
The Network-Integrated Storage System
Ibrahim Kettaneh, Ahmed Alquraan , Hatem Takruri, Suli Yang, Andrea C. Arpaci-Dusseau,

Remzi H. Arpaci-Dusseau, and Samer Al-Kiswany

Abstract—We present NICE, a key-value storage system design that leverages new software-defined network capabilities to build

cluster-based network-efficient storage system. NICE presents novel techniques to co-design network routing and multicast with

storage replication, consistency, and load balancing to achieve higher efficiency, performance, and scalability. We implement the

NICEKV prototype. NICEKV follows the NICE approach in designing four essential network-centric storage mechanisms: request

routing, replication, consistency, and load balancing. Our evaluation shows that the proposed approach brings significant performance

gains compared with the current systems design: up to 7� put/get performance improvement, up to 2� reduction in network load, 3� to

9� load reduction on the storage nodes, and the elimination of scalability bottlenecks present in current designs.

Index Terms—Key-value storage, software-defined networks, network-integrated design, network-system co-design, distributed storage

Ç

1 INTRODUCTION

THE end-to-end design principle [1] pervades the design
of virtually every distributed system [2], [3], [4], [5], [6].

In its extreme form, critical functionality is implemented
solely in end hosts, with a relatively dumb and fast network
to connect them.

One locale that closely adheres to the end-to-end principle
is distributed storage, including distributed file systems [7],
[8], [9], [10], [11], [12] and scalable key-value stores [13], [14],
[15], [16], [17]. In these widely deployed and increasingly
important systems, the network is used as a point-to-point
communication medium, while storage logic and protocols
are implemented entirely in client libraries and server code.

Unfortunately, such Network-Oblivious (NOOB) storage
systems are fundamentally inefficient. Consider, for exam-
ple, the simple task of replicating a data block. To do so, a
node first sends the block to one server, and then another,
and then another; as a result, the same data redundantly tra-
verses some number of network links and switches, increas-
ing load on the network significantly. Even the simple task
of locating a data item presents a significant challenge; for
example, in protocols such as Chord [18], a logarithmic
number of nodes must be contacted simply to discover the
location of a particular key.

In this paper, we propose an alternative approach in
which we co-design storage logic and networking support
to realize more efficient, scalable, and reliable distributed

storage. Such Network-Integrated Cluster-Efficient (NICE)
storage harnesses recent advances in Software-Defined Net-
works (SDNs) [19], [20] to optimize key aspects of modern
distributed storage architectures. For example, NICE stor-
age systems can replicate a block while generating the least
possible network load, and it can forward a request to the
proper node in a single hop.

Two recent developments provide a unique opportunity
to address NOOB inefficiencies and indicate that a network-
integrated design paradigm that co-designs network and
end-point functionality has a much higher chance of being
successful today. First, recent advances in software-defined
networks (SDNs) provide a standard interface for imple-
menting in-network application specific optimizations, and
for building a control mechanism that can orchestrate net-
work and storage operations. The second development is
the wide adoption of data centers as the main cloud-com-
puting platform. Having a single administration of the
entire hardware/software stack and the ability to compart-
mentalize the infrastructure facilitates adopting custom sol-
utions for different applications or subsystems.

NICE uses SDN technology to virtualize the storage sys-
tem. The client accesses a virtual storage system deployed
on a range of virtual IP addresses. The NICE network con-
troller modifies client packets and forwards them to the
proper storage node. Having a network controller that is
informed of the storage system metadata and has full con-
trol of the network decisions enables optimizing packet
paths to improve four essential storage mechanisms, includ-
ing: request routing, which directs requests from clients to
storage nodes; replication, for preventing data loss when
nodes or storage devices fail; load balancing, which dis-
patches client requests across replicas to handle workload
variation. Finally, NICE virtualization simplifies building
consistency protocols by making failed nodes, or nodes
with inconsistent data, inaccessible.

We implemented NICEKV, a key-value storage system
following the NICE design. Our NICEKV prototype lever-
ages the capabilities of the widely adopted OpenFlow

� I. Kettaneh, H. Takruri, A. Alquraan, and S. Al-Kiswany are with
the Cheriton School of Computer Science, University of Waterloo, 200
University Avenue West, Waterloo, ON, N2L 3G1, Canada.
E-mail: {iskettaneh, ahmed.alquraan, htakruri, alkiswany}@uwaterloo.ca.

� S. Yang, Andrea C. Arpaci-Dusseau, R. H. Arpaci-Dusseau are with the
Computer Sciences Department, University of Wisconsin-Madison, 1210
W. Dayton St., Madison, WI, 53706.
E-mail: {suli, dusseau, remzi}@cs.wisc.edu.

Manuscript received 26 Oct. 2018; revised 27 June 2019; accepted 17 Aug.
2019. Date of publication 28 Aug. 2019; date of current version 26 Dec. 2019.
(Corresponding author: Samer Al-Kiswany.)
Recommended for acceptance by J. Wang.
Digital Object Identifier no. 10.1109/TPDS.2019.2938158

486 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/ 0000-0002-1445-9619
https://orcid.org/ 0000-0002-1445-9619
https://orcid.org/ 0000-0002-1445-9619
https://orcid.org/ 0000-0002-1445-9619
https://orcid.org/ 0000-0002-1445-9619
https://orcid.org/0000-0002-6429-9983
https://orcid.org/0000-0002-6429-9983
https://orcid.org/0000-0002-6429-9983
https://orcid.org/0000-0002-6429-9983
https://orcid.org/0000-0002-6429-9983
mailto:
mailto:


standard. Our evaluation using synthetic and real workload
benchmarks shows that NICEKV brings significant perfor-
mance gains compared to a broad set of NOOB storage con-
figurations and two production systems: Ceph and Swift.
Our evaluation shows that NICEKV has a scalable member-
ship maintenance mechanism, achieves single-hop request
routing eliminating the need for deploying load balancer,
and achieves network and storage optimal replication, effec-
tively halving the network-generated load and reducing
storage load by 3� to 9�, depending on replication level.
NICEKV load balancing effectively spreads client requests
across servers without deploying dedicated load-balancing
boxes. The combination of these optimizations is powerful;
the NICEKV prototype can achieve up to 7� put/get perfor-
mance improvement as compared to the traditional network
oblivious approach.

Furthermore, we explored the potential of using the
recent programmable switches [21] to build a storage-aware
load balancing techniques. We implemented NICEKV-P4 a
key-value storage system using the P4 programming lan-
guage. Our evaluation shows demonstrates the flexibility of
this approach.

The rest of this paper is organized as follows. We present
an overview of the NOOB systems design, and discuss the
recent advances in software-defined networks (Section 2).
In Section 3 we present the NICE architecture, detail the
system design in Section 4, present the implementation of
the NICEKV prototype in Section 5, and present our empiri-
cal evaluation in Section 6. We discuss related work in
Section 7, and conclude in Section 8.

2 BACKGROUND AND RELATED WORK

In this section, we present an overview of a typical network-
oblivious storage systems design, and summarize the recent
advances in software-defined networks.

2.1 NOOB Storage System Design

Current distributed key-value storage systems are funda-
mentally inefficient as they are network-oblivious (NOOB):
the network is used as a black-box point-to-point communi-
cation medium without any application-informed optimiza-
tion of its operations, while storage logic and protocols are
implemented by end hosts. This NOOB approach for
designing distributed system is inefficient for storage sys-
tems as many core storage operations are, in principle, net-
work-level operations, e.g., replication or request routing.

Many NOOB storage systems adopt a design based on
consistent hashing [22]. In the original consistent-hashing
design, the object hashing space represents a circular ring,
all storage nodes are placed on the ring, and each node coor-
dinates access to the objects in its part of the ring. Pastry [23]
and Chord [18] were among the first to use consistent hash-
ing to build a scalable peer-to-peer object storage system.
They use, with high probability, Oðlog nÞ hops to route a
request, while only storing Oðlog nÞ routing information on
each node. While this approach scales well, it imposes addi-
tional latency.

To reduce the latency of request routing, prominent
NOOB storage systems adopt a full-membership model
[13], [14], [15], [16], [17], in which every node maintains
complete knowledge about all the nodes in the system and

their contents; hence, nodes can route any request directly
to the responsible node. When a node joins or fails, all the
nodes in the system need to be updated. This update hap-
pens through contacting every node and updating its infor-
mation using OðNÞ connections and messages [13], or
through an epidemic protocol entailing Oðlog nÞ steps and
over OðNÞmessages [24].

Access Mechanism. Current key-value storage systems
employ one of four techniques to route client requests to the
node maintaining the object. First is the Replica-Oblivious
Gateway (ROG), uses an off-the-shelf load balancer to for-
ward requests to randomly selected storage node. If the
selected node does not have the requested key, the node
will forward the request to the node that maintains the
object. This approach is common in current systems [14],
[16], [25] due to its ease of deployment and use of existing
load balancers. Unfortunately, as the load balancer is oblivi-
ous to the replicas’ content, it will forward the majority of
requests to a replica that does not maintain the object. Con-
sequently, for the majority of requests this approach adds
additional two hops for routing a request through the load
balancer and the randomly-selected storage node.

The second approach, is the Replica-Aware Gateway
(RAG). Similar to the previous approach, this approach
uses a load balancer, but the load balancer is aware of the
contents of each replica and can accurately forward the
request to a replica that maintains the object. Consequently,
this approach imposes one extra hop for routing a request.

Third is the Replica-Aware Client (RAC), in which clients
cache the storage IP address of previously accessed objects
[26], and use it to route subsequent requests. This approach
achieves single-hop routing as requests are directly sent
from a client to the replica storing the object. This approach
only works in deployments in which it is permissible for cli-
ents to obtain detailed data placement and replication infor-
mation. For deployments in which the clients do not have
access to storage internal information or are located behind
a NAT [27] (e.g., shared cloud storage like Amazon S3), this
approach is not viable. Finally, this approach hinders
deploying advanced load balancers as each client accesses
the replicas directly.

The fourth approach is the Replica-Aware Proxy (or proxy
for short). This approach uses a proxy node that is aware of
the replica placement to forward the request [13]. Unlike the
previous three approaches, the proxy node is on the data
path for get and put operations. The data for get operations
is sent to the proxy, which then sends it to the client.

2.2 Software-Defined Networks

The software-defined networking paradigm re-architects
the network into two planes: data and control. The data
plane is a packet-forwarding plane that uses the informa-
tion available in the switch forwarding tables to forward
packets. The control plane is a software based control logic,
typically deployed on an external server (i.e., not on the
switch). Recent technology advances enable customizing
the control and data planes.

Flexible Control Plane. The control plane enables application
to control multiple switches by modifying the rules in the
switches forwarding tables. To update a switch forwarding
table, the controller uses the OpenFlow standard API [20], a

KETTANEH ET AL.: THE NETWORK-INTEGRATED STORAGE SYSTEM 487



widely popular standard interface used to communicate
with SDN capable switches. OpenFlow [19] allows modify-
ing (i.e., inserting or deleting) the forwarding rules of a sin-
gle switch. Each forwarding entry includes a matching rule
and an action list. Matching uses wildcard matching rules
on any field in the packet standard headers, including IP
and MAC addresses, and protocol and port numbers. If a
packet matches a rule, the switch performs the actions asso-
ciated with that rule. The action list may contain multiple
actions that are performed in order. The current OpenFlow
standard defines a set of actions including packet forward-
ing to a specific switch port, packet drop, forwarding a
packet to the controller, or modifying fields in a packet.
The possible modifications include changing the source/
destination MAC/IP addresses.

For packets that do not have a matching rule, the switch
will forward the packet to the controller, which significantly
increases packet latency. To avoid this inefficient path the
switch caches the forwarding rules with a controller speci-
fied expiry period.

Limitations. While OpenFlow significantly increases the
flexibility of the network its capabilities are limited. Mainly,
its data plane is rigid and cannot be extended. OpenFlow
can only support current standard packet headers (i.e., does
not facilitate defining custom application headers), and the
actions supported are fixed and limited. Finally, current
switch that support OpenFlow only implement a subset of
OpenFlow features (detailed in Section 5).

Programmable Data Plane. To address the limitations of
OpenFlow the research community developed a newgenera-
tion of programmable switches that allow programming the
data plane. Programmable switches allow the implementa-
tion of an application-specific packet-processing data plane
that can process custom packet headers and is deployed on
network devices and executed at line speed. While this tech-
nology did not yet garner wide adoption as OpenFlow,
a number of vendors are already producing network-
programmable ASICs, including Barefoot’s Tofino [28] and
Cavium’s XPliant [29].

Fig. 1a illustrates the basic data plane architecture of mod-
ern programmable switches. The data plane contains three

main components: ingress pipelines, a traffic manager, and
egress pipelines. A packet is first processed by an ingress
pipeline before it is forwarded by the traffic manager to the
egress pipeline that will finally emit the packet.

Each pipeline is composed of multiple stages. At each
stage, one or more tables match fields in the packet header or
metadata; if a packet feild matches, the corresponding action
is executed. Programmers can define custom per-packet
headers as well as custom actions. Each stage has its own
dedicated resources, including tables and register arrays (a
memory buffer). Fig. 1b shows a simple example of a pipe-
line that routes a request to a key-value store based on the
key, and Fig. 1c shows the details of the KV routing stage in
Fig. 1b. The stage forwards the request based on the key in
the packet’s custom L4 header. The programmer implements
a forward() action that accesses the register array holding
nodes’ IP addresses. An external controller can modify the
register array and the entries in the table.

Programmers use domain-specific languages like P4 [21]
to define their own packet headers, define tables, implement
custom actions, and configure the processing graphs.

These recent advances in networking technology enable
fine-grained control of network operations and facilitate
application-optimized traffic engineering. In this paper we
explore techniques to leverage these new OpenFlow and P4
capabilities to accelerate storage systems.

3 NICE SYSTEM ARCHITECTURE

NICE leverages software-defined networking capabilities to
optimize storage system operations.We focus our attention to
leveraging the OpenFlow capabilities due to the wide adop-
tion of this technology. In Section 4 we extend our design to
leverage the capabilities of P4-programmable switches.

NICE exploits the OpenFlow flexibility and fine-grained
control [19], [20] to co-design network and storage opera-
tions. The NICE design virtualizes the storage system. The
client accesses a virtual storage system deployed on a range
of virtual IP addresses. The metadata service (detailed next)
maps the virtual storage system to the physical one. The
NICE design optimizes this mapping to achieve low-latency
routing, efficient multicasting, load-balancing, and improved
fault tolerance.

In the rest of this section, we first present the NICE archi-
tecture, then detail the two core techniques we propose:
storage virtualization, and consistency-aware fault toler-
ance. The following section details how we extend these
techniques to optimize replication, consistency, and load-
balancing mechanisms.

3.1 System Architecture

Similar to the NOOB storage, NICE uses consistent hashing
to partition the object space among the storage nodes.
Nodes are placed in a consistent hashing ring, such that
each node serves part of the ring. We call this the physical
ring. Every storage node is the primary replica for one or
more partitions, and can serve as a secondary replica for
other partitions.

The system is composed of three components (Fig. 2): stor-
age nodes, client nodes, and ametadata service, all connected
with an OpenFlow-enabled switching fabric. The storage

Fig. 1. Switch data plane.

488 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020



nodes serve put and get requests and implement the replica-
tion, consistency, and load-balancing protocols. The storage
nodes send periodic heartbeats to the metadata service.
The metadata service maintains storage system metadata.
The metadata includes information about which storage
nodes are participating in the system, and which range of the
hash space (partition) each storage node is serving. Themeta-
data service does notmaintain per-object metadata.

3.2 NICE Storage Virtualization

The first goal of virtualizing the storage system is to enable
storage-aware routing of client requests; that is, to have a
routing technique that can route a client request to the
proper storage node (i.e., routing based on the key hash
value). Building a storage-aware routing mechanism is chal-
lenging. While OpenFlow provides control over switch for-
warding decisions, it only supports matching packets using
information found in the packet headers (e.g., Ethernet, IP,
UDP or TCP), not the packet payload data. Consequently,
routing packets based on the key hash carried in the pay-
load is not possible. Alternatively, allowing the client to
know the physical-ring mapping and replica-placement
inherits the NOOB RAC limitations.

The NICE approach virtualizes the storage system; the
client accesses a virtual storage system deployed on a set of
virtual nodes (vnodes). The virtual addresses are organized in
a virtual consistent hashing ring (vring). For instance, all the
IP addresses in the range of 10.10.0.0 to 10.10.255.255 can be
virtual nodes in a vring. The number of vnodes and their
addresses are configurable and do not correspond to the
physical ring configuration. To access the system, the client
hashes the object name and finds the vnode responsible for
serving the object. The client sends the put/get request to
the vnode address using UDP.

The metadata service maps the virtual ring to the physi-
cal ring. It maps a subset of virtual addresses to a single
physical node address. While different mapping techniques
are possible, we use simple IP prefix matching: we divide
the virtual ring addresses into subgroups such that the
number of vnodes per subgroup is a power of 2 (e.g., all
vnodes in 10.10.1.0/24 form a subgroup). The metadata ser-
vice maps any packets sent to a particular subgroup to a

particular physical node. To this end, the switch will modify
the destination IP and MAC addresses in the packet head-
ers to be the IP and MAC addresses of the primary replica,
then forward the packet to the switch port of the primary
replica.

This mapping technique achieves three benefits. First, it
achieves low-latency single-hop routing, as the client requests
are directly routed in the network to the responsible node at
switching speed. Second, by decoupling the virtual ring from
the physical ring this technique simplifies deployment, as cli-
ents never need to change their virtual ring configuration,
even when the physical ring configuration changes. Finally,
this approach allows for multiple vnodes to be mapped to a
single physical node, improving performance and load bal-
ancing [18]. Compared with NOOB request routing, NICE
routing achieves the optimal routing latency of the RAC
approachwithout suffering from its limitations.

3.3 Consistency-Aware Fault Tolerance

To guarantee sequential consistency NOOB storage systems
use complex consistency protocols like two-phase (2PC),
three-phase commit [24], Paxos [30], [31], or Raft [32]. We
illustrate in Fig. 3 the put operation using the 2PC protocol,
as a representative of these protocols to simplify our discus-
sion. 2PC is among the early proposed protocols that are
still widely used [7], [33], [34], [35].

Failure handling is a main differentiating factor between
consistency protocols. The 2PC commit protocol is brittle in
face of node failures during the put operation and may
block if the primary node fails. To overcome the 2PC prob-
lems, Paxos uses a majority-based (i.e., quorum) design, in
which at least the majority (but not all) of the nodes need to
participate in the put operation. The drawback of this
approach is that failed nodes (or disconnected nodes) may
have stale data when they join back; consequently, it is nec-
essary to access the majority of the nodes during the get
operation as well to guaranty consistency. This approach

Fig. 2. System architecture. The client sends the requests using two vir-
tual rings (vrings). The requests are rerouted in the network to the
responsible storage node. The metadata service receives heartbeats
from the nodes and maintains the mapping information in the forwarding
tables.

Fig. 3. Put protocol alternatives. The figure shows (a) the primary-
backup and (b) the 2PC put protocols. In the primary-backup design
(solid arrows) the primary replica serves all put and get request. In the
two-phase commit (2PC) design (dashed arrows), two rounds are
needed to guarantee consistency.

KETTANEH ET AL.: THE NETWORK-INTEGRATED STORAGE SYSTEM 489



creates unnecessary high overhead during get operations.
An alternative approach is to send get requests only to the
primary (a.k.a. leader) node (e.g., Raft). Unfortunately, this
approach does not scale because all put and get requests are
served by a single node.

We propose a consistency-aware fault tolerance mecha-
nism. This mechanism solves the inefficiency problem found
in current protocols by allowing any storage node with con-
sistent data to serve get requests. The mechanism hides
inconsistent nodes, including failed and newly joining nodes,
until they have a consistent version of the data. To this end,
when a node fails it is removed from the switch mapping,
rendering the node inaccessible from the client’s point of
view. When a node restarts, it joins the system in two phases.
First, it is made accessible to other storage nodes and to client
put requests only. During this phase the rejoining node will
receive new objects and will fetch consistent versions of the
objects that have been changed while the node was offline.
Second, when the node has consistent data, it is made accessi-
ble for clients’ get requests. This approach simplifies building
consistency protocols (as we will see next) by guaranteeing
that clients can only access consistent nodes.

4 SYSTEM DESIGN

In this section we first detail the design of system metadata
service, then we extend the core techniques of NICE to build
an efficient replication mechanism, improve the consistency
protocol efficiency, and provide in-network load balancing.

4.1 Metadata Service Design

The metadata service is the only component that maintains
the system membership and metadata, i.e., it has complete
knowledge of all storage nodes in the system and the physi-
cal ring partitions they serve. The metadata service is com-
posed of two modules: the membership module and the
SDN controller. The membership module monitors storage
nodes via heartbeats and detects membership changes (joins
and failures), while the SDN controller controls the Open-
Flow switches and updates the forwarding tables on mem-
bership changes. The SDN controller implements a layer 3
learning switch; it learns which storage node is connected
to which switch port and uses this information to build uni-
cast and multicasting forwarding rules.

Storage nodes maintain partial membership information
related to the ring partitions of which they are part. Every
node only knows the secondary replicas for the partition it
is the primary replica for, and knows the primary replicas
of every partition it is serving as a secondary replica; result-
ing in only OðRÞ information maintained at every node
where R is the replication level.

When a node fails, the metadata service selects a handoff
node to serve in lieu of the failing node (we detail the fault
tolerance mechanism later). The metadata service updates
the switch forwarding rules to correctly route requests des-
tined to the failed node to the selected handoff node. The
metadata service also informs the affected replicas of the
membership change.

On a node join, the metadata service selects which ring
partitions the new node will serve as a primary or secondary.
Similar to handling failures, the metadata service updates the
switch and informs the affected replicas of the change.

This membership maintenance design is scalable in terms
of number of storage nodes. Themembership service need to
maintain switches forwarding tables which requires OðSÞ,
where S is the number of switches in the platform, and OðRÞ
messages to inform the affected replicas of the membership
change. Note that each storage node only knows about the
replicas it shares data with (which is OðRÞ of nodes). R, the
replication level (typically 3 or 5), is independent of the total
number of nodes.

Themetadata server is logically centralized.While our sys-
tem prototype uses a central metadata service, it can adopt
known techniques for building a highly reliable distributed
metadata services, including partitioning the key space
among metadata service replicas, or having a hot standby
replica. We are currently exploring the latter approach.
Three workload characteristics make having a metadata hot
standby: the stored metadata is small, changes to metadata
are infrequent, and the load on the metadata service is low as
it ismainly invoked on node or network failures.

4.2 Replication

Storage systems should not lose data when a node fails. The
main data reliability approach adopted by the majority of
NOOB storage systems is replication [13], [14], [15], [16],
[17], [36] (with the other popular technique being erasure
coding).

Challenge. On a put request, a single node (known as the
primary replica or the coordinator) replicates the new object
on R� 1 storage nodes through R� 1 unicast TCP connec-
tions, enabling the system to tolerate R� 1 replica failures
without losing data.

This approach, in principle, is network non-optimal as
the same data will traverse some links multiple times, espe-
cially those close to the node replicating the object. Further,
this approach creates a high load on the node replicating
the object as it needs to send/receive R copies of the data on
every put.

To alleviate the load on the replicating node Renesse
et. al. proposed chain replication [37]. In chain replication,
nodes are organized in chains, and each node replicates the
new object to the next node in the chain until the required
number of replicas is created. While this approach may dis-
tribute the replication load across the nodes, it significantly
increases the operation latency, and is equally network non-
optimal, as it generates an equivalent amount of network
traffic.

NICE Design. NICE builds network- and storage-optimal
replication mechanism by leveraging network-level multi-
casting. The consistency mechanism discussed next requires
to precisely identify and control which nodes are part of a
given multicast group. While one may consider using tradi-
tional IP-multicasting, the fact that it requires every node to
separately join/leave any multicast group makes it signifi-
cantly harder (if not impossible) to build and maintain hun-
dreds of multicast groups in face of node join and failure
and to precisely identify when a particular multicast group
has converged. OpenFlow helps solve these issues by allow-
ing direct and centralized control of all groups.

NICE design divides storage nodes into overlapping rep-
lica sets; every physical node is, typically, a primary replica
in one replica set and a secondary replica in R� 1 other sets.

490 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020



To realize single-hop replication, NICE storage follows
the virtual-storage approach discussed earlier. The client
has two virtual rings: a unicast ring (discussed in the previ-
ous subsection) and a multicast ring. Each ring uses a sepa-
rate IP address range (e.g., 10.10.0.0/16 for the unicast
vring, and 10.11.0.0/16 for the multicast vring). As the
name indicates, messages sent to an address in the multicast
ring are multicasted to all replicas of an object, while the
messages using the unicast ring are sent to one replica (the
primary replica unless load balancing is used). The multi-
cast ring is only used to send the put request and data.

Similar to the unicast vring, the multicast vring is
divided into subgroups with each subgroup mapped to a
replication set. For any packet targeting a virtual multicast
address, the switch will modify the destination IP address
to be the IP multicast address of the target replication set,
and forward the packet to all the switch ports of the target
replicas.

The proposed replication mechanism is optimal: first, it
uses a single hop to route the put request; second, it uses
optimal network paths for data replication (considering
data center tree topology, the optimal path is equivalent to
link-layer multicasting paths); third, it offloads the replica-
tion overhead from the primary replica to the network
switch, achieving high performance and scalability. This
approach is also optimal in terms of storage node load as
each storage node only receives the data once. Finally, this
replication approach is load balanced by design; the pri-
mary and secondary replicas send/receive almost an equal
amount of data.

4.3 Consistency Mechanism

Sequentially consistent storage systems should guarantee
data consistency across replicas, even when nodes fail or
are disconnected and later join back with inconsistent data.

NOOB consistency protocols either face the possibility of
blocking on node failure, require getting the object from the
majority of nodes to resolve data inconsistency, or send all
requests to a single node.

NICE proposes a consistency-aware fault tolerance mech-
anism. Here we demonstrate howNICE uses thismechanism

to improve 2PC fault tolerance. The NICE-2PC mechanism
(shown in Fig. 4) follows the 2PC protocol design with two
main differences. First, it leverages multicast-based replica-
tion to offload replication to the network, leading to load bal-
anced and efficiently replication. Second, it improves the 2PC
fault tolerance without requiring quorum-like protocols.

During the put operation, the client request is multi-
casted by the switch to all of the replicas. Upon receiving a
complete object, the secondary replicas lock the object, log
the operation, and acknowledge the operation to the pri-
mary replica. The primary replica, upon receiving an
acknowledgment from all secondary replicas, generates a
time stamp and multicasts the time stamp to all replicas.
The timestamp contains the following quadruplet: primary
address, primary timestamp, client address, and client time-
stamp. The timestamp creates an order between put opera-
tions to the same object, even between retrials of the put
operation by the same client. The secondary replicas store
the object to persistent storage following the timestamps
order, release the lock, and acknowledge the end of the
operation to the primary replica, which in turn acknowl-
edges the operation to the client. We detail the fault toler-
ance mechanism next.

Get operations can be served by any replica. To avoid
inconsistency, replicas lock operation during the put opera-
tion and only release the lock when the primary informs all
nodes that the put operation completed successfully. Fig. 4
show the blocking period in which read requests are
queued until the concurrent put operation completes.

4.4 Fault Tolerance

Failure Model. NICE follows the failure model assumed by
current NOOB systems: node failures are assumed to be
transient, with permanent failures being handled by admin-
istrator intervention [13], [14], [16]. At the end of this section
we discuss the procedure for adding and removing nodes
from NICE. Consequently, when a node fails or is discon-
nected, the system does not automatically replicate the
objects stored on that node, as these objects are still durably
fully replicated.

Failure Detection. NICE adopts two techniques for detect-
ing node failure: heartbeats and notifications from other
nodes. The metadata service will declare the node failed if it
misses three heartbeats from the node, or if a node reports
to the metadata service that another node is irresponsive
(e.g., if a node time-outs twice while waiting for a reply
from a particular node in the 2PC protocol). Node failure
causes two main problems: First, when a failing node recov-
ers/rejoins, it often contains old (inconsistent) versions of
the objects, if any of the stored objects have changed while
the node was offline/disconnected. Second, newly stored
objects will be under-replicated. Next we discuss how we
handle these problems.

Failure Hiding. To handle the inconsistency problem of
the failing nodes, on failure detection, the metadata service
removes the failing node from the switch unicast and multi-
cast vring mappings and informs the affected replicas. This
effectively renders the node non-existent from the client
point of view. When the node recovers, the switch map-
pings are updated only after the node is deemed consistent,
as we will see next.

Fig. 4. Consistency Mechanism. Timeline of the message sent in put
operation in NICE storage. The switch performs modify and forward
(MþF) for client packets to map the virtual address to the multicast
group. (þL) is when a node logs the operation. (-L) is when the log entry
is deleted. (W) is when the node writes the new object to the persistent
storage. Gray boxes denote forced writes, and bold arrows denote multi-
casting. Object locks are only maintained in memory.

KETTANEH ET AL.: THE NETWORK-INTEGRATED STORAGE SYSTEM 491



Maintaining Replication Level during Temporary Failures.
When a node failure is detected the metadata service selects
a handoff node to serve as a secondary replica in the hash
region of the failing node [16]. Any storage node in the sys-
tem that is not already part of the effected replication set
can serve as a handoff node. The handoff node temporarily
serves the object range until the failing node comes back. To
simplify recovery, the handoff node stores the newly stored
objects in a separate directory. If the handoff node receives
a get request for an old object that it does not have, the
handoff node will forward the request to the primary repli-
cas. After selecting the handoff node, the metadata service
updates the switch forwarding tables for both virtual rings
and informs the affected replicas. When the original node
comes back, it will discover the handoff node through con-
tacting the metadata service and retrieve all the new objects.
Primary node failure is discussed below. The system can
handle multiple failures as long as at least one node in every
region is an original node (not a handoff node) in the region.

Node Recovery. When a node recovers from failure, it con-
tacts the metadata service to rejoin the system. Rejoining the
system takes three steps: First, the metadata service adds
the rejoining node to the multicast vring mapping, and the
node will start receiving put requests. Second, the recover-
ing node contacts the primary node to get all updates
received during its downtime. Finally, the node informs the
metadata service that it has consistent data. The metadata
service will add the node to the unicast vring mapping,
making the node available to get requests, and inform the
affected replicas.

Failures during Put Operation. If a node fails during a put
operation the operation will fail and the client will retry.

If a secondary node fails during a put operation (i.e.,
before sending the last ack to the primary replica in Fig. 4),
the primary node will detect the failure through missing
either of the two ack messages from the node. The primary
node will abort the operation and inform the client. The pri-
mary node will also inform the metadata service of the fail-
ure, starting the process for hiding the failure as detailed
above.

If the primary node fails before sending the final
acknowledgment to the client, the client will time-out and
retry the operation. If the primary node fails before sending
the “timestamp” message in the 2PC protocol in Fig. 4, the
secondary nodes will detect the failure by timing out and
will inform the metadata service starting the failure-han-
dling process detailed above. When a primary node fails,
the metadata service selects one of the secondary nodes to
act as a primary node. The new primary will contact the sec-
ondary nodes to identify all the objects that are locked on
any secondary node. If an object is locked on any node, this
means that node did not receive the timestamp message
from the old primary. For locked objects, the primary does
the following: if the object is committed on any secondary
node, then this means the object was committed by the old
primary. The primary will commit and unlock the object. If
an object is locked on all secondary nodes, then the new pri-
mary will abort the operation. In case of a complete cluster
failure, in which all in-memory locks are lost, the persistent
logs on the nodes will identify the latest put operations. The
new primary will check them all using the rules above.

Ring Re-Configuration. Occasionally, administrators may
need to reconfigure the system to add or remove nodes. To
permanently remove a node, the administrator updates the
system configuration and informs the metadata of the node
removal. The metadata removes all the forwarding rules
related to the removed node, and updates all the effected
replicas of the membership change. The metadata service
handles adding a new node in a similar way to a re-joining
a node after a temporary failure. The metadata updates the
forwarding rules to add the new node to put vring and
informs the other replicas of the change in the membership.
Then, the new node contacts the primary replica to retrieve
all keys stored in the hash range. Once the new node has
consistent data the metadata service adds the node to the
get vring making it available for serving get requests.

4.5 Load Balancing

While consistent hashing distributes the objects evenly
across storage nodes, objects’ popularity rarely follows a
uniform distribution, leading to a skewed distribution in
which a subset of objects is highly popular [38], [39]. In this
case, storage systems use load balancing to distribute the
get/put load on all the replicas of a given object.

Challenge. Current systems deploy a load-balancing node
as a gateway to forward client requests using the ROG or
RAG approach (x2). This deployment adds additional latency
and requires provisioning load-balancers to avoid creating a
system bottleneck. Latency-sensitive systems eschew load
balancing and adopt the primary-backup design [26], [40].
Alternatively, if a weaker consistency is an option, a client-
side load balancing can be adopted (e.g., the client can ran-
domly pick one of the replicas).

NICE Design. The NICE metadata service implements a
workload-informed consistency- and replica-aware load
balancer. Unlike the NOOB storage design, our multicast-
based put operations are load balanced by design; conse-
quently, our load-balancing technique focuses only on get
requests. While previous effort explored SDN-based load
balancing [41], [42] our approach advances the previous
approaches by using the storage metadata to build consis-
tency- and replica-aware load balancer.

To performworkload-informed load-balancing, the meta-
data service collects periodic workload statistics. The statis-
tics include the range of client IP addresses accessing each
partition, and the size of the request queue. The statistics are
piggybacked on the periodic heartbeats nodes send to the
metadata service.

The metadata service divides the client address space
into R divisions, such that each division size is a power of 2.
Requests coming from each division will be forwarded to a
different replica. The metadata service alters the switch for-
warding rules to match both the packet source and destina-
tion IP addresses. The destination IP determines which
physical ring partition the request is targeting, while the
source IP determines which replica to forward the request
to. For requests coming from IP addresses that are not
covered by these divisions, the metadata service forwards
them to the primary replica. When an administrator adds
a new node to a replica set the metadata server reparations
the client address space to utilize the new replica for get
requests.

492 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020



Compared with NOOB load balancing, NICE builds an
in-network load balancing without increasing the latency or
deploying extra resources.

This approach increases the number of forwarding
entries per partition of the unicast vring from 1 to R entries,
each forwarding a subset of client requests to one of the
replicas.

This load balancing approach is coarse grained as it
assigns clients to replicas without accounting for differences
in client request rate. A few clients with high request rate
can imbalance the load across replicas. In Section 4.5 we
present a solution to this shortcoming.

4.6 Switch Scalability

The proposed approach can scale to support large storage
systems. Without load balancing, each physical partition
requires one entry in the switch forwarding table for the
unicast vring mapping and one entry for the multicast vring
mapping. This leads to a total of 2N entries in the forward-
ing table. Where N is the number of storage nodes. If load
balancing is enabled, it uses R entries per partition (Where
R is the replication level), leading to a total of ðRþ 1ÞN
entries. Current switches include forwarding tables that can
support 128K forwarding rules or more which makes them
capable of supporting storage systems with 64K storage
nodes without load balancing. With load balancing enabled
and with a replication level of 3 they can support up to 32K
storage nodes.

4.7 Leveraging Programmable Switches

To make NICE design deployable on current commodity
switches, we constrained the design to only use the capabili-
ties of current OpenFlow standard. Unfortunately, Open-
Flow limitations restricted some design decisions in NICE.
In particular, NICE load balancing design is brittle in face of
skewed workloads or heterogeneous infrastructure. The
NICE load balancing technique (Section 4.5) partitions the
clients into R groups and assigns a subset of clients to each
replica. This approach is not efficient if clients vary in their
level of activity. If a small set of clients generate most of the
load, a typical scenario in many applications (e.g., active
tweeter users), the load will be skewed across replicas. Simi-
larly, if the replicas are deployed on heterogeneous hard-
ware, assigning equal load on all replicas is inefficient.

To address this challenge we implemented a flexible load
balancer using the P4 programming language. The load
balancer implements weighted load balancing techniques
in which the controller assigns weights to replicas and

configures the switch to distributed the load following these
weights.

Following this approach, we changed the NICE design to
use the P4 capabilities. The new design is identical to the
OpenFlow design with the exception of leveraging the P4
capabilities to implement the weighted load balancing
technique.

P4-based Load Balancing Design. Fig. 5 shows the design of
the load balancing stage. Every packet will be processed
using the action in the load balancing table. The table has a
single entry and a single action. The action randomly selects
a number. The selected number is then used as an index to
the IP addresses table.

To implemented the weighted load balancing technique,
replicas report the length of the request queue in a periodic
heartbeat. Every second, the controller calculates the aver-
age queue length for each replica and assigns proportional
weights to each replica. The leader updates the list of ran-
dom number in the load balancing table to reflect these
weights. For instance, if replica 1 should receive double the
load of any other replica, the action in Fig. 5 will be rand(1,
1, 2, 3), doubling the chance replica 1 is selected.

5 IMPLEMENTATION DETAILS

We implemented the NICEKV prototype following the
NICE design. NICEKV is implemented in 14K lines of
Cþþ code. The controller is implemented using 1K lines of
python using the Ryu framework [43].

The rest of the section discusses implementation details
of the network centric operations, and summarizes our
experience with the state-of-the-art switches.

Clients. NICEKV is accessed through a client library with
a simple interface for read, write, and delete operations.
Read (get) and write (put) operations read or write entire
objects. The library computes the hash of the requested key
and maps it to the virtual IP address, then it will send the
request to that virtual IP address.

Mapping Service. The SDN controller implements a layer 3
learning switch. If the controller receives a packet destined
to a not-yet-seen IP address, the controller will check if the
address is a vnode address and update the switch to map the
address to its physical counterpart, else the controller will
buffer the packet and broadcast an ARP request for the
unknown address. On receiving an ARP reply, the controller
will update the forwarding tables and forward the buffered
packets. The controller keeps a list of recently ARPed
addressed to avoid flooding the networkwith ARP requests.

Request Routing. We use UDP to send client requests and
TCP for all other communications, i.e., the client sends the
put/get request to the vnode IP address using UDP and
waits for the reply on a client-side TCP socket. This design
decision allows mapping multiple vnode addresses to a sin-
gle physical address without worrying about handling the
reverse mapping required for TCP, i.e., mapping the physi-
cal node address to multiple vnodes. Further, UDP is
required for IP multicasting.

Replication. For large objects, replication requires a reliable
transport for data dissemination. NICEKV builds a simple
reliable UDP-basedmulticast transport layer that uses primi-
tive flow and congestion control techniques. Data is divided
into multiple chunks, each less than a single network MTU

Fig. 5. Logical view of the load balancing logic. The load balancing entry
generates an index of the selected destination’s IP address. Using the
index, the IP address table sets the destination’s IP address.

KETTANEH ET AL.: THE NETWORK-INTEGRATED STORAGE SYSTEM 493



(1400 bytes). The protocol uses NACKs to inform the client of
missing packets, and the client sends the missing packets
using a unicast connection. ACKs are used for flow control.

We implemented a version of the reliable multicast proto-
col for quorum protocols. We optimized the quorum imple-
mentation by pushing the quorum design down to the
multicast transport layer. To this end, we designed a reliable
any-k multicasting protocol. For flow control, the protocol
tracks a window of transmitted packets and advances the
window when any k of the recipients acknowledges receiv-
ing the packets. The protocol returnswhen any k of the nodes
fully receives the data. After returning, the protocol keeps
supporting straggling nodes until they finish or timeout.

P4 Implementation. We implemented NICEKV-P4, a ver-
sion of NICEKV with a P4 network protocol implementa-
tion. The switch data plane is written in P4 v14 [21], [44]
and is compiled for Barefoot’s Tofino ASIC [28], with Bare-
foot’s P4Studio software suite [45]. Our P4 code uses less
than 5 percent of the on-chip memory available in the
Tofino ASIC, leaving ample resources to support other
switch functionalities.

5.1 Deployment Experience

We experimented with three testbeds that are provisioned
with three models of switches. Unfortunately, we found
that the current switches lag in terms of the supported
OpenFlow features. All switches supported only a subset of
the OpenFlow standard. Efficiently modifying packet head-
ers, in particular, was rarely supported. Only one switch
supported this feature, but in software, resulting in three
orders of magnitude slower switching speed if the switch is
tasked with modifying a field in the header.

The CloudLab [46] Utah cluster, which we use, uses Com-
ware switches which supports a subset of OpenFlow fea-
tures; in particular, it supports forwarding the packets to
multicast addresses but does not support modifying the
packet IP destination address. Modifying the packet IP desti-
nation addresses is necessary for mapping virtual addresses
to physical addresses.

To address this challenge, we deployed Open vSwitch [47]
on every client machine. Open vSwitch is a software-based
OpenFlow-enabled virtual switch. Further, we extended the
NICEKV SDN controller to control multiple switches (i.e.,
multiple Open vSwitches and a single hardware switch). The
controller installs the rules to modify packet headers (map-
ping virtual to physical addresses) on the client side Open
vSwitches, and installs forwarding and multicasting rules on
the hardware switch. Our evaluation shows that our new

deployment leads to less than 4 percent performance loss
compared to the same deployment without using Open
vSwitch.

6 EVALUATION

We evaluated NICE using synthetic as well as real world
benchmarks using the Yahoo YCSB benchmark [39]. We
empirically compare NICE with three object storage sys-
tems: Ceph [12], OpenStack Swift [13], and NOOB, our in-
house key-value systems. We choose Ceph and Swift as
these are production-quality widely-used NOOB storage
systems, the NOOB prototype allows us to compare NICE
with range of NOOB designs and configurations. We com-
pared the performance of quorum based design. The results
of those experiments are available here [48].

Ceph. Ceph adopts a primary-backup approach in which
all client put and get operations are received and processed
by the primary replica. Clients send their put requests
directly to the primary, which replicates the data, then
replies to the clients. The primary does not serve concurrent
put or get requests until the current put operation completes.

OpenStack Swift. Swift adopts a proxy-based design; cli-
ent put and get requests are sent to a proxy node, that sends
the request to the responsible storage node, then the proxy
replies to the client. The proxy node is on the data path for
both put and get operations.

NOOB prototype is a highly configurable storage system
that implements three common access mechanisms, and
two replication techniques. NOOB facilitates comparing
NICE with wider design choices. The NOOB system imple-
ments the three common access mechanisms: RAC with cli-
ent side caching, RAG with a replica-aware load balancer,
and ROG with a randomized load balancer. Furthermore,
NOOB prototype implements two replication/consistency
mechanisms: two-phase commit (2PC) and primary-backup.
The NOOB prototype allows us to compare NICE with
range of NOOB designs and configurations.

Platform. We use a cluster of 30 nodes on the CloudLab
[46] Utah site. Each node has an 8-core ARMv8 2.4 GHz pro-
cessor, 64GB memory, 120GB SATA3Micron SSD disk and 1
Gbps NIC. The nodes are connected to an OpenFlow
enabled switch that supports OpenFlow 1.3.1. While the
evaluation uses a single hardware switch the controlled
switching topology (including Open vSwitches software
switches) is much more complex. Further, NICE can readily
support multi-switch platforms, as the controller will install
the same rules on all participating switches.

Deployment Configuration. Unless otherwise specified, we
deploy the systems on 16 nodes (one mapping node and 15
storage nodes), 14 nodes for clients and load balancers, and
configure the system with replication level of 3.

6.1 Request Routing Evaluation

We evaluate the performance of request routing in four sys-
tems: NICE, Ceph, Swift, and NOOB storage prototype. For
NOOB storage we evaluate three configurations: ROG,
RAG, and RAC. The workload used consists of get-only
requests issued by a single client. The object size varies
from 4 bytes to 1MB. Fig. 6 shows the average of 1000 get
operations.

Fig. 6. Request Routing Performance. The average time of the get oper-
ation. Note the log scaled y-axis. The lines for NICE, Ceph, and NOOB-
RAC overlap.

494 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020



Fig. 6 compares the performance of the four systems. Sys-
tems that use a single-hop request routing (i.e., direct access
from client to the primary replica of an object), including
NICE, Ceph, and NOOBþRAC, achieve the lowest latency
and have comparable performance. For object sizes less
than 64KBs NICE, Ceph, and NOOBþRAC systems achieve
1:5� performance improvement compared to NOOBþRAG,
and 2� improvement compared to NOOBþROG. This
improvement is due to eliminating the request routing
delay imposed by RAC and RAG designs. Swift achieves
the lowest performance: NICE achieves over 30� improve-
ment compared with Swift. The benefits are not as pro-
nounced with large data sizes, as transfer time dominates.
Nevertheless, Swift performance lags (by over 2:5�) even
with large data sizes. The main reason for Swift low perfor-
mance is that Swift completely hides storage nodes, and cli-
ents only interact with the proxy nodes. Consequently, to
serve a get request to a client, instead of sending the get
response directly from a storage node to the client, Swift
transfers data from storage nodes, to proxy nodes, then to
clients, which introduced additional latency, increases sys-
tem load, and reduced throughput.

6.2 Replication Evaluation

We evaluate the performance of the replication mechanism
and compare it across the four systems: NICE, Ceph, Swift,
and NOOB with primary-backup design. We evaluate the
three request routing mechanisms in NOOB: ROG, RAG,
and RAC. We compare these systems in terms of replication
time, network load, and ratio of load of the primary replica
to the secondary replicas. The workload used consists of
put-only requests issued by a single client. The object size
varies from 4 bytes to 1MB. Fig. 6 shows the average of 1000
get operations.

Replication time. Fig. 7 compares the replication time of all
evaluated systems. The results show that NICE achieves the

best performance across object sizes. NICE achieves: up to
4:3� compared to NOOBþROG, up to 3:4� compared to
NOOBþRAG, up to 2:6� compared to NOOBþRAC, up
to 2:6� compared to Ceph, and over 40� compared to Swift
which uses the Replica-aware proxy design. NICE achieves
this significant performance improvement by using optimal
multicast-based replication and through eliminating request
routing overhead using single-hop routing.

Network Load. We evaluated the network load generated
by the put operation on all tested systems (Fig. 8). We mea-
sure the network load as the total amount of data trans-
ferred on every link in the network (i.e., a 1KB bject
traversing two links count as 2KB of network load). NICE
significantly reduces the network load compared to the
other systems. This improvement holds regardless of object
size. NICE generates between 1:7� to 3:5� less network
load compared to the other systems.

Storage Load Ratio. We evaluate the load imbalance
between the storage nodes as the ratio between the amount
of data processed (sent or received) by the primary replica
to the amount of data processed by the secondary replicas
(Fig. 9). Fig. 9 shows that NICE load balances the workload
between the primary and secondary with both achieving
the optimal load of 1 (i.e., receiving the object once only).
Ceph and all NOOB configurations impose 3� more work
on the primary than on the secondary (this load imbalance
is proportional to the replication level). In Swift, the proxy
node has 4�more load than any other replica.

6.3 Consistency Mechanism Evaluation

Storage systems may replicate an object to meet high
demand. We evaluate the put operation efficacy while
varying the replication level. We evaluate NICE, Ceph,
Swift, and the best configuration for NOOB system,
namely NOOBþRAC. We evaluate two configurations for
NOOBþRAC: primary-backup and 2PC. The evaluation
uses small 4-byte objects and large 1MB objects.

With 4-byte objects (Fig. 10) NICE achieves the highest
performance: up to 1:3� better performance than NOOB-
2PC. NICE achieves comparable performance to NOOB
primary-backup replication. Although NICE has an extra
phase of communication compared to the primary only
design, its use multicast-based replication reduces the data
transfer time and eliminates the overhead of creating 8 TCP
connections. We note that the performance of all systems
degrades with higher replication levels, due to the increased
overhead of the consistency protocol that dominates small
object performance. The primary-backup design achieves

Fig. 7. Replication Performance. The average time of the put operation.
Note the log scaled y-axis.

Fig. 8. Network Link Load. The total network link load of the put
operation.

Fig. 9. Storage Load Ratio. The ratio of the primary replica (or proxy
node in case of Swift) to secondary replica load in terms of amount of
data sent/received during the put operation.

KETTANEH ET AL.: THE NETWORK-INTEGRATED STORAGE SYSTEM 495



better performance than NOOB-2PC due to 2PC protocol
overheads.

Fig. 11 shows the put operation time with 1MB objects.
NICE achieves up to 5:5� better performance than NOOB
systems. The primary-backup and 2PC achieve comparable
performance since, with large objects; performance is domi-
nated by replication cost. While NOOB performance
degrades considerably: by 7� when increasing the replica-
tion from 1 to 9, NICE performance degrades slightly when
increasing the replication level (by 17 percent when increas-
ing the replication from 1 to 9).

NICE achieves up to 5� and 23� performance gain with
4-byte objects and up 5� and 6:5� with 1MB objects com-
pared to Ceph and Swift, respectively. This is mainly due to
the use of inefficient replication and due to the added over-
head of the proxy nodes on the data path in Swift.

6.4 Load Balancing

To evaluate systems ability to load balance requests across
replicas of the same object we designed a weak scaling
experiment: we test the systems while increasing the num-
ber of replicas and proportionally increase the load (i.e., the
number of clients). The experiment measures systems abil-
ity to efficiency utilize the added resources to serve propor-
tionally equivalent load. We evaluate the performance of
NICE, Ceph, Swift, and two NOOB storage configurations:
primary-backup and 2PC. The experiment measures the
systems performance when serving highly-popular fre-
quently-updated objects. In each configuration 1 client puts
a shared object 1000 times, while R� 1 clients each gets the
shared object 1000 times.

We ran the experiment with 4-byte (Fig. 13) and 1MB
(Fig. 14) objects. The results show that NICE achieves higher
performance than NOOB, Ceph and Swift under all replica-
tion levels. NICE achieves up to 7:5� better than the pri-
mary-backup configuration, and up to 5:5� better than the
2PC configuration in both object sizes.

To understand the impact of contention between put and
get requests we compare the results to get-only workload.
The dark line markers on the bars in Figs. 12 and 13 show
the performance of R� 1 clients issuing get operations
without any put operation. The figures show that NICE and
2PC are able to load balance the get requests across replicas,
while the primary-backup design performance degrades
with the increased workload as no load balancing is used.
Comparing the black marker to the top of the bar shows the
added overhead due to the contention of the put and get
requests. The figure shows that data consistency mechanism
adds significant overhead to NOOB systems.

Figs. 12 and 13 show that NOOB storage system perfor-
mance degrades considerably when increasing the replica-
tion level and the number of clients. NOOB primary-
backup performance degrades by 10� with small objects
and 3:5� with 1MB object, and the 2PC configuration
degrades by 2:6� with both sizes. This indicates that NOOB

Fig. 11. Consistency Mechanism Performance with 1MB objects while
varying the replication level. Error bars represent standard deviation.

Fig. 10. Consistency Mechanism Performance with 4-byte objects while
varying the replication level. Error bars represent standard deviation.
For clarity we truncate the figure to 5ms. Switft completes the workload
in 24ms with 1 replica and in 47ms with 9 replicas.

Fig. 13. Load balancing evaluation with 1MB objects. The systems per-
formance under the load balancing workload while varying the replica-
tion level and number of clients. Bold markers show the performance of
the get-only workload. Error bars represent standard deviation.

Fig. 12. Load balancing evaluation with 4-byte objects. The systems per-
formance under the load balancing workload while varying the replica-
tion level and number of clients. Bold markers show the performance of
the get-only workload. Error bars represent standard deviation. For clar-
ity, we truncate Swift bars, Swift finishes in 35ms with 3 replicas, and in
70ms with 9 replicas.

496 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020



design is not weakly scalable and generates high overhead
under heavy demand. NOOB is unable to meet the increas-
ing demand despite the proportional increase in the allo-
cated resources. Significant replication costs (dominant in
large objects) and consistency-protocol overhead (dominant
in small object) are the reason why. NICE storage perfor-
mance degrades slightly when increasing the replication
level and the number of clients (only by 20 percent with
1MB objects and by 80 percent with 4-byte objects).

6.5 Fault Tolerance Evaluation

This experiment demonstrates the system fault tolerance
mechanism. The experiment fails and recovers a replica
while the system is consistently being accessed by three cli-
ents. The clients generate a continues stream of put and get
requests with a ratio of 20/80 of put/get requests and with
a key size of 1KB. All objects are in the same partition.

Fig. 14 shows the number of put and get requests served
per second. At the 30s mark, a secondary replica (node 2)
fails. The following put operation will fail and the primary
node will detect the replica failure. The primary node will
inform the metadata service. The metadata service executes
the fault tolerance steps: it removes the failed node from the
switch mappings and adds the handoff node to the replica
set. This process takes less than 2 seconds during this pro-
cess the partition is unavailable for put operations (Fig. 14
second 31). Client put requests during this period will fail
and the client will retry after waiting for 2 seconds, in which
case the operations will succeed. We are working on short-
ening this down time through allowing put operations to
succeed even if one node fails (i.e., having R-1 replicas) and
by creating, in the background, one more replica on the
handoff node when it joins the replica set.

For get operations, the client selects, in a uniform random
fashion, one of the recently put objects to get. When the
handoff node starts serving client requests (second 31), it
does not have any of the requested objects. In this case, it
forwards all get requests to the primary replica. As more
objects are stored at the handoff node less get requests are
forwarded to the primary node.

At 90s mark, the failed node joins back, and starts retriev-
ing the objects it missed. This is represented by the spike in
put requests (and get requests at the handoff node). At the
95 second mark the returning node completes its recovery

and has a consistent set of objects, the metadata service
adds the node to the unicast switch mapping and removes
the handoff node.

6.6 Real Workload Evaluation

We evaluate NICE and NOOB systems under real applica-
tion workload generated using the Yahoo cloud serving
benchmark (YCSB) [39]. We use two workloads from the
YCSB benchmark suit: a read-only workload (YCSB-C) and
the read-modify-write workload (YCSB-F) with 50 percent
put requests. As in the majority of the Yahoo workloads,
these two have a zipf popularity distribution.

We evaluate NICE and NOOB with primary-backup and
2PC configuration. The workload used consists of 10 clients
each generating 20K requests generated using the YCSB
workload discussed earlier. We use the default YCSB object
size of 1KB.

The experiment results (Fig. 15) shows that NICE achieves
the best performanceunder the twoworkloads.NICE achieves
1:6� and 2:3� better than primary-backup configuration
under workload C and F, respectively. This improvement is
due to the lack of load balancing in the primary-backup config-
uration. Compared with 2PC configuration, NICE achieves
1:25� and 1:5� better performance under workload C and F,
respectively. 2PC configurations lags NICE due to the added
latency by the load balancer (using the RAG request routing)
and consistency-protocol overhead.

6.7 Evaluation with the Programmable Switch

We empirically compare two load balancing approaches:
client partitioning (CP) which partitions the clients among
replicas based on their IP address. This is the approach
implemented in the OpenFlow-based NICEKV), and
weighted replica (WR) in which the controller sets a weight
for each replica and the switch assignments load to replicas
proportional to it weight. This is the technique implemented
in the P4-based implementation.

For these experiments we used a different cluster with a
P4-programmable switch and 13 nodes. Each node has an
Intel Xeon Silver 10-core CPU, 48GB of RAM, and 100Gbps
Mellanox NIC. The nodes are connected to an Edgecore
Wedge 100� 32BF switch with 32 100Gbps ports. The switch
has Barefoot’s Tofino ASIC, which is P4 programmable. In all
of our experiments, three machines ran the server code, while
the other 10 machines generated the workload. Each client

Fig. 14. Fault Tolerance Evaluation. Secondary node 2 fails at 30s mark,
triggering the fault tolerance mechanism, and 90s the node recovers,
retrieves the missed objects from the handoff node, and starts serving
client requests.

Fig. 15. Yahoo Benchmark Evaluation. The three systems performance
under two Yahoo benchmarks: read-only (C), and read-modify-write (F).
Error bars represent standard deviation.

KETTANEH ET AL.: THE NETWORK-INTEGRATED STORAGE SYSTEM 497



node is running 100 client threads. Each thread is generating
read requests following the read-only YCSB workload C
benchmark. The key size is 24 bytes and the value is 1KB.

To demonstrate the flexibility of the P4 based load bal-
ancing we compared the operation latency under two
scenarios.

Scenario I: skewed client workload. A workload in which cli-
ents vary in the amount of requests they generate.

In this experiment the first 3 out of the 10 client nodes
generate 50 percent of the requests. Fig. 16 shows the
latency of requests of the two approaches under this work-
load. NICEKV-WR achieves up to 50 percent lower latency
than NICEKV-CP. This is mainly because NICEKV-CP par-
titions the clients across replicas based on their IP address,
leading to all highly active clients being assigned to one rep-
lica. The selected replica received over 50 percent of the
total load in the system while the other two replicas
received less than 25 percent of the load each. The NICEKV-
WR assigns equal weights to all replicas hence it uniformly
distributes the client load across replicas leading to better
load balancing and lower overall latency. Fig. 16 shows that
50 percent of the requests experience significantly higher
latency with CP compared to WR.

Scenario II: heterogeneous replicas. In this experiment we
artificially slow the CPU of one of the replicas by 40 percent
to emulate a platform with heterogeneous nodes.

In this experiment all clients generate the same amount
of requests. Fig. 17 shows the latency of requests of the two
approaches under this workload. We notice for NICEKV-
CP that 40 percent of requests experience significantly
higher latency. NICEKV-WR balances the load among repli-
cas proportional to their capabilities: it increases the load on
the two capable nodes (hence a bit higher latency for the
bottom 60 percent of requests) and reduces the latency on
the slow node (hence up to 50 percent lower latency for the
top 40 percent of requests).

7 OTHER RELATED WORK

Request Routing. Beehive [49] proposes a different approach
for achieving, on average, single-hop request routing for
special workloads: workloads with highly skewed power-
law popularity distribution. Beehive replicates each object
based on its popularity, with the extremely popular objects
replicated on every node, hence accessible in a single-hop.
Due to the network and storage overheads, this approach is
only feasible for highly skewed workloads of infrequently
updated objects.

SDN Optimized Systems. Recent research projects utilize
SDN capabilities to provide load balancing [41], [42], access
control [50], seamless VM migration [51], and to improve
system security, virtualization and network efficiency [52].
These systems still use the network as a separate entity and
use SDN to optimize its operations. Unlike current efforts,
we co-design network and system operations and protocols
to achieve significant benefits.

Recently, a number of projects explored techniques to
leverage the new SDN capabilities. MOM [53], NOPaxos [54],
Eris [55] build consistency protocols by relying on the net-
work to order operations. SwitchKV [56] builds a key-value
storage with a tier of caching nodes. SwitchKV uses the SDN-
capability to optimize request routing for get requests from
the cache. MBalancer [57] and Trajano et al. [58] leverage the
SDN capabilities to build application aware load balancers.
sRoute [59] uses SDN to optimize gather and scatter commu-
nication patterns in storage systems. Unlike these projects,
we propose a new complete system architecture that co-
designs network and storage support and optimizes a range
of mechanisms including load balancing, replication, and
consistency.

Leveraging Programmable Switches. Recently a number of
projects started exploring techniques to leverage the capa-
bilities of programmable switches to improve distributed
systems. NetCache [60] implements a caching service in a
single switch. The controller keeps track of the most popular
objects and controls the cached objects in the switch. NetCh-
ain [61] optimizes vertical Paxos [62] by implementing chain
replication on a chain of programmable switches. NetPaxos
[63] considers moving the Paxos protocol to the network
switches, such that one switch serves as a coordinator and
other switches serve as replicas. The proposed approach
requires implementing a substantial part of the protocol in
switches and storing a potentially large protocol state.
NetChain and NetPaxos are suitable for systems that store
only a few megabytes of data (e.g., 8MB in the current
NetChain prototype).

8 CONCLUSION AND FUTURE WORK

We present network-integrated cluster-efficient (NICE) stor-
age, which co-designs storage logic and networking support
to realize a more efficient, scalable, and reliable distributed
storage. Our prototype evaluation shows that this approach
can realize significant benefits: up to 7� performance
improvement, substantial network-load reduction (up to

Fig. 16. The latency CDF of NICEKV with client partitioning (CP) load
and weighted replicas (WR) load balancing under a skewed client
workload.

Fig. 17. The latency CDF of NICEKV with client partitioning (CP) load
and weighted replicas (WR) load balancing with heterogeneous
hardware.

498 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020



50 percent), and improved load balancing and scalability.
While we focus the discussion on key-value storage sys-
tems, the proposed techniques for virtualization and consis-
tency-aware fault tolerance are widely applicable.

Our future work will focus on two directions. First we
plan to investigate building SDN-optimized storage systems
that can support more complex key-value queries. Second,
NICE design focused on improving replication-based stor-
age system. The second popular reliability technique is the
use of erasure coding. We plan to investigate techniques to
accelerate storage systems using erasure coding.

ACKNOWLEDGMENT

We thank Ajay Bakre, Alvin Lam, and Emalayan Vairavana-
than fromNetAppVancouver technical center (VTC) for their
support and early feedback, Aaron Gember-Jacobson for his
helpwithOpenflowdeployment issues, Thanumalayan S. Pil-
lai for his help with the Yahoo benchmark experiment, and
Robert Ricci and the CloudLab team for their support at Clou-
dLab. This material was supported by funding from an
NSERCDiscovery grant,NSERCEngage grant, Canada Foun-
dation for Innovation (CFI) grant, NSF grants CNS-1419199,
CNS-1421033, CNS-1319405, and CNS-1218405, as well as in-
kind support fromNetAppVTC,Canada. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors andmay not reflect the views
ofNSERC,NSF, or other institutions.

REFERENCES

[1] J. H. Saltzer, D. P. Reed, andD. D. Clark, “End-to-end arguments in
system design,” ACMTrans. Comput. Syst.vol. 2, no. 4, pp. 277–288,
1984.

[2] Amazon Elastic Compute Cloud (EC2). [cited 2010; [Online]. Available:
http://aws.amazon.com/ec2/.

[3] Google app engine. [cited 2015; [Online]. Available: https://
appengine.google.com

[4] Microsoft Azure: Cloud computing platform and services. [cited 2016;
[Online]. Available: https://azure.microsoft.com/

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. USENIX Symp. Operating Syst. Des.
Implementation, 2004, pp. 137–150.

[6] Spark lighting fast cluster computing. [cited 2019; [Online].
Available: http://spark.apache.org/.

[7] B. Calder, J. Wang, A. Ogus, et al., “Windows azure storage: A
highly available cloud storage service with strong consistency,” in
Proc. ACM Symp. Oper. Syst. Principles, 2011, pp. 143–157.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,” in Proc. 19th ACM Symp. Operating Syst. Principles, 2003,
pp. 20–43.

[9] J. H. Howard, M. L. Kazar, S. G. Menees, et al., “Scale and perfor-
mance in a distributed file system,” ACM Trans. Comput. Syst.,
vol. 6, no. 1, pp. 51–81, 1988.

[10] K. Gupta, R. Jain, I. Koltsidas, et al., “GPFS-SNC: An enterprise
storage framework for virtual-machine clouds,” IBM J. Res.
Develop., vol. 55, no. 6, pp. 2:1–2:10, Nov./Dec. 2011.

[11] R. Sandberg, D. Goldberg, S. Kleiman, et al., “Design and Imple-
mentation of the Sun Network Filesystem,” in Proc. Summer USE-
NIX. Jun. 1985, pp. 119–130.

[12] S. Weil, S.A. Brandt, E.L. Miller, et al., “Ceph: A scalable, high-
performance distributed file system,” in Proc. 7th Conf. Operating
Syst. Des. Implementation, 2006, pp. 307–320.

[13] OpenStack Cloud Platform: OpenStack Swift. [cited 2015; [Online].
Available: http://docs.openstack.org/developer/swift/
overview_architecture.html.

[14] Basho. Riak cloud storage. [cited 2015; [Online]. Available: http://
basho.com/riak-cloud-storage/.

[15] Voldemort project. [cited 2015; [Online]. Available: http://www.
project-voldemort.com/voldemort/design.html.

[16] G. DeCandia, D. Hastorun, M. Jampani, et al., “Dynamo: Ama-
zon’s highly available key-value store,” in Proc. 21st ACM SIGOPS
Symp. Operating Syst. Principles, 2007, pp. 205–220.

[17] A. Lakshman and P. Malik, “Cassandra: A decentralized struc-
tured storage system,” SIGOPS Operating Syst. Rev., vol. 44, no. 2,
pp. 35–40, 2010.

[18] I. Stoica, R. Morris, D. Karger, et al., “Chord: A scalable peer-to-
peer lookup service for internet applications,” in Proc. Conf. Appl.
Technol. Archit. Protocols Comput. Commun., 2001, pp. 149–160.

[19] The Open Networking Foundation: Openflow switch specification,”
Version 1.5.0. 2014.

[20] N. McKeown, T. Anderson, H. Balakrishnan, et al., “Openflow:
Enabling innovation in campus networks,” SIGCOMM Comput.
Commun. Rev., vol. 32, no. 2, pp. 69–74, 2008.

[21] P. Bosshart, D. Daly, G. Gibb, et al., “P4: Programming protocol-
independent packet processors,” SIGCOMM Comput. Commun.
Rev., vol. 44, no. 3, pp. 87–95, 2014.

[22] D. R. Karger, E. Lehman, F. T. Leighton, et al., “Consistent hash-
ing and random trees: Distributed caching protocols for relieving
hot spots on the World Wide Web,” in Proc. Symp. Theory Comput.,
1997, pp. 654–663.

[23] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in Proc.
IFIP/ACM Int. Conf. Distrib. Syst. Platforms (Middleware). 2001,
pp. 329–350.

[24] A. S. Tanenbaum and M. V. Steen, Distributed Systems: Principles
and Paradigms. 2 ed., Englewood Cliffs, NJ: Prentice Hall, 2006.

[25] The Apache Cassandra Project. 2012; [Online]. Available: http://
cassandra.apache.org/.

[26] D. Ongaro, S. M. Rumble, R. Stutsman, et al., “Fast crash recovery
in RAMCloud,” in Proc. 23rd ACM Symp. Operating Syst. Principles,
2011, pp. 29–41.

[27] J. Technologies, Network Protocols Handbook, Saratoga, CA, USA:
Javvin Technologies Inc., 2005

[28] Barefoot Tofino, 2019; [Online]. Available: https://www.
barefootnetworks.com/products/brief-tofino/.

[29] Cavium / XPliant, 2019; [Online]. Available: https://origin-www.
marvell.com/documents/netpxrx94dcdhk8sksbp/.

[30] L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, pp. 133–169, 1998.

[31] L. Lamport, “Paxos Made Simple,” ACM SIGACT News (Distrib-
uted Computing Column), vol. 32, no. 4, pp. 51–58, Dec. 2001.

[32] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in Proc. USENIX Annu. Tech. Conf., 2014,
pp. 305–320.

[33] Mongodb. [Online]. Available: https://www.mongodb.org/.
[34] Postgresql. 2019; [Online]. Available: http://www.postgresql.org/.
[35] M. K. Aguilera, A. Merchant, M. Shah, et al., “Sinfonia: A new

paradigm for building scalable distributed systems,” in Proc. 21st
ACM SIGOPS Symp. Operating Syst. Principles, 2007, pp. 159–174.

[36] J. Ousterhout, A. Gopalan, A. Gupta, et al., “The RAMCloud stor-
age system,” ACM Trans. Comput. Syst., vol. 33, no. 3, pp. 7:1–7:55,
2015.

[37] R. V. Renesse and F. B. Schneider, “Chain replication for support-
ing high throughput and availability,” in Proc. Symp. Opearting
Syst. Des. Implementation, 2004, Art. no. 7.

[38] B. Atikoglu, Y. Xu, E. Frachtenberg, et al., “Workload analysis of a
large-scale key-value store,” in Proc. 12th ACM Sigmetrics/Perfor-
mance Joint Int. Conf. Meas. Model. Comput. Syst., 2012, pp. 53–64.

[39] B. F. Cooper, A. Silberstein, E. Tam, et al., “Benchmarking cloud
serving systems with YCSB,” in Proc. 1st ACM Symp. Cloud Com-
put., 2010, pp. 143–154.

[40] D. Terry, V. Prabhakaran, R. Kotla, et al., “Consistency-based ser-
vice level agreements for cloud storage,” in Proc. 24th ACM Symp.
Operating Syst. Principles, 2013, pp. 309–324.

[41] N. Handigol, M. Flajslik, S. Seetharaman, N. McKeown, and R.
Johari, “Aster�x: Loadbalancing as a network primitive,” in Proc.
9th GENI Eng. Conf. (Plenary), Nov. 2010, pp. 1–2.

[42] R. Wang, D. Butnariu, and J. Rexford, “Openflow-based server
load balancing gone wild,” in Proc. 11th USENIX Conf. Hot Topics
Manage. Internet Cloud Enterprise Netw. Serv., USENIX Association,
Berkeley, CA, USA, 2011.

[43] Ryu sdn Framework. [cited 2019; [Online]. Available: http://osrg.
github.io/ryu/.

[44] Programming Protocol-Independent Packet Processors (P4). [cited
2019; [Online]. Available: https://p4.org.

KETTANEH ET AL.: THE NETWORK-INTEGRATED STORAGE SYSTEM 499

http://aws.amazon.com/ec2/
https://appengine.google.com
https://appengine.google.com
https://azure.microsoft.com/
http://spark.apache.org/
http://docs.openstack.org/developer/swift/overview_architecture.html
http://docs.openstack.org/developer/swift/overview_architecture.html
http://basho.com/riak-cloud-storage/
http://basho.com/riak-cloud-storage/
http://www.project-voldemort.com/voldemort/design.html
http://www.project-voldemort.com/voldemort/design.html
http://cassandra.apache.org/
http://cassandra.apache.org/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/
https://origin-www.marvell.com/documents/netpxrx94dcdhk8sksbp/
https://origin-www.marvell.com/documents/netpxrx94dcdhk8sksbp/
https://www.mongodb.org/
http://www.postgresql.org/
http://osrg.github.io/ryu/
http://osrg.github.io/ryu/
https://p4.org


[45] Barefoot P4 Studio. [cited 2019; [Online]. Available: https://www.
barefootnetworks.com/products/brief-p4-studio/.

[46] Cloudlab. [cited 2019; [Online]. Available: http://www.cloudlab.
us/.

[47] OpenvSwitch: Production quality, multilayer open virtual switch.
[cited 2019; [Online]. Available: http://openvswitch.org/.

[48] S. Al-Kiswany, S. Yang, A. C. Arpaci-Dusseau, et al., “NICE:
Network-integrated cluster-efficient storage,” in Proc. ACM Int.
Symp. High Perform. Parallel Distrib. Comput., 2017, pp. 29–40.

[49] V. Ramasubramanian and E. G. Sirer, “Beehive: O(1) lookup
performance for power-law query distributions in peer-to-peer
overlays,” in Proc. NSDI, 2004, pp. 99–112.

[50] A. K. Nayak, A. Reimers, N. Feamster, et al., “Resonance:
Dynamic access control for enterprise networks,” in Proc. ACM
Workshop Res. Enterprise Netw., 2009, pp. 11–18.

[51] A. J. Mashtizadeh, M. Cai, G. Tarasuk-Levin, et al., “Xvmotion:
Unified virtual machine migration over long distance,” in Proc.
USENIX Annu. Tech. Conf., 2014, pp. 97–108.

[52] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation
using openflow: A survey,” IEEE Commun. Soc., vol. 16, no. 1,
pp. 493–512, Jan.-Mar. 2014.

[53] D. R. K. Ports, J. Li, V. Liu, et al., “Designing distributed systems
using approximate synchrony in data center networks,” in Proc.
Symp. Netw. Syst. Des. Implementation, 2015, pp. 43–57.

[54] J. Li, E. Michael, N. K. Sharma, et al., “Just say no to paxos over-
head: replacing consensus with network ordering,” in Proc. USE-
NIX Conf. Operating Syst. Des. Implementation, 2016, pp. 467–483.

[55] J. Li, E. Michael, and D. R‘. K. Ports, “Eris: Coordination-free con-
sistent transactions using in-network concurrency control,” in
Proc. Symp. Operating Syst. Principles, 2017, pp. 104–120.

[56] X. Li, R. Sethi, M. Kaminsky, et al., “Be fast, cheap and in control
with SwitchKV,” in Proc. USENIX Symp. Netw. Syst. Des. Imple-
mentation, 2016, pp. 31–44.

[57] A. Bremler-Barr, D. Hay, I. Moyal, et al., “Load balancing memc-
ached traffic using software defined networking,” in Proc. IFIP
Netw. Conf., 2017, pp. 1–9.

[58] A. Trajano and M. Fernandez., “Two-phase load balancing of in-
memory key-value storages through NFV and SDN,” in Proc.
IEEE Symp. Comput. Commun., 2016, pp. 409–414.

[59] I. Stefanovici, B. Schroeder, G. O’Shea, and E. Thereska, “sRoute:
Treating the storage stack like a network,” in Proc. 14th USENIX
Conf. File Storage Technol. (FAST 16), Santa Clara, CA, Feb. 2016,
pp. 197–212.

[60] X. Jin, X. Li, H. Zhang, et al., “NetCache: Balancing key-value
stores with fast in-network caching,” in Proc. Symp. Operating Syst.
Principles, 2017, pp. 121–136.

[61] X. Jin, X. Li, H. Zhang, et al., “Netchain: Scale-free sub-RTT coor-
dination,” in Proc. USENIX Conf. Netw. Syst. Des. Implementation,
2018, pp. 35–49.

[62] L. Lamport, D. Malkhi, and L. Zhou, “Vertical paxos and primary-
backup replication,” in Proc. ACM Symp. Principles Distrib.
Comput., 2009, pp. 312–313.

[63] H. T. Dang, D. Sciascia, M. Canini, et al., “NetPaxos: Consensus at
network speed,” in Proc. ACM SIGCOMM Symp. Softw. Defined
Netw. Res., 2015, Art. no. 5.

Ibrahim Kettaneh received the bachelor’s
degree in computer engineering from the Univer-
sity of Jordan, in 2017, he is working toward the
graduate degree in computer science at the Uni-
versity of Waterloo. His research interests include
distributed systems and programmable networks.

Ahmed Alquraan received the BSc degree in
computer engineering from the University of Jor-
dan, Jordan, in 2015, and the MSc degree in com-
puter science, from UW, in 2019. He is working
toward the PhD degree in the school of computer
science at the University of Waterloo (UW). His
research interests include distributed systems with
a focus on consensus protocols and fault tolerance.

Hatem Takruri received the BS degree in com-
puter engineering from the University of Jordan, in
2015, and the MMath degree in computer science
from the University of Waterloo, in 2019. His
research interests include distributed systems and
consensus algorithms.

Suli Yang received the PhD degree from UW-
Madison, where she concentrated on file systems
and storage systems. She is currently working
with Ant Financial Service group on building large
scale distributed storage systems.

Andrea Arpaci-Dusseau is the Carl de Boor pro-
fessor of Computer Science with the University of
Wisconsin-Madison. She is an expert in file and
storage systems, having published more than 80
papers in this area, co-advised 25 PhD students,
and received 11 best paper awards; for her
research contributions, she and professor Remzi
Arpaci-Dusseau received the 2018 ACM-SIGOPS
Weiser award. Andrea has also won the Rosner
“Excellent Educator” award and the Van Hise Out-
reach Distinguished Teaching Award for develop-

ing a service-learning course in which UW-Madison students teach CS to
more than 200 elementary-school children each semester.

Remzi Arpaci-Dusseau is the Grace Wahba pro-
fessor and associate chair of computer sciences
with the UW-Madison. He co-leads a research
group with professor Andrea Arpaci-Dusseau.
Together, they have graduated 25 PhD students
and won numerous best-paper awards; many of
their innovations are used by commercial systems.
For their work, Andrea and Remzi received the
2018ACM-SIGOPSWeiser award for “outstanding
leadership, innovation, and impact in storage and
computer systems research.” Remzi has won the

SACM professor-of-the-Year award six times, the Rosner “Excellent Edu-
cator” award, and the Chancellor’s Distinguished Teaching Award. Andrea
and Remzi’s operating systems book (www.ostep.org) is downloaded mil-
lions of times yearly and used at numerous institutions worldwide.

Samer Al-Kiswany received the MSc and PhD
degrees from the ECE Department, the University
of British Columbia. He completed his postdoc from
the University of Wisconsin–Madison, he is an
assistant professor with David R. Cheriton School
of Computer Science, the University of Waterloo.
His research interests include distributed systems
with focus on high performance computing sys-
tems, and cloud computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

500 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/
http://www.cloudlab.us/
http://www.cloudlab.us/
http://openvswitch.org/
www.ostep.org


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


