API?
Testbed. We conduct our experiments using 40 nodes at the
Cloudlab Utah cluster. Each node has an Intel Xeon E5 10-
core CPU, 64 GB of RAM, and a Mellanox ConnectX-4 25
Gbps NIC. To inject a network partition fault, we modify the
Open vSwitch rules on the nodes to drop packets between the
affected nodes. In all our experiments, we report the average
for 30 runs. We note that the standard deviation in all our
experiments is lower than 5%.

7.1 Overhead Evaluation
To evaluate Nifty’s overhead, we measure its impact on the
performance of a synthetic benchmark using iperf [68] and six
data-centric systems (i.e., storage, database, and messaging
systems). The iperf experiment uses a 100-node cluster to
measure Nifty’s impact on larger clusters. The systems we
selected are:

• HDFS: We deploy HDFS (v3.3.0) on six nodes (one
name node and five data nodes) and with a replication

0

1

2

3

4

5

0 10 20 30 40

Th
ro
ug
hp

ut
	(G

B/
s)

Number	of	Clients

HDFS
HDFS-Nifty
HDFS-Nifty-P

(a) HDFS write throughput

0
2
4
6
8
10
12
14
16

0 1 2 3 4 5

La
te
nc
y	
(s
)

Throughput	(Mops/s)

Kafka
Kafka-Nifty
Kafka-Nifty-P
Kafka-P

(b) Kafka

0

5

10

15

20

25

0 25 50 75 100 125 150 175

La
te
nc
y	
(m

s)

Throughput	(1000	ops/s)

ActiveMQ
ActiveMQ-Nifty
ActiveMQ-Nifty-P

(c) ActiveMQ

0

2

4

6

8

0 100 200 300

La
te
nc
y	
(m

s)

Throughput	(1000	ops/s)

MongoDB
MongoDB-Nifty
MongoDB-Nifty-P

(d) MongoDB

0

0.4

0.8

1.2

1.6

2

300 800 1300 1800

La
te
nc
y	
(m

s)

Throughput	(1000	ops/s)

VoltDB
VoltDB-Nifty
VoltDB-Nifty-P

(e) VoltDB

0
1
2
3
4
5
6
7
8

0 20 40 60 80

La
te
nc
y	
(m

s)

Throughput	(1000	ops/s)

RabbitMQ
RabbitMQ-Nifty
RabbitMQ-Nifty-P
RabbitMQ-P

(f) RabbitMQ

Figure 9: Nifty’s overhead. The average throughput for HDFS (a) and the average throughput vs. average latency for the rest of
the systems. (-P) denotes the results with a partial partition.

level of three. To avoid disk access, we configure data
nodes to use tmpfs. We use the HDFS standard bench-
mark (TestDFSIO). The benchmark reads and writes 1
GB files.

• Kafka: We deploy Kafka (v2.6.0) on five nodes. We dis-
tribute the queues (aka, topics) among nodes to balance
the load. Each message is replicated on three nodes. We
use Kafka’s benchmarking tool to generate load on the
system. The experiments use a set of producers and con-
sumers. Each producer sends messages to a dedicated
queue and each queue has one consumer.

• ActiveMQ: We deploy ActiveMQ Artemis (v2.15.0)
on five nodes with each queue being replicated on two
nodes. The experiments use a set of producers and con-
sumers. Each producer sends messages to a dedicated
queue and each queue has one consumer.

• MongoDB: We deploy MongoDB (v4.4.1) on six nodes
(one config server and five mongod nodes) and with a
replication level of three. We discuss our results with
the Yahoo benchmark workload B (95% reads and 5%
writes) with a uniform distribution [69]. We use 10 mil-
lion records. The rest of the Yahoo benchmark workloads
shows similar results.

• VoltDB: We deploy VoltDB (v9.0) on nine nodes, with
data sharding enabled and a replication level of three.
We use the Yahoo benchmark and the TCP-C benchmark.
Figure 9.e shows the throughput-latency curve under Ya-
hoo benchmark workload B (95% reads and 5% writes)

with a uniform distribution. The results using the TPC-
C benchmark and the Yahoo benchmark workloads A
and C with uniform and skewed loads show similar low
overhead.

• RabbitMQ: We deploy RabbitMQ (v3.8.2) on three
nodes. We use the mirrored mode in which each queue
has a leader replica and two backup replicas. We dis-
tribute the queue masters among brokers to distribute
the load. The experiments use a set of producers and
consumers. Each producer sends messages to a dedi-
cated queue and each consumer reads messages from a
dedicated queue.

Results. We compare the throughput and average latency of
each system with and without Nifty when there is no partial
network partition. We evaluate Nifty with a partial partition
in Section 7.2.

Figure 9 shows the write throughput of HDFS (Figure 9.a)
and the throughput-latency curve for Kafka (Figure 9.b),
ActiveMQ (Figure 9.c), MongoDB (Figure 9.d), VoltDB
(Figure 9.e), and RabbitMQ (Figure 9.f). The results show
that Nifty does not add noticeable overhead; for all systems,
the curves almost completely overlap. This is because Nifty
processes exchange a negligible number of packets. Each
Nifty process sends a single UDP heartbeat packet every 200
ms to other nodes in the system. Consequently, in the largest
deployment of nine nodes, each node sends only 40 packets
every second.
Scalability evaluation. Nifty uses all-to-all heart beating to
monitor a cluster’s connectivity. Consequently, Nifty’s over-
head increases with the cluster size. To measure Nifty’s scal-

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

Th
ro
ug
hp

ut
	(
G
bp

s)

Number	of	nodes

iperf
iperf-Nifty

Figure 10: Scalability evaluation. Average throughput while
increasing the number of nodes.

ablity, we evaluate its overhead on a 100-node CloudLab Utah
cluster. For this experiment, we limit the throughput of each
node to 1 Gbps, as CloudLab can not support a full 10-Gbps
connectivity between the 100 nodes we managed to book.
To generate network intensive load, we use iperf [68]. Half
of the nodes run an iperf server, and the other half run an
iperf client. Each client communicates with a single server.
Figure 10 shows the aggregate throughput of the iperf servers
when deployed with and without Nifty. The figure shows that
Nifty’s overhead is negligible. When using 100 nodes, Nifty
degrades the aggregate throughput by only 3.5%. Neverthe-
less, this monitoring approach will not scale to clusters with
thousands of nodes. We are currently exploring the design of
a fault tolerance technique that can scale to larger clusters.

7.2 Handling Partial Partitions
To demonstrate the effectiveness of the proposed approach,
we evaluate Nifty’s performance with the six aforementioned
systems under a partial partition fault. We note that RabbitMQ
and VoltDB implemented two different techniques for tolerat-
ing partial partitions (Section 5).
Partial partition setup. We use the same deployment of the
six aforementioned systems. Each system is deployed on an
odd number of replicas. We introduce a partial partition that
leaves one node as a bridge node and puts an equal number
of nodes on each side of the partition. Client nodes are not
affected by the partition. We partition the cluster this way to
create maximum pressure on the bridge node.

Figure 9 shows the system performance when the cluster
suffers from the partial partition. We notice that all the six
systems are severely effected by the partial partition. HDFS,
ActiveMQ, MongoDB, and VoltDB suffer a complete clus-
ter pause or shutdown when deployed without Nifty. The
VoltDB cluster shuts down because, after detecting the surviv-
ing clique, the system misses at least one shard. This confirms
our analysis in Section 5.1.

RabbitMQ uses the checking neighbor’s views fault toler-
ance approach. In our deployment, each queue is mirrored on
a backup replica. Due to the strong consistency requirement,
we configure RabbitMQ to pause in case of partial partition.

0

2

4

6

8

10

12

0 500 1000 1500 2000

Ta
il	
La
te
nc
y	
(m

s)

Throughput	(1000	ops/s)

VoltDB
VoltDB-Nifty
VoltDB-Nifty-P

(a) VoltDB tail latency.

0

5

10

15

20

25

30

0 20 40 60 80

Ta
il	
la
te
nc
y	(
m
s)

Throughput	(1000	ops/s)

RabbitMQ
RabbitMQ-Nifty
RabbitMQ-Nifty-P
RabbitMQ-P

(b) RabbitMQ tail latency.

Figure 11: Tail latency evaluation. Average throughput vs.
99th percentile of latency.

We deploy RabbitMQ on three nodes. Unfortunately, we could
not use a larger RabbitMQ cluster because partial partitions
often lead to the pause of the entire RabbitMQ cluster when
Nifty is not used (Figure 4). Even with three nodes, partial
partitions sometimes lead to pausing two out of three nodes.
We discard those results and only include results in which one
node pauses. Consequently, our results show the best possible
performance of RabbitMQ under partial partitions. Pausing
a broker in RabbitMQ leads to more than 50% reduction in
throughput (RabbitMQ-P in (Figure 9.f)).

Kafka uses Zookeeper to monitor a cluster nodes. If a par-
tial partition isolates a queue leader from the majority of repli-
cas while Zookeeper runs on a bridge node, Zookeeper will
not select a new leader and the entire cluster pauses (Finding 1
in Section 4). To mitigate this, we made sure that Zookeeper
falls on one side of the partition. In this case, all the nodes
on the other side of the partition that cannot reach Zookeeper
are removed from the cluster. In our experiment, the partial
partition causes two nodes to pause, which leads to almost a
50% reduction in system throughput (Figure 9.b).

Figure 9 shows that Nifty effectively masks the partial par-
tition, so none of the nodes shut down or pause. Figure 9.a
shows the write operation throughput for HDFS. With a repli-
cation level of three, each file has replicas on both sides of a
partial partition. Consequently, for every 1 GB of data written,
1 or 2 GB of data are rerouted through the bridge node. This
reduces the system throughput by up to 45%. We note that
having a partial partition result in a performance degradation
is better than a complete system unavailability when HDFS
is deployed without Nifty. For the rest of the systems, dur-
ing the partial partition, almost 50% of client requests and
responses are rerouted through the bridge node. Even so, the
system throughput only decreases by 2-6.7% and latency only
increases by 3-7.8%. This shows that Nifty can effectively
mask partial partitions and is able to utilize remaining con-
nections to reduce the performance impact.

Figure 11 shows the tail latency for VoltDB and RabbitMQ
for the same experiments presented in Figure 9. The figure
shows the average throughput and the 99th percentile of la-
tency while increasing the load on the system. The figure
shows that Nifty increases the 99th percentile latency by up
to 6.8% without a partial partition and by 15% under a partial
partition failure.

7.3 Classification API Utility

In this section, we demonstrate the utility of Nifty’s classifica-
tion API. In VoltDB, a single server (aka, multi-data-partition
initiator or MPI) processes all multi-shard operations. The
MPI divides a multi-shard query (e.g., a join) to sub-queries,
such that each sub-query targets a single shard. The MPI
forwards each sub-query to its shard leader, gathers the inter-
mediate results, performs final query processing, and sends
the result to the client.

When deploying VoltDB atop Nifty, if the MPI node is
on one side of the partition, a potentially significant volume
of intermediate data passes through the bridge node. In our
setup, when the MPI is on one side of the partition, 50% of
the intermediate results are rerouted through the bridge node.
This increases operation latency and the load on bridge nodes.

To improve the performance of multi-shard operations, the
MPI process can be migrated to a bridge node. This effec-
tively eliminates the need to reroute any traffic for multi-shard
queries. We modify VoltDB to use Nifty’s API to identify
bridge nodes and migrate the MPI to a bridge node.

To evaluate this optimization’s effectiveness, we evaluate
the effect of the MPI’s location on system performance. We
restrict clients to contacting VoltDB nodes on one side of
the partition and compare the system performance of three
MPI placements: on clients side of the partition (client side in
Figure 12), on the bridge node (bridge), and on the side oppo-
site to the clients (opposite side). Bridge placement represents
our optimization.
Setup and Workload. We use the same VoltDB configuration
and partial partition setup detailed in the previouse sections.
Unfortunately, VoltDB has limited support for join queries,
so it cannot run standard benchmarks such as TPC-H [70]. In
our experiments, we use a simple synthetic benchmark that
joins two tables. The benchmark has two sharded tables of 20
fields each. Each field is 50 bytes, leading to approximately
1 KB rows. To use multiple shards, clients issue a range
query that joins the two tables on the primary key. The client
issues a query with a range that includes four primary keys.
Consequently, the query result size is limited to four rows,
with a total size of almost 8 KB. We populate the database
with 20 GB of data before running the experiments. We report
the average and standard deviation for 30 runs.
Results. Figure 12 shows the system throughput (a) and
the average latency (b) for the three possible MPI place-
ments. During a partial partition fault, placing the MPI on
a bridge node decreases the latency by up to 11% and im-
proves throughput by 11% compared to client and opposite
side placements. Placing the MPI on a bridge node reduces
the number of hops the join query must make before the MPI
accumulates all the results and sends the query reply. Fur-
thermore, bridge placement achieves throughput and latency
within 4% of VoltDB’s performance when there is no partition
(“no partition” in Figure 12).

0

10

20

30

40

0 50 100 150 200

La
te
nc
y	
(m

s)

Number	of	Clients

No	Partition
Bridge
Client	Side
Opposite	Side

(a) Latency

0

1

2

3

4

5

6

0 50 100 150 200

Th
ro
ug
hp

ut
	(1
00
0	
op

s/
s)

Number	of	Clients

No	Partition
Bridge
Client	Side
Opposite	Side

(b) Throughput

Figure 12: The impact of MPI placement on VoltDB’s per-
formance. Figure shows the average latency (a) and average
throughput (b). Standard deviation was less than 2%.

We measure the amount of data forwarded through the
bridge nodes for each one of those configurations; placing the
MPI on the bridge node imposes the least overhead. When
using 128 clients, 72 MB, 5 GB, and 6.5 GB of data are
forwarded through the bridge node when the MPI is placed
on the bridge, client side, and opposite side, respectively. The
opposite side rerouts more data than the client side placement,
as the client request and the result are also rerouted through
the bridge node.

8 Related Work
To the best of our knowledge, this is the first study to focus on
partial network partitioning, characterize its failures, dissect
modern fault tolerance techniques, and explore the design of
a generic fault tolerance technique for this type of fault.

A number of previous efforts analyzed failures in dis-
tributed systems, including characterizing specific component
failures [5, 6, 71, 72, 73, 74] and characterizing failures in a
specific domain such as HPC [75, 76, 77], IaaS clouds [78],
data-mining services [79], hosting services [8, 80], data-
intensive systems [81, 82, 83], and cloud systems [84]. Our
work complements these efforts by focusing on failures trig-
gered by partial network partitions.

In our previous work [12], we studied 136 network parti-
tioning failures focusing on complete partitions. This previ-
ous work identified partial partitions, presented examples of
how they can lead to system failures, and presented NEAT,
a testing tool that can inject complete and partial network
partitioning faults. We use NEAT to reproduce some of the
reported failures. This paper presents an in-depth analysis of
partial partition failures and fault tolerance techniques and
proposes a novel fault-tolerant communication layer.

Comparing the characteristics of partial and complete par-
titions [12] shows that they have similar catastrophic impact
and manifestation and reproducibility characteristics. Partial
partitions seem easier to manifest. While all partial partition
failures are triggered by a single-node partial partition and
almost all of the failures are deterministic, 88% of the com-
plete partitions manifest by isolating a single node and 80%
of them are deterministic. Furthermore, we found twice as
many failure reports reporting complete partitions than partial
partitions.

Despite their similarity in causing catastrophic failures and
being easy-to-manifest, partial and complete partitions are
fundamentally different faults. Unlike complete partitions, a
cluster suffering a partial partition is still connected but not all-
to-all connected. Consequently, the CAP theorem bounds [13]
do not apply to partial partitions. Furthermore, fault tolerance
techniques for complete partitions cannot handle partial par-
titions or lead to pausing up to half of the cluster nodes. For
instance, using majority vote to elect a leader is an effective
mechanism to tolerate complete partitions. This approach
alone is not effective in handling partial partitions, as there
could be multiple completely connected subgroups with each
connecting a majority of nodes. Section 5 shows how using
only majority voting can lead to leader election thrashing and
system unavailability.

Software-defined networking capabilities have been used
to engineer traffic and optimize system operations, including
offering network virtualization [85]; building network over-
lays [86]; performing network measurements [87, 88]; and im-
plementing in-network firewalls [89], load balancers [90, 91],
and key-value-based routing [92, 93]. Nifty is similar in spirit
to these systems, as we use Open vSwitch capabilities to
implement an overlay to mask partial partitions.

9 Concluding Remarks
Our work sheds light on a peculiar type of infrastructure fault
and highlights the need for further research to understand such
faults and explore techniques to improve systems’ resiliency.

This is the first work to focus on partial network partition-
ing fault and present an in-depth analysis of system failures
triggered by this fault. We identify characteristics that can
facilitate better test design. Our findings highlight that fo-
cused design reviews can identify vulnerabilities early in the
design process. We dissect the implementation of eight pop-
ular systems and study their fault tolerance techniques. In
doing so, we identify four main approaches for tolerating par-
tial partitions. Unfortunately, all implemented fault tolerance
techniques have severe shortcomings.

We, therefore, build Nifty to overcome the limitations of
modern fault tolerance techniques. Nifty is a simple, transpar-
ent communication layer that reroutes packets around partial
partitions. We note that modern systems already incorporate
a membership and connectivity monitoring. We show that ex-
tending the current implementations with a detour mechanism
is an effective and low overhead fault tolerance technique to
partial partitions. The source code for Nifty is available at
https://github.com/UWASL/NIFTY

Acknowledgment
We thank the anonymous reviewers, our shepherd, Jason Flinn,
Omid Abari, Ali Mashtizadeh, and Khuzaima Daudjee for
their insightful feedback. We thank the artifact evaluation

committee members for their effort in evaluating Nifty and
for their feedback. We thank Joslin Goh for her feedback
on our probabilistic analysis of VoltDB’s failure probabil-
ity. This research was supported by an NSERC Discovery
grant, Canada Foundation for Innovation (CFI) grant, and a
Waterloo-Huawei Joint Innovation lab grant.

References
[1] Daniel Turner, Kirill Levchenko, Jeffrey C Mogul, Ste-

fan Savage, Alex C Snoeren, Daniel Turner, Kirill
Levchenko, Jeffrey C Mogul, Stefan Savage, and Alex C
Snoeren. On failure in managed enterprise networks.
HP Labs HPL-2012-101, 2012.

[2] Data center: Load balancing data center, solutions refer-
ence nework design. Technical report, Cisco Systems,
Inc., 2004.

[3] Ramesh Govindan, Ina Minei, Mahesh Kallahalla,
Bikash Koley, and Amin Vahdat. Evolve or die: High-
availability design principles drawn from googles net-
work infrastructure. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 58–72. ACM, 2016.

[4] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Expe-
rience with a globally-deployed software defined wan.
In ACM SIGCOMM Computer Communication Review,
volume 43, pages 3–14. ACM, 2013.

[5] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.
Understanding network failures in data centers: measure-
ment, analysis, and implications. ACM SIGCOMM Com-
puter Communication Review, 41(4):350–361, 2011.

[6] Daniel Turner, Kirill Levchenko, Alex C Snoeren, and
Stefan Savage. California fault lines: understanding
the causes and impact of network failures. ACM SIG-
COMM Computer Communication Review, 41(4):315–
326, 2011.

[7] Eric A Brewer. Lessons from giant-scale services. IEEE
Internet computing, 5(4):46–55, 2001.

[8] David Oppenheimer, Archana Ganapathi, and David A
Patterson. Why do internet services fail, and what can
be done about it? In USENIX symposium on internet
technologies and systems, volume 67. Seattle, WA, 2003.

[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, et al. TAO: Face-
book’s distributed data store for the social graph. In
Presented as part of the 2013 USENIX Annual Techni-
cal Conference (USENIX ATC 13), pages 49–60, 2013.

https://github.com/UWASL/NIFTY

[10] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan
Katz-Bassett, and Harsha V Madhyastha. Spanstore:
Cost-effective geo-replicated storage spanning multi-
ple cloud services. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Prin-
ciples, pages 292–308. ACM, 2013.

[11] James C Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, Jeffrey John Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer
Systems (TOCS), 31(3):8, 2013.

[12] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta,
and Samer Al-Kiswany. An analysis of network-
partitioning failures in cloud systems. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 51–68, 2018.

[13] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51–59, June 2002.

[14] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
305–319, 2014.

[15] Leslie Lamport et al. Paxos made simple. ACM Sigact
News, 32(4):18–25, 2001.

[16] Douglas B Terry, Marvin M Theimer, Karin Petersen,
Alan J Demers, Mike J Spreitzer, and Carl H Hauser.
Managing update conflicts in bayou, a weakly connected
replicated storage system. In SOSP, volume 95, pages
172–182, 1995.

[17] Barbara Liskov and James Cowling. Viewstamped repli-
cation revisited. Technical Report MIT-CSAIL-TR-
2012-021, MIT, July 2012.

[18] Rabbitmq message broker. https://www.rabbitmq.com.
Accessed: Apr. 2020.

[19] Voltdb in-memory database platform. https://www.
voltdb.com/. Accessed: Apr. 2020.

[20] The ceph object store. https://ceph.io/. Accessed: Apr.
2020.

[21] Robin J. Wilson. Introduction to Graph Theory. Prentice
Hall/Pearson, New York, 2010.

[22] bnx2 cards intermittantly going offline. https://www.
spinics.net/lists/netdev/msg152880.html. Accessed:
Apr. 2020.

[23] Simon J Maple and Ian Robinson. Transaction recovery
in a transaction processing computer system employing
multiple transaction managers, October 20 2015. US
Patent 9,165,025.

[24] Christian Maihofer. A survey of geocast routing pro-
tocols. IEEE Communications Surveys & Tutorials,
6(2):32–42, 2004.

[25] Matthew Milano and Andrew C Myers. Mixt: a lan-
guage for mixing consistency in geodistributed trans-
actions. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, pages 226–241. ACM, 2018.

[26] Observability in paxos clusters. https://davecturner.
github.io/2017/08/18/observability-in-paxos.html. Ac-
cessed: Apr. 2020.

[27] Partial network partitions and obstacles to inno-
vation. https://rachelbythebay.com/w/2012/02/16/
partition/. Accessed:Apr. 2020.

[28] Partial network partition and retries. https://github.com/
elastic/elasticsearch/issues/6105. Accessed: Apr. 2020.

[29] Healthchecking is not transitive. https://www.
robustperception.io/healthchecking-is-not-transitive.
Accessed: Apr. 2020.

[30] Cluster broken after switches upgrade. https://github.
com/elastic/elasticsearch/issues/9495. Accessed: Apr.
2020.

[31] Using map output fetch failures to blacklist nodes
is problematic. https://issues.apache.org/jira/browse/
MAPREDUCE-1800. Accessed: Apr. 2020.

[32] Elasticsearch: Distributed search & analytics. https:
//www.elastic.co/products/elasticsearch. Accessed: Apr.
2020.

[33] Mongodb: The database for modern applications. https:
//www.mongodb.com/. Accessed: Apr. 2020.

[34] The apache hadoop project. http://hadoop.apache.org/.
Accessed: Apr. 2020.

[35] Apache hbase. https://hbase.apache.org/. Accessed: Apr.
2020.

[36] Apache mesos. http://mesos.apache.org/. Accessed:
Apr. 2020.

[37] Moosefs: Distributed file system. https://moosefs.com/.
Accessed: Apr. 2020.

[38] Kafka: A distributed streaming platform. https://kafka.
apache.org/. Accessed: Apr. 2020.

https://www.rabbitmq.com
https://www.voltdb.com/
https://www.voltdb.com/
https://ceph.io/
https://www.spinics.net/lists/netdev/msg152880.html
https://www.spinics.net/lists/netdev/msg152880.html
https://davecturner.github.io/2017/08/18/observability-in-paxos.html
https://davecturner.github.io/2017/08/18/observability-in-paxos.html
https://rachelbythebay.com/w/2012/02/16/partition/
https://rachelbythebay.com/w/2012/02/16/partition/
https://github.com/elastic/elasticsearch/issues/6105
https://github.com/elastic/elasticsearch/issues/6105
https://www.robustperception.io/healthchecking-is-not-transitive
https://www.robustperception.io/healthchecking-is-not-transitive
https://github.com/elastic/elasticsearch/issues/9495
https://github.com/elastic/elasticsearch/issues/9495
https://issues.apache.org/jira/browse/MAPREDUCE-1800
https://issues.apache.org/jira/browse/MAPREDUCE-1800
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.mongodb.com/
https://www.mongodb.com/
http://hadoop.apache.org/
https://hbase.apache.org/
http://mesos.apache.org/
https://moosefs.com/
https://kafka.apache.org/
https://kafka.apache.org/

[39] Activemq: Flexible & powerful open source multi-
protocol messaging. http://activemq.apache.org/. Ac-
cessed: Apr. 2020.

[40] Dkron: A distributed cron service. https://dkron.io/.
Accessed: Apr. 2020.

[41] Robert V. Hogg, Elliot Tanis, and Dale Zimmerman.
Probability and Statistical Inference. Pearson, 9 edition,
2013.

[42] Possible data loss when rs goes into gc pause while
rolling hlog. https://issues.apache.org/jira/browse/
HBASE-2312. Accessed: Apr. 2020.

[43] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX annual technical
conference, volume 8, 2010.

[44] Activemq cluster blocks indefinitely in the presence of
partial network partition. https://issues.apache.org/jira/
browse/AMQ-7064. Accessed: Apr. 2020.

[45] Arbiters in pv1 should vote no in elections if they can see
a healthy primary of equal or greater priority to the candi-
date. https://jira.mongodb.org/browse/SERVER-27125.
Accessed: Apr. 2020.

[46] Partial network partition and retries. https://github.com/
elastic/elasticsearch/issues/6105. Accessed: Apr. 2020.

[47] minimum_master_nodes does not prevent split-brain
if splits are intersecting. https://github.com/elastic/
elasticsearch/issues/2488. Accessed:Apr. 2020.

[48] Asymmetrical network partition can cause the election
of two primary nodes. https://jira.mongodb.org/browse/
SERVER-9730. Accessed: Apr. 2020.

[49] Mirrored queue crash with out of sync acks. https:
//github.com/rabbitmq/rabbitmq-server/issues/749. Ac-
cessed: Apr. 2020.

[50] A network partition can cause in flight documents to
be lost. https://github.com/elastic/elasticsearch/issues/
7572. Accessed: Apr. 2020.

[51] Hazelcast: the leading in-memory data grid. https://
hazelcast.com/. Accessed: Apr. 2020.

[52] Redis: in-memory data structure store. https://redis.io/.
Accessed: Apr. 2020.

[53] A. Herr. Veritas cluster server 6.2 I/O fencing deploy-
ment considerations. Technical report, Veritas Technolo-
gies, 2016.

[54] Balancer can cause cascading mongod failures during
network partitions. https://jira.mongodb.org/browse/
SERVER-19550. Accessed: Apr. 2020.

[55] Michael Stonebraker and Ariel Weisberg. The voltdb
main memory dbms. IEEE Data Eng. Bull., 36(2):21–
27, 2013.

[56] Logcabin. https://github.com/logcabin/logcabin. Ac-
cessed: Apr. 2020.

[57] How does voltdb handle partial network par-
titions? https://www.voltdb.com/resources/
transaction-consistency-faq#net. Accessed: Apr.
2020.

[58] Thomas H Cormen, Charles E Leiserson, Ronald L
Rivest, and Clifford Stein. Introduction to algorithms.
MIT press, 2009.

[59] Partial network partitioning leads to cluster unavail-
ability. https://github.com/elastic/elasticsearch/issues/
43183. Accessed: Apr. 2020.

[60] Faulty recovery caused by partial network partitions.
https://github.com/elastic/elasticsearch/pull/8720. Ac-
cessed: Apr. 2020.

[61] Mapreduce ticket 4832. https://issues.apache.org/jira/
browse/MAPREDUCE-4832. Accessed: Apr. 2020.

[62] Designing highly available mesos frameworks.
http://mesos.apache.org/documentation/latest/
high-availability-framework-guide/. Accessed:
Apr. 2020.

[63] Wait on shard failures. https://github.com/elastic/
elasticsearch/issues/14252. Accessed: Apr. 2020.

[64] Deep Medhi and Karthik Ramasamy. Network rout-
ing: algorithms, protocols, and architectures. Morgan
Kaufmann, 2017.

[65] Dimitri P Bertsekas, Robert G Gallager, and Pierre Hum-
blet. Data networks, volume 2. Prentice-Hall Interna-
tional New Jersey, 1992.

[66] Openflow switch specification, version 1.5.1 (onf ts-
025). Open Networking Foundation, 2015.

[67] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Joe Stringer, Pravin Shelar, et al. The design
and implementation of open vswitch. In 12th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 15), pages 117–130, 2015.

[68] iperf: The ultimate speed test tool for tcp, udp and sctp.
https://iperf.fr/. Accessed: Apr. 2020.

http://activemq.apache.org/
https://dkron.io/
https://issues.apache.org/jira/browse/HBASE-2312
https://issues.apache.org/jira/browse/HBASE-2312
https://issues.apache.org/jira/browse/AMQ-7064
https://issues.apache.org/jira/browse/AMQ-7064
https://jira.mongodb.org/browse/SERVER-27125
https://github.com/elastic/elasticsearch/issues/6105
https://github.com/elastic/elasticsearch/issues/6105
https://github.com/elastic/elasticsearch/issues/2488
https://github.com/elastic/elasticsearch/issues/2488
https://jira.mongodb.org/browse/SERVER-9730
https://jira.mongodb.org/browse/SERVER-9730
https://github.com/rabbitmq/rabbitmq-server/issues/749
https://github.com/rabbitmq/rabbitmq-server/issues/749
https://github.com/elastic/elasticsearch/issues/7572
https://github.com/elastic/elasticsearch/issues/7572
https://hazelcast.com/
https://hazelcast.com/
https://redis.io/
https://jira.mongodb.org/browse/SERVER-19550
https://jira.mongodb.org/browse/SERVER-19550
https://github.com/logcabin/logcabin
https://www.voltdb.com/resources/transaction-consistency-faq#net
https://www.voltdb.com/resources/transaction-consistency-faq#net
https://github.com/elastic/elasticsearch/issues/43183
https://github.com/elastic/elasticsearch/issues/43183
https://github.com/elastic/elasticsearch/pull/8720
https://issues.apache.org/jira/browse/MAPREDUCE-4832
https://issues.apache.org/jira/browse/MAPREDUCE-4832
http://mesos.apache.org/documentation/latest/high-availability-framework-guide/
http://mesos.apache.org/documentation/latest/high-availability-framework-guide/
https://github.com/elastic/elasticsearch/issues/14252
https://github.com/elastic/elasticsearch/issues/14252
https://iperf.fr/

[69] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[70] TPC-H benchmark (decision support) standard specifi-
cation. Transaction Processing Performance Council,
December 2018. Revision 2.18.0.

[71] Kashi Venkatesh Vishwanath and Nachiappan Nagap-
pan. Characterizing cloud computing hardware reliabil-
ity. In Proceedings of the 1st ACM symposium on Cloud
computing, pages 193–204. ACM, 2010.

[72] Robert Birke, Ioana Giurgiu, Lydia Y Chen, Dorothea
Wiesmann, and Ton Engbersen. Failure analysis of vir-
tual and physical machines: patterns, causes and char-
acteristics. In 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Net-
works, pages 1–12. IEEE, 2014.

[73] Daniel Ford, François Labelle, Florentina Popovici, Mur-
ray Stokely, Van-Anh Truong, Luiz Barroso, Carrie
Grimes, and Sean Quinlan. Availability in globally dis-
tributed storage systems. 2010.

[74] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and
Arkady Kanevsky. Are disks the dominant contributor
for storage failures?: A comprehensive study of storage
subsystem failure characteristics. ACM Transactions on
Storage (TOS), 4(3):7, 2008.

[75] Nosayba El-Sayed and Bianca Schroeder. Reading be-
tween the lines of failure logs: Understanding how hpc
systems fail. In 2013 43rd annual IEEE/IFIP interna-
tional conference on dependable systems and networks
(DSN), pages 1–12. IEEE, 2013.

[76] Yinglung Liang, Yanyong Zhang, Anand Sivasubrama-
niam, Morris Jette, and Ramendra Sahoo. Bluegene/l
failure analysis and prediction models. In Interna-
tional Conference on Dependable Systems and Networks
(DSN’06), pages 425–434. IEEE, 2006.

[77] Bianca Schroeder and Garth Gibson. A large-scale
study of failures in high-performance computing sys-
tems. IEEE transactions on Dependable and Secure
Computing, 7(4):337–350, 2009.

[78] Theophilus Benson, Sambit Sahu, Aditya Akella, and
Anees Shaikh. A first look at problems in the cloud.
HotCloud, 10:15, 2010.

[79] Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Haibo
Lin, Haoxiang Lin, and Tingting Qin. An empirical
study on quality issues of production big data platform.

In Proceedings of the 37th International Conference
on Software Engineering-Volume 2, pages 17–26. IEEE
Press, 2015.

[80] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto,
Agung Laksono, Anang D Satria, Jeffry Adityatama,
and Kurnia J Eliazar. Why does the cloud stop com-
puting?: Lessons from hundreds of service outages. In
Proceedings of the Seventh ACM Symposium on Cloud
Computing, pages 1–16. ACM, 2016.

[81] Ariel Rabkin and Randy Howard Katz. How hadoop
clusters break. IEEE software, 30(4):88–94, 2012.

[82] Haryadi S Gunawi, Mingzhe Hao, Tanakorn Leesat-
apornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry
Adityatama, Kurnia J Eliazar, Agung Laksono, Jeffrey F
Lukman, Vincentius Martin, et al. What bugs live in the
cloud? a study of 3000+ issues in cloud systems. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
pages 1–14. ACM, 2014.

[83] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao,
Haibo Lin, Wei Lin, and Tao Xie. A characteristic study
on failures of production distributed data-parallel pro-
grams. In Proceedings of the 2013 International Con-
ference on Software Engineering, pages 963–972. IEEE
Press, 2013.

[84] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Ro-
drigues, Xu Zhao, Yongle Zhang, Pranay U Jain, and
Michael Stumm. Simple testing can prevent most critical
failures: An analysis of production failures in distributed
data-intensive systems. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 249–265, 2014.

[85] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexander
Docauer, et al. Andromeda: performance, isolation, and
velocity at scale in cloud network virtualization. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 373–387, 2018.

[86] Piyush Raman Srivastava and Saket Saurav. Networking
agent for overlay l2 routing and overlay to underlay
external networks l3 routing using openflow and open
vswitch. In 2015 17th Asia-Pacific Network Operations
and Management Symposium (APNOMS), pages 291–
296. IEEE, 2015.

[87] An Wang, Yang Guo, Songqing Chen, Fang Hao,
TV Lakshman, Doug Montgomery, and Kotikalapudi
Sriram. vprom: Vswitch enhanced programmable mea-
surement in sdn. In 2017 IEEE 25th International
Conference on Network Protocols (ICNP), pages 1–10.
IEEE, 2017.

[88] Zili Zha, An Wang, Yang Guo, Doug Montgomery, and
Songqing Chen. Instrumenting open vswitch with mon-
itoring capabilities: designs and challenges. In Proceed-
ings of the Symposium on SDN Research, page 16. ACM,
2018.

[89] Pakapol Krongbaramee and Yuthapong Somchit. Imple-
mentation of sdn stateful firewall on data plane using
open vswitch. In 2018 15th International Joint Confer-
ence on Computer Science and Software Engineering
(JCSSE), pages 1–5. IEEE, 2018.

[90] Anat Bremler-Barr, David Hay, Idan Moyal, and Liron
Schiff. Load balancing memcached traffic using soft-
ware defined networking. In 2017 IFIP Networking
Conference (IFIP Networking) and Workshops, pages
1–9. IEEE, 2017.

[91] Alex FR Trajano and Marcial P Fernandez. Two-phase
load balancing of in-memory key-value storages through
nfv and sdn. In 2015 IEEE Symposium on Comput-
ers and Communication (ISCC), pages 409–414. IEEE,
2015.

[92] I. Kettaneh, A. Alquraan, H. Takruri, S. Yang, A. S.
Dusseau, R. Arpaci-Dusseau, and S. Al-Kiswany. The
network-integrated storage system. IEEE Transactions
on Parallel and Distributed Systems, 2019.

[93] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G
Andersen, and Michael J Freedman. Be fast, cheap and
in control with switchkv. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
16), pages 31–44, 2016.

Appendix A: The Probability of VoltDB Cluster
Shutdown
We consider a VoltDB cluster with N nodes. The cluster stores
S shards with a replication factor of R. When a partial network
partition happens, VoltDB identifies the surviving clique and
all the nodes that are not part of the clique shutdown. We
denote the number of nodes that shutdown due to a partial
partition as F (Since F is not in the surviving clique then
F < N

2), leaving the system with (N −F) surviving nodes.
Assumptions. We assume that:

1. The system selects R nodes to hold the replicas of a
given shard using a uniform random distribution.

2. Shard placement is independent of other shards loca-
tions.

3. Each node has enough capacity to store all the shards.

VoltDB will shut down if the surviving clique does not have
all the shards. I mean, if the F failed nodes contain all the R

replicas of any of the S shards, then VoltDB shuts down. In
other terms, the VoltDB cluster will survive a partial partition
if every shard has at least one replica in the surviving clique.
Step I. Single Shard Probability. Consider the case of a
system with a single shard. The system will survive in all
cases in which the surviving clique has at least a single replica
of the shard. To compute the probability a system will survive
a partial partition, we will compute the number of possible
replica placements in the cluster, then compute how many of
those placements would fail when losing F nodes. Finally,
we will use these two numbers to compute the probability a
system survives a partial partitioning fault.

Number of possible combinations to place a shard. The
system selects R nodes to hold the replicas for a shard. The
selection is without replacement since no two copies of the
shard can be placed on the same node, and order of selected
nodes is not important.

Number of possible combinations for placing a shard is:

C(N,R) =
N!

(N −R)!×R!
(1)

If F nodes fail, the number of combinations in which all
the replicas of the shard are on the F failed nodes is (this is
again without replacement and ordering is not important)

C(F,R) =
F!

(F −R)!×R!
(2)

The probability the system shutdown when F nodes fail is

P(single_shard_shutdown) =
C(N,R)
C(F,R)

=

N!
(N−R)!×R!

F!
(F−R)!×R!

=
F!(N −R)!
N!(F −R)!

(3)
And the probability of a system surviving a partial partition

that shits down F nodes is

P(single_shard_surviving) = 1− F!(N −R)!
N!(F −R)!

(4)

Step II. Multi-shard probability. Assuming that shards are
placed independently, the probability of a system with S shard
surviving a partial partition with F nodes shutting down is:

P(system_surviving) =
(

1− F!(N −R)!
N!(F −R)!

)S

(5)

The probability the system shuts down is

P(system_shutdown) = 1−
(

1− F!(N −R)!
N!(F −R)!

)S

(6)

Example. We used this formula to compute the probability
of failure of VoltDB on different cluster sizes. The number

0

0.2

0.4

0.6

0.8

1

2 6 10 14 18

P
ro
b
a
b
il
it
y
 o
f
sh
u
td
o
w
n

10

30

50

100

Number of isolated nodes

Figure 13: Probability of a VoltDB system shut down.

of shards VoltDB allocates to nodes is equal to the number
of cores. Figure 13 shows the probability of VoltDB shutting
down for different cluster sizes, with replication level of 3,
and assuming nodes with 32 CPU cores. The figure shows that
isolating only 10% of the nodes leads to over 50% probability
of shutting down the entire cluster, and isolating only 20% of
the nodes leads to a staggering 90% chance for a complete
cluster shutdown.

	Introduction
	Definitions
	Causes of Partial Network Partitioning
	Analysis of Partial Network-Partitioning Failures
	Methodology
	Limitations
	Findings
	Insights

	Dissecting Modern Fault Tolerance Techniques
	Identifying the Surviving Clique
	Checking Neighbors’ Views
	RabbitMQ
	Elasticsearch

	Failure Verification
	Neutralizing Partitioned Nodes
	Summary

	Nifty Design
	Evaluation
	Overhead Evaluation
	Handling Partial Partitions
	Classification API Utility

	Related Work
	Concluding Remarks

